1932

Abstract

Hydrogen and deuterium isotopic evidence indicates that the source of terrestrial water was mostly meteorites, with additional influx from nebula gas during accretion. There are two Earth models, with large (7–12 ocean masses) and small (1–4 ocean masses) water budgets that can explain the geochemical, cosmochemical, and geological observations. Geophysical and mineral physics data indicate that the upper and lower mantles are generally dry, whereas the mantle transition zone is wetter, with heterogeneous water distribution. Subducting slabs are a source of water influx, and there are three major sites of deep dehydration: the base of the upper mantle, and the top and bottom of the lower mantle in addition to slabs in the shallow upper mantle. Hydrated regions surround these dehydration sites. The core may be a hidden reservoir of hydrogen under the large water budget model.

  • ▪   Earth is a water planet. Where and when was water delivered, and how much? How does water circulate in Earth? This review looks at the current answers to these fundamental questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-080320-062509
2021-05-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-080320-062509.html?itemId=/content/journals/10.1146/annurev-earth-080320-062509&mimeType=html&fmt=ahah

Literature Cited

  1. Abe R, Shibazaki Y, Ozawa S, Ohira I, Tobe H, Suzuki A 2018. In situ X-ray diffraction studies of hydrous aluminosilicate at high pressure and temperature. J. Mineral. Petrol. Sci. 113:106–11
    [Google Scholar]
  2. Abe Y, Matsui T. 1986. Early evolution of the Earth: accretion, atmosphere formation, and thermal history. J. Geophys. Res. 91:B13E291–302
    [Google Scholar]
  3. Alexander CMOD, Bowden R, Fogel ML, Howard KT, Herd CDK, Nittler LR 2012. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–23
    [Google Scholar]
  4. Bell DR, Ihinger PD. 2000. The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim. Cosmochim. Acta 64:2109–18
    [Google Scholar]
  5. Bercovici D, Karato S. 2003. Whole-mantle convection and the transition zone water filter. Nature 425:39–44
    [Google Scholar]
  6. Bezacier L, Reynard B, Cardon H, Montagnac G, Bass J 2013. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. J. Geophys. Res. Solid Earth 118:527–35
    [Google Scholar]
  7. Bockelée-Morvan D, Calmonte U, Charnley S, Duprat J, Engrand C et al. 2015. Cometary isotopic measurements. Space Sci. Rev. 197:47–83
    [Google Scholar]
  8. Bolfan‐Casanova N, Keppler H, Rubie DC 2000. Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle. Earth Planet. Sci. Lett. 182:209–21
    [Google Scholar]
  9. Bolfan‐Casanova N, Keppler H, Rubie DC 2003. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys. Res. Lett. 30:1905
    [Google Scholar]
  10. Bolfan-Casanova N, Mackwell S, Keppler H, McCammon C, Rubie DC 2002. Pressure dependence on H solubility in magnesiowüstite up to 25 GPa: implications for the storage of water in the Earth's lower mantle. Geophys. Res. Lett. 29:1089–189-4
    [Google Scholar]
  11. Buchen J, Marquart H, Speziale S, Kawazoe T, Boffa Ballan T, Kurnosov A 2018. High-pressure single-crystal elasticity of wadsleyite and the seismic signature of water in the shallow transition zone. Earth Planet. Sci. Lett. 498:77–87
    [Google Scholar]
  12. Burke K, Steinberger B, Torsvik TH, Smethurst MA 2008. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265:49–60
    [Google Scholar]
  13. Cai N, Chen T, Qi X, Inoue T, Li B 2019. Sound velocities of the 23 Å phase at high pressure and implications for seismic velocities in subducted slabs. Phys. Earth Planet. Inter. 288:1–8
    [Google Scholar]
  14. Cai N, Inoue T, Fujino K, Ohfuji H, Yurimoto H 2015. A possible new Al-bearing hydrous Mg-silicate (23 angstrom phase) in the deep upper mantle. Am. Mineral. 100:2330–35
    [Google Scholar]
  15. Chambers K, Deuss A, Woodhouse JH 2005. Reflectivity of the 410 km discontinuity from PP and SS precursors. J. Geophys. Res. 110:B2B02301
    [Google Scholar]
  16. Chang YY, Hsieh WP, Tan E, Chen J 2017. Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle. PNAS 114:164078–81
    [Google Scholar]
  17. Chung JI, Kagi H. 2002. High concentration of water in stishovite in the MORB system. Geophys. Res. Lett. 29:16–116-4
    [Google Scholar]
  18. Civet F, Tarits P. 2013. Analysis of magnetic satellite data to infer the mantle electrical conductivity of telluric planets in the solar system. Planet. Space Sci. 84:102–11
    [Google Scholar]
  19. Duan Y, Sun N, Wang S, Li X, Guo X et al. 2018. Phase stability and thermal equation of state of δ-AlOOH: implication for water transportation to the Deep Lower Mantle. Earth Planet. Sci. Lett. 494:92–98
    [Google Scholar]
  20. Dziewonski AM, Anderson DL. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25:297–356
    [Google Scholar]
  21. Eggleton RA, Boland JN, Ringwood AE 1978. High pressure synthesis of a new aluminum silicate: Al5Si5O17(OH). Geochem. J. 12:191–94
    [Google Scholar]
  22. Fei H, Yamazaki D, Sakurai M, Miyajima N, Ohfuji H et al. 2017. A nearly water-saturated mantle transition zone inferred from mineral viscosity. Sci. Adv. 3:e1603024
    [Google Scholar]
  23. Ferrand TP, Hilairet N, Incel S, Deldicque D, Labrosse L et al. 2017. Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nat. Commun. 8:15247
    [Google Scholar]
  24. Frost DA, Rost S. 2014. The P-wave boundary of the Large-Low Shear Velocity Province beneath the Pacific. Earth Planet. Sci. Lett. 403:380–92
    [Google Scholar]
  25. Fu S, Yang J, Karato S, Gavrilliuk AG, Ivanova AG et al. 2019. Water concentration in single‐crystal (Al,Fe)‐bearing bridgmanite grown from the hydrous melt: implications for dehydration melting at the topmost lower mantle. Geophys. Res. Lett. 46:10358–66
    [Google Scholar]
  26. Fumagalli P, Stixrude L, Poli S, Snyder D 2001. The 10 Å phase: a high‐pressure expandable sheet silicate during subduction of hydrated lithosphere. Earth Planet. Sci. Lett. 186:125–41
    [Google Scholar]
  27. Garnero EJ, Helmberger DV. 1996. Seismic detection of a thin lateral varying boundary layer at the base of the mantle beneath the central‐Pacific. Geophys. Res. Lett. 23:977–80
    [Google Scholar]
  28. Geiss J, Gloeckler G. 2003. Isotopic composition of H, He and Ne in the protosolar cloud. Solar System History from Isotopic Signatures of Volatile Elements R Kallenbach, T Encrenaz, J Geiss, K Mauersberger, TC Owen, F Robert 3–18 Dordrecht, Neth: Springer
    [Google Scholar]
  29. Gemmi M, Fischer J, Merlini M, Poli S, Fumagalli P et al. 2011. A new hydrous Al-bearing pyroxene as a water carrier in subduction zones. Earth Planet. Sci. Lett. 310:422–28
    [Google Scholar]
  30. Gemmi M, Merlini M, Palatinus L, Fumagalli P, Hanfland M 2016. Electron diffraction determination of 11.5 Å and HySo structures: candidate water carriers to the Upper Mantle. Am. Mineral. 101:2645–54
    [Google Scholar]
  31. Green HW II, Chen WP, Brudzinski MR 2010. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature 467:828–31
    [Google Scholar]
  32. Grocholski B, Catalli K, Shim S, Prakapenka V 2012. Mineralogical effects on the detectability of the postperovskite boundary. PNAS 109:2275–79
    [Google Scholar]
  33. Hacker BR, Peacock SM, Abers GA, Holloway SD 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions. ? J. Geophys. Res. 108:B12030
    [Google Scholar]
  34. Hallis LJ. 2017. D/H ratios of the inner Solar System. Philos. Trans. R. Soc. A 375:20150390
    [Google Scholar]
  35. Hallis LJ, Huss GR, Nagashima K, Taylor GL, Halldórsson SA et al. 2015. Evidence for primordial water in Earth's deep mantle. Science 350:795–97
    [Google Scholar]
  36. Hartogh P, Lis DC, Bockelee-Morvan D, de Val-Borro M, Biver N et al. 2011. Ocean-like water in the Jupiter family comet 103P/Hartley 2. Nature 478:218–20
    [Google Scholar]
  37. Hayashi C, Nakazawa K, Mizuno H 1979. Earth's melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43:22–28
    [Google Scholar]
  38. Hernandez ER, Alfe D, Brodholt J 2013. The incorporation of water into lower‐mantle perovskites: a first‐principles study. Earth Planet. Sci. Lett. 364:37–43
    [Google Scholar]
  39. Higo Y, Inoue T, Irifune T, Yurimoto H 2001. Effect of water on the spinel-postspinel transformation in Mg2SiO4. Geophys. Res. Lett. 28:3505–8
    [Google Scholar]
  40. Houser C. 2016. Global seismic data reveal little water in the mantle transition zone. Earth Planet. Sci. Lett. 448:94–101
    [Google Scholar]
  41. Hsieh WP, Ishii T, Chao KH, Tsuchiya J, Deschamps JF, Ohtani E 2020. Spin transition of iron in δ-(Al,Fe)OOH induces thermal anomalies in Earth's lower mantle. Geophys. Res. Lett. 47:e2020GL087036
    [Google Scholar]
  42. Hu Q, Kim DY, Yang W, Yang L, Meng Y et al. 2016. FeO2 and FeO2H under deep lower mantle conditions and Earth's oxygen–hydrogen cycles. Nature 534:241–44
    [Google Scholar]
  43. Huang S, Tschauner O, Yang S, Humayun M, Liu W et al. 2020. HIMU geochemical signature originating from the transition zone. Earth Planet. Sci. Lett. 542:116323
    [Google Scholar]
  44. Ichiki M, Baba K, Obayashi M, Utada H 2006. Water content and geotherm in the upper mantle above the stagnant slab: interpretation of electrical conductivity and seismic P-wave velocity models. Phys. Earth Planet. Inter. 155:1–15
    [Google Scholar]
  45. Ikuta D, Ohtani E, Sano-Furukawa A, Shibazaki Y, Terasaki H et al. 2019. Interstitial hydrogen atoms in face-centered cubic iron in the Earth's core. Sci. Rep. 9:7108
    [Google Scholar]
  46. Inoue T, Wada T, Sasaki R, Yurimoto H 2010. Water partitioning in the Earth's mantle. Phys. Earth Planet. Sci. 183:245–51
    [Google Scholar]
  47. Ishii T, Huang R, Fei H, Koemets I, Liu Z et al. 2018. Complete agreement of the post-spinel transition with the 660-km seismic discontinuity. Sci. Rep. 8:6357
    [Google Scholar]
  48. Jones AG, Muller MR, Fishwick S, Evans RL, Fullea J 2013. Velocity-conductivity relations for cratonic lithosphere and their application: example of southern Africa. Geochem. Geophys. Geosyst. 14:806–27
    [Google Scholar]
  49. Kaminsky FV. 2017. The Earth's Lower Mantle: Composition and Structure Cham, Switz: Springer
  50. Kaneshima S, Helffrich G. 1998. Detection of lower mantle scatterers northeast of the Mariana subduction zone using short-period array data. J. Geophys. Res. 103:B34825–38
    [Google Scholar]
  51. Kanzaki M. 1991. Stability of hydrous magnesium silicates in the mantle transition zone. Phys. Earth Planet. Inter. 66:307–12
    [Google Scholar]
  52. Karato S. 2011. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301:413–23
    [Google Scholar]
  53. Katsura T, Yamada H, Nishikawa O, Song M, Kubo A et al. 2004. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J. Geophys. Res. 109:B2B02209
    [Google Scholar]
  54. Katsura T, Yamada H, Shinmei T, Kubo A, Ono S et al. 2003. Post‐spinel transition in Mg2SiO4 determined by high P–T in situ X‐ray diffractometry. Phys. Earth Planet. Inter. 136:11–24
    [Google Scholar]
  55. Kawakatsu H, Yoshioka S. 2011. Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth Planet. Sci. Lett. 303:1–10
    [Google Scholar]
  56. Kelbert A, Schultz A, Egbert G 2009. Global electromagnetic induction constraints on transition-zone water content variations. Nature 460:1003–6
    [Google Scholar]
  57. Korenaga J. 2011. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. J. Geophys. Res. 116:B12B12403
    [Google Scholar]
  58. Koyama T, Shimizu H, Utada H, Ichiki M, Ohtani E, Hae R 2006. Water contents in the mantle transition zone beneath the north Pacific derived from the electrical conductivity anomaly. Geophys. Monogr. Ser 168:171–79
    [Google Scholar]
  59. Kubo T, Kaneshima S, Torii Y, Yoshioka S 2009. Seismological and experimental constraints on metastable phase transformations and rheology of the Mariana slab. Earth Planet. Sci. Lett. 287:12–23
    [Google Scholar]
  60. Lakshtanov DL, Sinogeikin SV, Litasov KD, Prakapenka VB, Hellwi H et al. 2007. The post-stishovite phase transition in hydrous alumina‐bearing SiO2 in the lower mantle of the earth. PNAS 104:3413588–90
    [Google Scholar]
  61. Lawrence JF, Wysession ME. 2006. Seismic evidence for subduction-transported water in the lower mantle.. Geophys. Monogr. Ser 168:251–61
    [Google Scholar]
  62. Li L, Weidner DJ, Brodholt JP, Alfe D 2011. Prospecting for water in the transition zone: d ln(Vs)/d ln(Vp). Phys. Earth Planet. Inter. 189:117–20
    [Google Scholar]
  63. Litasov KD, Kagi H, Shatzky A, Ohtani E, Lakshtanov DL et al. 2007. High hydrogen solubility in Al‐rich stishovite and water transport in the lower mantle. Earth Planet. Sci. Lett. 262:620–34
    [Google Scholar]
  64. Litasov KD, Ohtani E. 2002. Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. Phys. Earth Planet. Inter. 134:105–27
    [Google Scholar]
  65. Litasov KD, Ohtani E. 2003. Hydrous lower mantle: the water source for wet plumes?. 8th International Kimberlite Conference FLA030 Victoria, BC: Elsevier
    [Google Scholar]
  66. Litasov KD, Ohtani E, Langenhorst F, Yurimoto H, Kubo T, Kondo T 2003. Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth Planet. Sci. Lett. 211:189–203
    [Google Scholar]
  67. Litasov KD, Ohtani E, Sano A 2006. Influence of water on major phase transitions in the Earth's mantle. In Geophys. Monogr. . Ser 168:95–111
    [Google Scholar]
  68. Liu J, Hu Q, Kim DY, Wu Z, Wang W et al. 2017. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature 551:494–97
    [Google Scholar]
  69. Liu L. 1987. Effects of H2O in the phase behavior of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Phys. Earth Planet. Inter. 49:142–67
    [Google Scholar]
  70. Liu Z, Ishii T, Katsura T 2017. Rapid decrease of MgAlO2.5 component in bridgmanite with pressure. Geochem. Perspect. Lett. 5:12–18
    [Google Scholar]
  71. Liu Z, McCammon C, Wang B, Dubrovinsky L, Ishii T et al. 2020. Stability and solubility of the FeAlO3 component in bridgmanite at uppermost lower mantle conditions. J. Geophys. Res. 125:e2019jB18447
    [Google Scholar]
  72. Mao H-K, Hu Q, Yang L, Liu J, Kim DY et al. 2017. When water meets iron at Earth's core–mantle boundary. Natl. Sci. Rev. 4:870–78
    [Google Scholar]
  73. Mao Z, Jacobsen SD, Jiang F, Smyth JR, Holl CM et al. 2008. Single-crystal elasticity of wadsleyites, β-Mg2SiO4 containing 0.37–1.66 wt% H2O. Earth Planet. Sci. Lett. 266:78–89
    [Google Scholar]
  74. Marty B. 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314:56–66
    [Google Scholar]
  75. Marty B, Yokouchi R. 2006. Water in the early Earth. Rev. Mineral. Geochem. 62:421–50
    [Google Scholar]
  76. Marzotto E, Hsieh WP, Ishii T, Chao KH, Golabeck GJ et al. 2020. Effect of water on lattice thermal conductivity of ringwoodite and its implications for the thermal evolution of descending slabs. Geophys. Res. Lett. 47:e2020GL087607
    [Google Scholar]
  77. Mashino I, Murakimi M, Ohtani E 2016. Sound velocities of δ‐AlOOH up to core‐mantle boundary pressures with implications for the seismic anomalies in the deep mantle. J. Geophys. Res. Solid Earth 121:595–609
    [Google Scholar]
  78. Masters G, Laske G, Bolton H, Dziewonski A 2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In Geophys. Monogr. . Ser 117:63–87
    [Google Scholar]
  79. McDonough WF. 2014. Compositional model for the Earth's core. Treatise Geochem 2:559–77
    [Google Scholar]
  80. Mitrovica JX, Forte AM. 2004. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett. 225:177–89
    [Google Scholar]
  81. Mookherjee M, Mainprice D. 2014. Unusually large shear wave anisotropy for chlorite in subduction zone settings. Geophys. Res. Lett. 41:1506–13
    [Google Scholar]
  82. Morbidelli A, Lunine JI, O'Brien DP, Raymond SN, Walsh KJ 2012. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40:251–75
    [Google Scholar]
  83. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y 2004. Post-perovskite phase transition in MgSiO3. Science 304:855–58
    [Google Scholar]
  84. Murakami M, Hirose K, Yurimoto H, Nakashima S, Takafuji N 2002. Water in Earth's lower mantle. Science 295:1885–87
    [Google Scholar]
  85. Mysen B. 2018. Redox-controlled mechanisms of C and H isotope fractionation between silicate melt and COH fluid in the Earth's interior. Prog. Earth Planet. Sci. 5:46
    [Google Scholar]
  86. Mysen B. 2019. Nitrogen in the Earth: abundance and transport. Prog. Earth Planet. Sci. 6:38
    [Google Scholar]
  87. Nakagawa T, Iwamori H, Yanagi R, Nakano A 2018. On the evolution of the water ocean in the plate-mantle system. Prog. Earth Planet. Inter. 5:51
    [Google Scholar]
  88. Nishi M, Irifune T, Tsuchita J, Tange Y, Nishihara Y et al. 2014. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat. Geosci. 7:224–27
    [Google Scholar]
  89. Nishi M, Kuwayama Y, Tsuchiya J, Tsuchiya T 2017. The pyrite-type high-pressure form of FeOOH. Nature 547:205–8
    [Google Scholar]
  90. Niu F, Kawakatsu H, Fukao Y 2003. A slightly dipping and strong seismic reflector at mid-mantle depth beneath the Mariana subduction zone. J. Geophys. Res. 108:2419
    [Google Scholar]
  91. Nolet G, Zielhaus A. 1994. Low S velocities under the Tornquist Teisseyre zone: evidence for water injection into the transition zone by subduction. J. Geophys. Res. 99:B815813–20
    [Google Scholar]
  92. Ohira I. 2018. Experimental study of δ-AlOOH–ε-FeOOH–Phase H solid solution toward understanding the water transport and seismic anomaly in the lower mantle PhD Thesis, Tohoku Univ Sendai, Japan:
  93. Ohira I, Jackson JM, Solomatova NV, Sturhan W, Finkelstein GJ et al. 2019. Compressional behavior and spin state of δ-(Al,Fe)OOH at high pressures. Am. Mineral. 104:1273–84
    [Google Scholar]
  94. Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N et al. 2014. Stability of a hydrous δ-phase, AlOOHMgSiO2(OH)2, and a mechanism of water transport into the base of lower mantle. Earth Planet. Sci. Lett. 401:12–17
    [Google Scholar]
  95. Ohtani E, Amaike Y, Kamada S, Sakamaki T, Hirao N 2014. Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophys. Res. Lett. 41:8283–87
    [Google Scholar]
  96. Ohtani E, Litasov KD. 2006. The effect of water on mantle phase transitions. Rev. Mineral. Geochem. 62:397–420
    [Google Scholar]
  97. Ohtani E, Litasov KD, Hosoya T, Kubo T, Kondo T 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter. 143–144:255–69
    [Google Scholar]
  98. Ohtani E, Mizobata H, Kudoh Y, Nagase T, Arashi H et al. 1997. A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys. Res. Lett. 24:1047–50
    [Google Scholar]
  99. Ohtani E, Toma M, Kubo T, Kondo T, Kato T, Kikegawa T 2003. In situ X-ray observation of decomposition of superhydrous phase B at high pressure and temperature. Geophys. Res. Lett. 30:1029–32
    [Google Scholar]
  100. Ohtani E, Yuan L, Ohira I, Shatsliy A, Litasov KD 2018. Fate of water transported into the deep mantle by slab subduction. J. Asian Earth Sci. 167:2–10
    [Google Scholar]
  101. Olsen P, Sharp ZD. 2019. Nebular atmosphere to magma ocean: a model for volatile capture during Earth accretion. Phys. Earth Planet. Inter. 294:106294
    [Google Scholar]
  102. Pacalo REG, Parise JB. 1992. Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400°C and 20 GPa. Am. Mineral. 77:681–84
    [Google Scholar]
  103. Panero WR, Benedetti LR, Jeanloz R 2003. Transport of water into the lower mantle: role of stishovite. J. Geophys. Res. 108:B12039
    [Google Scholar]
  104. Panero WR, Pigott JS, Reaman DM, Kabbes JE, Liu Z 2015. Dry (Mg,Fe)SiO3 perovskite in the Earth's lower mantle. J. Geophys. Res. Solid Earth 120:894–908
    [Google Scholar]
  105. Peacock SM. 1990. Fluid processes in subduction zone. Science 248:329–37
    [Google Scholar]
  106. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L et al. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:7491221–24
    [Google Scholar]
  107. Peslier AH, Schönbächler M, Busemann H, Karato S 2017. Water in the Earth's interior: distribution and origin. Space Sci. Rev. 212:743–810
    [Google Scholar]
  108. Pommier A. 2014. Interpretation of magnetotelluric results using laboratory measurements. Surv. Geophys. 35:41–84
    [Google Scholar]
  109. Pruzan P, Chervin JC, Wolanin E, Canny B, Gauthier M, Hanfland M 2003. Phase diagram of ice in the VII–VIII–X domain: vibrational and structural data for strongly compressed ice VIII. J. Raman Spectrosc. 34:591–610
    [Google Scholar]
  110. Revenaugh J, Sipkin SA. 1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369:474–76
    [Google Scholar]
  111. Ringwood AE, Major A. 1967. High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O. Earth Planet. Sci. Lett. 2:130–33
    [Google Scholar]
  112. Ritsema J, Lekic V. 2020. Heterogeneity of seismic wave velocity in Earth's mantle. Annu. Rev. Earth Planet. Sci. 48:377–401
    [Google Scholar]
  113. Robert F. 2006. Solar system deuterium/hydrogen ratio. Meteorites and the Early Solar System II DS Lauretta, HY McSween Jr 341–51 Tucson: Univ. Ariz. Press
    [Google Scholar]
  114. Rost S, Garnero EJ, Williams Q, Manga M 2005. Seismic constraints on a possible plume root at the core–mantle boundary. Nature 435:666–69
    [Google Scholar]
  115. Rubey WW. 1951. Geologic history of seawater: an attempt to state the problem. GSA Bull 62:1111–48
    [Google Scholar]
  116. Rubie DC, Jacobson SA, Morbidelli A, O'Brien DP, Young ED et al. 2015. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248:89–108
    [Google Scholar]
  117. Sakamaki T, Ohtani E, Urakawa S, Suzuki A, Katayama Y 2009. Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method. Earth Planet. Sci. Lett. 287:293–97
    [Google Scholar]
  118. Sanchez-Valle C, Sinogeikin SV, Smyth JR, Bass JD 2008. Sound velocities and elasticity of DHMS phase A to high pressure and implications for seismic velocities and anisotropy in subducted slabs. Phys. Earth Planet. Inter. 170:229–39
    [Google Scholar]
  119. Sano A, Ohtani E, Kubo T, Funakoshi K 2004. In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide δ-AlOOH at high pressure and temperature. J. Phys. Chem. Solids 65:1547–54
    [Google Scholar]
  120. Sano A, Ohtani E, Litasov K, Kubo T, Hosoya T et al. 2006. In situ X-ray diffraction study of the effect of water on the garnet–perovskite transformation in MORB and implications for the penetration of oceanic crust into the lower mantle. Phys. Earth Planet. Inter. 159:118–26
    [Google Scholar]
  121. Satta N, Marquardt H, Kurnosov A, Buchen J, Kawazoe T et al. 2019. Single-crystal elasticity of iron-bearing phase E and seismic detection of water in Earth's upper mantle. Am. Mineral. 104:1526–29
    [Google Scholar]
  122. Schmandt B, Jacobsen SD, Becker TW, Liu Z, Ducker KG 2014. Dehydration melting at the top of the lower mantle. Science 344:1265–68
    [Google Scholar]
  123. Schmidt MW. 1995. Lawsonite: upper pressure stability and formation of higher density hydrous phases. Am. Mineral. 80:1286–92
    [Google Scholar]
  124. Shahar A, Schauble EA, Caracas R, Gleason AE, Reagan MM et al. 2016. Pressure-dependent isotopic composition of iron alloys. Science 352:580–82
    [Google Scholar]
  125. Sharp ZD. 2017. Nebular ingassing as a source of volatiles to the terrestrial planets. Chem. Geol. 448:137–50
    [Google Scholar]
  126. Shimizu H, Koyama T, Baba H, Utada H 2010. Revised 1-D mantle electrical conductivity structure beneath the north Pacific. Geophys. J. Int. 180:1030–48
    [Google Scholar]
  127. Smyth JR, Frost D. 2002. The effect of water on the 410-km discontinuity: an experimental study. Geophys. Res. Lett. 29:GL014418
    [Google Scholar]
  128. Soldati G, Boschi L, Deschamps F, Giardini D 2009. Inferring radial models of mantle viscosity from gravity (GRACE) data and an evolutionary algorithm. Phys. Earth Planet. Inter. 176:19–32
    [Google Scholar]
  129. Song TRA, Helmberger DV, Grand SP 2004. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427:530–33
    [Google Scholar]
  130. Spektor K, Nylen J, Stoyanov E, Navrotsky A, Hervig RL et al. 2011. Ultrahydrous stishovite from high‐pressure hydrothermal treatment of SiO2. PNAS 108:5220918–22
    [Google Scholar]
  131. Suetsugu D, Inoue T, Obayashi M, Yamada A, Shiobara H et al. 2010. Depths of the 410-km and 660-km discontinuities in and around the stagnant slab beneath the Philippine Sea: Is water stored in the stagnant slab. ? Phys. Earth Planet. Inter. 183:270–79
    [Google Scholar]
  132. Suetsugu D, Inoue T, Yamada A, Zhao D, Obayashi M 2006. Towards mapping the three-dimensional distribution of water in the transition zone from P-velocity tomography and 660-km discontinuity depths.. . Geophys. Monogr. Ser 168:237–49
    [Google Scholar]
  133. Suzuki A, Ohtani E, Kamada T 2000. A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000°C. Phys. Chem. Miner. 27:689–93
    [Google Scholar]
  134. Tarits P, Hautot S, Perrier F 2004. Water in the mantle: results from electrical conductivity beneath the French Alps. Geophys. Res. Lett. 31:L06612
    [Google Scholar]
  135. Tauzin B, Bebayle E, Wittlinger G 2010. Seismic evidence for a global low-velocity layer within the Earth's upper mantle. Nat. Geosci. 3:718–21
    [Google Scholar]
  136. Terasaki H, Ohtani E, Sakai T, Kamada S, Asanuma H et al. 2012. Stability of Fe–Ni hydride after the reaction between Fe–Ni alloy and hydrous phase (δ-AlOOH) up to 1.2 Mbar: possibility of H contribution to the core density deficit. Phys. Earth Planet. Inter. 194–195:18–24
    [Google Scholar]
  137. Trampert J, Deschamps F, Resovsky J, Yuen D 2004. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306:853–56
    [Google Scholar]
  138. Tschauner O, Huang S, Greenberg E, Prakapenka V, Ma C et al. 2018. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth's deep mantle. Science 359:1136–39
    [Google Scholar]
  139. Utada H, Koyama T, Obayashi M, Fukao Y 2009. A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry. Earth Planet. Sci. Lett. 281:249–57
    [Google Scholar]
  140. van Keken PE, Hacker BR, Syracuse EM, Abers GA 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116:B1B01401
    [Google Scholar]
  141. Wallace PJ. 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140:217–40
    [Google Scholar]
  142. Williams Q, Garnero EJ. 1996. Seismic evidence for partial melt at the base of the Earth's mantle. Science 273:1528–30
    [Google Scholar]
  143. Wirth R, Vollmer C, Brenker F, Matsyuk S, Kaminsky F 2007. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth Planet. Sci. Lett. 259:384–99
    [Google Scholar]
  144. Wood BJ. 1995. The effect of H2O on the 410-kilometer seismic discontinuity. Science 268:74–76
    [Google Scholar]
  145. Wu J, Desch SJ, Schaefer L, Elkins-Tanton LT, Pahlevan K, Buseck PR 2018. Origin of Earth's water: chondritic inheritance plus nebular ingassing and storage of hydrogen in the core. J. Geophys. Res. Planets 123:2691–712
    [Google Scholar]
  146. Xu C, Inoue T. 2019. Melting of Al‐rich phase D up to the uppermost lower mantle and transportation of H2O to the deep Earth. Geochem. Geophys. Geosyst. 20:4382–89
    [Google Scholar]
  147. Yoshino T, Katsura T. 2013. Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Annu. Rev. Earth Planet. Sci. 41:605–28
    [Google Scholar]
  148. Yuan H, Zhang L, Ohtani E, Meng Y, Greenberg E, Prakapenka VB 2019. Stability of Fe-bearing hydrous phases and element partitioning in the system MgO–Al2O3–Fe2O3–SiO2–H2O in Earth's lowermost mantle. Earth Planet. Sci. Lett. 524:115714
    [Google Scholar]
  149. Yuan L, Ohtani E, Ikuta D, Kamada S, Tsuchiya J et al. 2018. Chemical reactions between Fe and H2O up to megabar pressures and implications for water storage in the Earth's mantle and core. Geophys. Res. Lett. 45:1330–38
    [Google Scholar]
  150. Zhao D, Ohtani E. 2009. Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics. Gondwana Res 16:401–13
    [Google Scholar]
/content/journals/10.1146/annurev-earth-080320-062509
Loading
/content/journals/10.1146/annurev-earth-080320-062509
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error