1932

Abstract

Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082517-010035
2018-05-30
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/46/1/annurev-earth-082517-010035.html?itemId=/content/journals/10.1146/annurev-earth-082517-010035&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Thani R, Al-Najjar MA, Al-Raei AM, Ferdelman T, Thang NM et al. 2014. Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha, Qatar. PLOS ONE 9:e92405
    [Google Scholar]
  2. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B et al. 2007. A whiff of oxygen before the Great Oxidation Event?. Science 317:1903–6
    [Google Scholar]
  3. Anbar AD, Knoll AH 2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge. ? Science 297:1137–42
    [Google Scholar]
  4. Arieli B, Padan E, Shahak Y 1991. Sulfide-induced sulfide-quinone reductase activity in thylakoids of Oscillatoria limnetica. J. Biol. Chem. 266:104–11
    [Google Scholar]
  5. Aro EM, Virgin I, Andersson B 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143:113–34
    [Google Scholar]
  6. Asada K 1996. Radical production and scavenging in the chloroplasts. Advances in Photosynthesis and Respiration 5 Photosynthesis and the Environment, ed. NR Baker 123–50 Dordrecht, Neth: Kluwer Acad. Publ
    [Google Scholar]
  7. Beatty JT 2002. On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynth. Res. 73:109–14
    [Google Scholar]
  8. Blankenship RE 2002. Molecular Mechanisms of Photosynthesis Oxford, UK: Blackwell Sci. Ltd, 1st ed.
  9. Bosak T, Green SE, Newman DK 2007. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5:119–26
    [Google Scholar]
  10. Bosak T, Knoll AH, Petroff AP 2013. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41:21–44
    [Google Scholar]
  11. Boyd ES, Fecteau KM, Havig JR, Shock EL, Peters JW 2012. Modeling the habitat range of phototrophs in Yellowstone National Park: toward the development of a comprehensive fitness landscape. Front. Microbiol. 3:221
    [Google Scholar]
  12. Boyle RA, Clark JR, Poulton SW, Shields-Zhou G, Canfield DE, Lenton TM 2013. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean. Nat. Commun. 4:1533
    [Google Scholar]
  13. Brocks JJ, Logan GA, Buick R, Summons RE 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–36
    [Google Scholar]
  14. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–70
    [Google Scholar]
  15. Bronstein M, Schutz M, Hauska G, Padan E, Shahak Y 2000. Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. J. Bacteriol. 182:3336–44
    [Google Scholar]
  16. Bühring SI, Sievert SM, Jonkers HM, Ertefai T, Elshahed MS et al. 2011. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. Geobiology 9:166–79
    [Google Scholar]
  17. Butterfield NJ 2015. Proterozoic photosynthesis—a critical review. Paleontology 58:953–72
    [Google Scholar]
  18. Camacho A, Garcia-Pichel F, Vicente E, Castenholz RW 1991. Adaptation to sulfide and to the underwater light field in three cyanobacterial isolates from Lake Arcas (Spain). FEMS Microbiol. Ecol. 21:293–301
    [Google Scholar]
  19. Camacho A, Walter XA, Picazo A, Zopfi J 2017. Photoferrotrophy: remains of an ancient photosynthesis in modern environments. Front. Microbiol. 8:323
    [Google Scholar]
  20. Canfield DE 1998. A new model for Proterozoic ocean chemistry. Nature 396:450–53
    [Google Scholar]
  21. Canfield DE 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33:1–36
    [Google Scholar]
  22. Canfield DE, Des Marais DJ 1991. Aerobic sulfate reduction in microbial mats. Science 251:1471–73
    [Google Scholar]
  23. Canfield DE, Des Marais DJ 1993. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57:3971–84
    [Google Scholar]
  24. Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T et al. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–78
    [Google Scholar]
  25. Cardona T, Murray JW, Rutherford AW 2015. Origin and evolution of water oxidation before the last common ancestor of the cyanobacteria. Mol. Biol. Evol. 32:1310–28
    [Google Scholar]
  26. Castenholz RW, Jørgensen BB, D'Amelio E, Bauld J 1991. Photosynthetic and behavioral versatility of the cyanobacterium Oscillatoria boryana in a sulfide-rich microbial mat. FEMS Microbiol. Lett. 86:43–58
    [Google Scholar]
  27. Castenholz RW, Utkilen HC 1984. Physiology of sulfide tolerance in a thermophilic Oscillatoria. Arch. Microbiol. 138:299–305
    [Google Scholar]
  28. Catling DC, Zahnle KJ, McKay C 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–43
    [Google Scholar]
  29. Chan LK, Morgan-Kiss RM, Hanson TE 2009. Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum. J. Bacteriol. 191:1026–34
    [Google Scholar]
  30. Clausen CJ, Cohen AD, Emiliani C, Holman JA, Stipp JJ 1979. Little Salt Spring, Florida: a unique under-water site. Science 203:609–14
    [Google Scholar]
  31. Cloud PE Jr 1965. Significance of the Gunflint (Precambrian) microflora. Science 148:27–35
    [Google Scholar]
  32. Cohen Y, Jørgensen BB, Padan E, Shilo M 1975.a Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:489–92
    [Google Scholar]
  33. Cohen Y, Jørgensen BB, Revsbech NP, Poplawski R 1986. Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl. Environ. Microbiol. 51:398–407
    [Google Scholar]
  34. Cohen Y, Padan E, Shilo M 1975.b Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J. Bacteriol. 123:855–61
    [Google Scholar]
  35. Cole JK, Hutchison JR, Renslow RS, Kim YM, Chrisler WB et al. 2014. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions. Front. Microbiol. 5:109
    [Google Scholar]
  36. Crowe SA, Dossing LN, Beukes NJ, Bau M, Kruger SJ et al. 2013. Atmospheric oxygenation three billion years ago. Nature 501:535–38
    [Google Scholar]
  37. Crowe SA, Maresca JA, Jones C, Sturm A, Henny C et al. 2014.a Deep-water anoxygenic photosynthesis in a ferruginous chemocline. Geobiology 12:322–39
    [Google Scholar]
  38. Crowe SA, Paris G, Katsev S, Jones C, Kim S et al. 2014.b Sulfate was a trace constituent of Archean seawater. Science 346:735–39
    [Google Scholar]
  39. Daines SJ, Mills BJ, Lenton TM 2017. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8:14379
    [Google Scholar]
  40. de Beer D, Weber M, Chennu A, Hamilton T, Lott C et al. 2017. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring. Environ. Microbiol. 19:1251–65
    [Google Scholar]
  41. de Wit R, van den Ende F, van Gemerden H 1995. Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria, and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiol. Ecol. 17:117–36
    [Google Scholar]
  42. de Wit R, van Gemerden H 1987. Oxidation of sulfide to thiosulfate by Microcoleus chtonoplastes. FEMS Microbiol. Lett. 45:7–13
    [Google Scholar]
  43. Den Uyl PA, Richardson LL, Jain S, Dick GJ 2016. Unraveling the physiological roles of the cyanobacterium Geitlerinema sp. BBD and other black band disease community members through genomic analysis of a mixed culture. PLOS ONE 11:e0157953
    [Google Scholar]
  44. Des Marais DJ 1998. Earth's early biosphere. Gravit. Space Biol. Bull. 11:23–30
    [Google Scholar]
  45. Des Marais DJ 2003. Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol. Bull. 204:160–67
    [Google Scholar]
  46. Dhuime B, Wuestefeld A, Hawkesworth CJ 2015. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8:552–55
    [Google Scholar]
  47. Dick GJ, Lam P 2015. Omics approaches to microbial geochemistry. Elements 11:403–8
    [Google Scholar]
  48. Dooley FD, Nair SP, Ward PD 2013. Increased growth and germination success in plants following hydrogen sulfide administration. PLOS ONE 8:e62048
    [Google Scholar]
  49. Duursma EK, Boisson MPRM 1994. Global oceanic and atmospheric oxygen stability considered in relation to the carbon cycle and to different time scales. Oceanol. Acta 17:117–41
    [Google Scholar]
  50. Falkowski PG, Isozaki Y 2008. The story of O2. Science 322:540–42
    [Google Scholar]
  51. Fike DA, Bradley AS, Rose CV 2015. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43:593–622
    [Google Scholar]
  52. Fike DA, Gammon CL, Ziebis W, Orphan VJ 2008. Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J 2:749–59
    [Google Scholar]
  53. Fischer WW, Hemp J, Johnson JE 2016.a Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44:647–83
    [Google Scholar]
  54. Fischer WW, Hemp J, Selverstone Valentine J 2016.b How did life survive Earth's great oxygenation. ? Curr. Opin. Chem. Biol. 31:166–78
    [Google Scholar]
  55. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA et al. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. PNAS 112:5915–20
    [Google Scholar]
  56. Gaillard F, Scaillet B, Arndt NT 2011. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–32
    [Google Scholar]
  57. Garcia-Pichel F, Castenholz RW 1990. Comparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium. Arch. Microbiol. 153:344–51
    [Google Scholar]
  58. Gause GF 1934. The Struggle for Existence Baltimore, MD: Williams & Wilkins
  59. Gingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E et al. 2011. Possible evolution of mobile animals in association with microbial mats. Nat. Geosci. 4:372–75
    [Google Scholar]
  60. Glaeser J, Nuss AM, Berghoff BA, Klug G 2011. Singlet oxygen stress in microorganisms. Adv. Microb. Physiol. 58:141–73
    [Google Scholar]
  61. Godfrey LV, Falkowski PG 2009. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2:725–29
    [Google Scholar]
  62. Godfrey LV, Poulton SW, Bebout GE, Fralick PW 2013. Stability of the nitrogen cycle during development of sulfidic water in the redox-stratified late Paleoproterozoic ocean. Geology 41:655–58
    [Google Scholar]
  63. Gregersen LH, Bryant DA, Frigaard NU 2011. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front. Microbiol. 2:116
    [Google Scholar]
  64. Grim SL, Dick GJ 2016. Photosynthetic versatility in the genome of Geitlerinema sp. PCC 9228 (formerly Oscillatoria limnetic ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front. Microbiol. 7:1546
    [Google Scholar]
  65. Grotzinger JP, Knoll AH 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27:313–58
    [Google Scholar]
  66. Hamilton TL, Bryant DA, Macalady JL 2016. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ. Microbiol. 18:325–40
    [Google Scholar]
  67. Hamilton TL, Klatt JM, de Beer D, Macalady JL 2018. Cyanobacterial photosynthesis under sulfidic conditions—insights from the isolate Leptolyngbya sp. strain hensonii. ISME J 12:568–84
    [Google Scholar]
  68. Hardisty DS, Lu Z, Bekker A, Diamond CW, Gill BC et al. 2017. Perspectives on surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet. Sci. Lett. 463:159–70
    [Google Scholar]
  69. Hastie AR, Fitton JG, Bromiley GD, Butler IB, Odling NWA 2016. The origin of Earth's first continents and the onset of plate tectonics. Geology 44:855–58
    [Google Scholar]
  70. Hawes I, Sumner DY, Andersen DT, Jungblut AD, Mackey TJ 2013. Timescales of growth response of microbial mats to environmental change in an ice-covered Antarctic lake. Biology 2:151–76
    [Google Scholar]
  71. Herman EK, Kump LR 2005. Biogeochemistry of microbial mats under Precambrian environmental conditions: a modelling study. Geobiology 3:77–92
    [Google Scholar]
  72. Hohmann-Marriott MF, Blankenship RE 2011. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62:515–48
    [Google Scholar]
  73. Holland HD 2006. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B 361:903–15
    [Google Scholar]
  74. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW 2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. PNAS 110:11238–43
    [Google Scholar]
  75. Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH 2009. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. PNAS 106:16925–29
    [Google Scholar]
  76. Jørgensen BB, Cohen Y, Revsbech NP 1986. Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat. Appl. Environ. Microbiol. 51:408–17
    [Google Scholar]
  77. Jørgensen BB, Des Marais DJ 1986. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol. Ecol. 38:179–86
    [Google Scholar]
  78. Jørgensen BB, Revsbech NP, Blackburn TH, Cohen Y 1979. Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Appl. Environ. Microbiol. 38:46–58
    [Google Scholar]
  79. Katz ME, Fennell K, Falkowski PG 2007. Geochemical and biological consequences of phytoplankton evolution. Evolution of Primary Producers in the Sea PG Falkowski, AH Knoll 405–30 Burlington, MA: Elsevier Acad
    [Google Scholar]
  80. Kharecha P, Kasting J, Siefert J 2005. A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3:53–76
    [Google Scholar]
  81. Kinsman-Costello L, Sheik CS, Sheldon ND, Burton GA, Costello D et al. 2017. Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole. Geobiology 15:225–39
    [Google Scholar]
  82. Klatt JM 2015. Photosynthesis and Sulfur Oxidation in Microbial Mats—Unraveling the Role of Versatile Cyanobacteria in Ancient Ocean Analogues Bremen, Ger: Max-Planck-Inst. Mar. Microbiol
  83. Klatt JM, Al-Najjar MAA, Yilmaz P, Lavik G, de Beer D, Polerecky L 2015.a Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring. Appl. Environ. Microbiol. 81:2025–31
    [Google Scholar]
  84. Klatt JM, de Beer D, Hausler S, Polerecky L 2016.a Cyanobacteria in sulfidic spring microbial mats can perform oxygenic and anoxygenic photosynthesis simultaneously during an entire diurnal period. Front. Microbiol. 7:1973
    [Google Scholar]
  85. Klatt JM, Haas S, Yilmaz P, de Beer D, Polerecky L 2015.b Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs. Environ. Microbiol. 17:3301–13
    [Google Scholar]
  86. Klatt JM, Meyer S, Hausler S, Macalady JL, de Beer D, Polerecky L 2016.b Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy. ISME J 10:921–33
    [Google Scholar]
  87. Klatt JM, Polerecky L 2015. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation. Front. Microbiol. 6:484
    [Google Scholar]
  88. Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW et al. 2011. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478:369–73
    [Google Scholar]
  89. Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG et al. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–53
    [Google Scholar]
  90. Kump LR, Barley ME 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–36
    [Google Scholar]
  91. Lalonde SV, Konhauser KO 2015. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. PNAS 112:995–1000
    [Google Scholar]
  92. Lee CA, Yeung LY, McKenzie NR, Yokoyama Y, Ozaki K, Lenardic A 2016. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9:417–24
    [Google Scholar]
  93. Li C, Love GD, Lyons TW, Fike DA, Sessions AL, Chu X 2010. A stratified redox model for the Ediacaran ocean. Science 328:80–83
    [Google Scholar]
  94. Lyons TW, Reinhard CT, Love GD, Xiao S 2012. Geobiology of the Proterozoic Eon. Fundamentals of Geobiology AH Knoll, DE Canfield, KO Konhauser 371–402 West Sussex, UK: Blackwell Publ. Ltd, 1st ed.
    [Google Scholar]
  95. Lyons TW, Reinhard CT, Planavsky NJ 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15
    [Google Scholar]
  96. Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K et al. 2006. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl. Environ. Microbiol. 72:5596–609
    [Google Scholar]
  97. Marcia M, Ermler U, Peng G, Michel H 2009. The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration. PNAS 106:9625–30
    [Google Scholar]
  98. Marcia M, Ermler U, Peng G, Michel H 2010. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins 78:1073–83
    [Google Scholar]
  99. McCave IN 1976. The Benthic Boundary Layer New York: Springer
  100. Meyer NR, Zerkle AL, Fike DA 2017. Sulphur cycling in a Neoarchaean microbial mat. Geobiology 15:353–65
    [Google Scholar]
  101. Michiels CC, Darchambeau F, Roland FAE, Morana C, Lliros M et al. 2017. Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans. Nat. Geosci. 10:217–22
    [Google Scholar]
  102. Miller SR, Bebout BM 2004. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats. Appl. Environ. Microbiol. 70:736–44
    [Google Scholar]
  103. Montanari A, Galdenzi S, Rossetti G 2002. Drops of Time: Strolling Among the Stones Ancona, Italy: Aniballi Graf
  104. Nagy CI, Vass I, Rakhely G, Vass IZ, Toth A et al. 2014. Coregulated genes link sulfide:quinone oxidoreductase and arsenic metabolism in Synechocysis sp. strain PCC6803. J. Bacteriol. 196:3430–40
    [Google Scholar]
  105. Nold SC, Bellecourt MJ, Kendall ST, Ruberg SA, Sanders TG et al. 2013. Underwater sinkhole sediments sequester Lake Huron's carbon. Biogeochemistry 115:235–50
    [Google Scholar]
  106. Oh JI, Kaplan S 2001. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39:1116–23
    [Google Scholar]
  107. Olson SL, Kump LR, Kasting JF 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362:35–43
    [Google Scholar]
  108. Olson SL, Reinhard CT, Lyons TW 2016. Cyanobacterial diazotrophy and Earth's delayed oxygenation. Front. Microbiol. 7:1526
    [Google Scholar]
  109. Oren A, Padan E 1978. Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J. Bacteriol. 133:558–63
    [Google Scholar]
  110. Oren A, Padan E, Avron M 1977. Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. PNAS 74:2152–56
    [Google Scholar]
  111. Oren A, Padan E, Malkin S 1979. Sulfide inhibition of photosystem II in cyanobacteria (blue-green algae) and tobacco chloroplasts. Biochim. Biophys. Acta 546:270–79
    [Google Scholar]
  112. Overmann J, Garcia-Pichel F 2013. The phototrophic way of life. The Prokaryotes E Rosenberg, EF DeLong, S Lory, E Stackebrandt, F Thompson 32–85 Berlin: Springer
    [Google Scholar]
  113. Padan E 1979. Facultative anoxygenic photosynthesis in cyanobacteria. Annu. Rev. Plant Physiol. 30:27–40
    [Google Scholar]
  114. Padan E, Cohen Y 1982. Anoxygenic photosynthesis. The Biology of Cyanobacteria NG Carr, BA Whitton 215–35 Oxford, UK: Blackwell Sci. Publ
    [Google Scholar]
  115. Pierson BK, Bauld J, Castenholz RW, D'Amelio E, Des Marais DJ et al. 1992. Modern mat-building microbial communities: a key to the interpretation of Proterozoic stromatolitic communities. The Proterozoic Biosphere: A Multidisciplinary Study JW Schopf, C Klein 245–342 New York: Cambridge Univ. Press
    [Google Scholar]
  116. Pinckney J, Paerl HW, Fitzpatrick M 1995. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Prog. Ser. 123:207–16
    [Google Scholar]
  117. Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV et al. 2014.a Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7:283–86
    [Google Scholar]
  118. Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P et al. 2014.b Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–38
    [Google Scholar]
  119. Planavsky NJ, Rouxel OJ, Bekker A, Lalonde SV, Konhauser KO et al. 2010. The evolution of the marine phosphate reservoir. Nature 467:1088–90
    [Google Scholar]
  120. Poulton SW, Fralick PW, Canfield DE 2004. The transition to a sulphidic ocean approximately 1.84 billion years ago. Nature 431:173–77
    [Google Scholar]
  121. Poulton SW, Fralick PW, Canfield DE 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3:486–90
    [Google Scholar]
  122. Reinhard CT, Planavsky NJ, Robbins LJ, Partin CA, Gill BC et al. 2013. Proterozoic ocean redox and biogeochemical stasis. PNAS 110:5357–62
    [Google Scholar]
  123. Richardson LL, Castenholz RW 1989. Chemokinetic motility responses of the cyanobacterium Oscillatoria terebriformis. Appl. Environ. Microbiol. 55:261–63
    [Google Scholar]
  124. Robbins LJ, Lalonde SV, Planavsky NJ, Partin CA, Reinhard CT et al. 2016. Trace elements at the intersection of marine biological and geochemical evolution. Earth-Sci. Rev. 163:323–48
    [Google Scholar]
  125. Rosing MT, Frei R 2004. U-rich Archaean sea-floor sediments from Greenland—indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217:237–44
    [Google Scholar]
  126. Ruberg SA, Kendall ST, Biddanda BA, Black T, Nold SC et al. 2008. Observations of the Middle Island Sinkhole in Lake Huron—a unique hydrogeologic and glacial creation of 400 million years. Mar. Technol. Soc. J. 42:12–21
    [Google Scholar]
  127. Sahoo SK, Planavsky NJ, Jiang G, Kendall B, Owens JD et al. 2016. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14:457–68
    [Google Scholar]
  128. Sanchez-Baracaldo P, Hayes PK, Blank CE 2005. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3:145–65
    [Google Scholar]
  129. Sanchez-Baracaldo P, Ridgwell A, Raven JA 2014. A Neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24:652–57
    [Google Scholar]
  130. Schirrmeister BE, Sanchez-Baracaldo P, Wacey D 2016. Cyanobacterial evolution during the Precambrian. Int. J. Astrobiol. 15:187–204
    [Google Scholar]
  131. Shahak Y, Hauska G 2008. Sulfide oxidation from cyanobacteria to human: sulfide-quinone oxidoreductase (SQR). Sulfur Metabolism in Phototrophic Organisms R Hell, C Dahl, DB Knaff, T Leustek 319–35 Berlin: Springer
    [Google Scholar]
  132. Shih PM, Hemp J, Ward LM, Matzke NJ, Fischer WW 2017. Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15:19–29
    [Google Scholar]
  133. Sicora CI, Ho FM, Salminen T, Styring S, Aro EM 2009. Transcription of a “silent” cyanobacterial psbA gene is induced by microaerobic conditions. Biochim. Biophys. Acta 1787:105–12
    [Google Scholar]
  134. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7:539
    [Google Scholar]
  135. Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P 2017. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355:1436–40
    [Google Scholar]
  136. Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M et al. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523:451–54
    [Google Scholar]
  137. Stal LJ 2002. Cyanobacterial mats and stromatolites. The Ecology of Cyanobacteria: Their Diversity in Time and Space BA Whitton, M Potts 61–120 Dordrecht, Neth: Kluwer Acad. Publ
    [Google Scholar]
  138. Stomp M, Huisman J, Stal LJ, Matthijs HC 2007. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1:271–82
    [Google Scholar]
  139. Sumner DY, Hawes I, Mackey TJ, Jungblut AD, Doran PT 2015. Antarctic microbial mats: a modern analog for Archean lacustrine oxygen oases. Geology 43:887–90
    [Google Scholar]
  140. Theissen U, Hoffmeister M, Grieshaber M, Martin W 2003. Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol. Biol. Evol. 20:1564–74
    [Google Scholar]
  141. Tice MM, Lowe DR 2004. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–52
    [Google Scholar]
  142. Tice MM, Lowe DR 2006. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34:37–40
    [Google Scholar]
  143. Utkilen HC 1976. Thiosulphate as electron donor in the blue-green alga Anacystis nidulans. J. Gen. Microbiol. 95:177–180
    [Google Scholar]
  144. van Gemerden H 1993. Microbial mats: a joint venture. Mar. Geol. 113:3–25
    [Google Scholar]
  145. vande Weghe JG, Ow DW 1999. A fission yeast gene for mitochondrial sulfide oxidation. J. Biol. Chem. 274:13250–57
    [Google Scholar]
  146. Villbrandt M, Stal LJ 1996. The effect of sulfide on nitrogen fixation in heterocystous and non-heterocystous cyanobacterial mat communities. Algological Stud 83:549–63
    [Google Scholar]
  147. Visscher PT, van den Ende FP, Schaub BEM, van Gemerden H 1992. Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiol. Ecol. 101:51–58
    [Google Scholar]
  148. Voorhies AA, Biddanda B, Kendall ST, Jain S, Marcus DN et al. 2012. Cyanobacterial life at low O2: Community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. Geobiology 10:250–67
    [Google Scholar]
  149. Walter MR, Grotzinger JP, Schopf JW 1992. Proterozoic stromatolites. The Proterozoic Biosphere: An Interdisciplinary Study JW Schopf, C Klein 253–60 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  150. Wang R 2002. Two's company, three's a crowd: Can H2S be the third endogenous gaseous transmitter?. FASEB J 16:1792–98
    [Google Scholar]
  151. Ward LM, Kirschvink JL, Fischer WW 2016. Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig. Life Evol. Biosph. 46:51–65
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082517-010035
Loading
/content/journals/10.1146/annurev-earth-082517-010035
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error