1932

Abstract

The superrotation of the atmospheres of Venus and Titan has puzzled dynamicists for many years and seems to put these planets in a very different dynamical regime from most other planets. In this review, we consider how to define superrotation objectively and explore the constraints that determine its occurrence. Atmospheric superrotation also occurs elsewhere in the Solar System and beyond, and we compare Venus and Titan with Earth and other planets for which wind estimates are available. The extreme superrotation on Venus and Titan poses some difficult challenges for numerical models of atmospheric circulation, much more difficult than for more rapidly rotating planets such as Earth or Mars. We consider mechanisms for generating and maintaining a superrotating state, all of which involve a global meridional overturning circulation. The role of nonaxisymmetric eddies is crucial, however, but the detailed mechanisms may differ between Venus, Titan, and other planets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082517-010137
2018-05-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/46/1/annurev-earth-082517-010137.html?itemId=/content/journals/10.1146/annurev-earth-082517-010137&mimeType=html&fmt=ahah

Literature Cited

  1. Achterberg RK, Conrath BJ, Gierasch PJ, Flasar FM, Nixon CA 2008. Titan's middle-atmospheric temperatures and dynamics observed by the Cassini Composite Infrared Spectrometer. Icarus 194:263–77
    [Google Scholar]
  2. Achterberg RK, Gierasch PJ, Conrath BJ, Flasar FM, Nixon CA 2011. Temporal variations of Titan's middle atmospheric temperatures from 2004 to 2009 observed by Cassini/CIRS. Icarus 211:686–98
    [Google Scholar]
  3. Ando H, Sugimoto N, Takagi M, Kashimura H, Imamura T, Matsuda Y 2016. The puzzling Venusian polar atmospheric structure reproduced by a general circulation model. Nat. Comm. 7:10398
    [Google Scholar]
  4. Andrews DG, Holton JR, Leovy CB 1987. Middle Atmosphere Dynamics Orlando, FL: Academic Press
  5. Andrews DG, McIntyre ME 1976. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33:2031–48
    [Google Scholar]
  6. Arnold NP, Tziperman E, Farrell B 2012. Abrupt transition to strong superrotation driven by equatorial wave resonance in an idealized GCM. J. Atmos. Sci. 69:626–40
    [Google Scholar]
  7. Avduevskii VS, Marov MY, Kulikov YN, Shari VP, Gorbachevskiy AY et al. 1983. Structure and parameters of the Venus atmosphere according to Venera Probe data. Venus DM Hunten, L Colin, TM Donahue, VI Moroz 280–98 Tucson: Univ. Ariz. Press
    [Google Scholar]
  8. Baker NL, Leovy CB 1987. Zonal winds near Venus' cloud top level: a model study of the interaction between the zonal mean circulation and the semidiurnal tide. Icarus 69:202–20
    [Google Scholar]
  9. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH et al. 2001. The quasi-biennial oscillation. Rev. Geophys. 39:179–229
    [Google Scholar]
  10. Barnes JR, Haberle RM, Wilson RJ, Lewis SR, Murphy JR, Read PL 2017. The global circulation. The Atmosphere and Climate of Mars RM Haberle, T Clancy, F Forget, MD Smith, RW Zurek 229–94 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  11. Bertaux JL, Khatuntsev IV, Hauchecorne A, Markiewicz WJ, Marcq E et al. 2016. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: the role of stationary gravity waves. J. Geophys. Res. Planets 121:1087–101
    [Google Scholar]
  12. Bird MK, Allison M, Asmar SW, Atkinson DH, Avruch IM et al. 2005. The vertical profile of winds on Titan. Nature 438:800–2
    [Google Scholar]
  13. Blamont JE, Young RE, Seiff A, Ragent B, Sagdeev R et al. 1986. Implications of the VEGA Venus balloon results for Venus atmospheric dynamics. Science 231:1422–25
    [Google Scholar]
  14. Burgalat J, Rannou P, Cours T, Rivière ED 2014. Modeling cloud microphysics using a two-moments hybrid bulk/bin scheme for use in Titan's climate models: application to the annual and diurnal cycles. Icarus 231:310–22
    [Google Scholar]
  15. Chapman S, Cowling TG 1970. The Mathematical Theory of Non-Uniform Gases Cambridge, UK: Cambridge Univ. Press, 3rd ed..
  16. Charnay B, Lebonnois S 2012. Two boundary layers in Titan's lower troposphere inferred from a climate model. Nat. Geosci. 5:106–9
    [Google Scholar]
  17. Counselman CC III, Gourevitch SA, King RW, Loriot GB 1980. Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry. J. Geophys. Res. 85:8026–30
    [Google Scholar]
  18. Del Genio AD, Achterberg RK, Baines KH, Flasar FM, Read PL et al. 2009. Saturn atmospheric structure and dynamics. Saturn from Cassini-Huygens M Dougherty, L Esposito, S Krimigis 113–60 Dordrecht, Neth.: Springer
    [Google Scholar]
  19. Del Genio AD, Rossow WB 1990. Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47:293–318
    [Google Scholar]
  20. Del Genio AD, Zhou W 1996. Simulations of superrotation on slowly rotating planets: sensitivity to rotation and initial conditions. Icarus 120:332–43
    [Google Scholar]
  21. Del Genio AD, Zhou W, Eichler TP 1993. Equatorial superrotation in a slowly rotating GCM: implications for Titan and Venus. Icarus 101:1–17
    [Google Scholar]
  22. Dias Pinto JR, Mitchell JL 2014. Atmospheric superrotation in an idealized GCM: parameter dependence of the eddy response. Icarus 238:93–109
    [Google Scholar]
  23. Dowling TE 2013. Earth general circulation models. Comparative Climatology of Terrestrial Planets SJ Mackwell, AA Simon-Miller, JW Harder, MA Bullock 193–211 Tucson: Univ. Ariz. Press
    [Google Scholar]
  24. Drossart P, Montmessin F 2015. The legacy of Venus Express: nightlights from the first European planetary mission to Venus. Astron. Astrophys. Rev. 23:5
    [Google Scholar]
  25. Edmon HJ Jr., Hoskins BJ, McIntyre ME 1980. Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci. 37:2600–16
    [Google Scholar]
  26. Eymet V, Fournier R, Dufresne JL, Lebonnois S, Hourdin F, Bullock MA 2009. Net-exchange parameterization of the thermal infrared radiative transfer in Venus' atmosphere. J. Geophys. Res. 114:E11008
    [Google Scholar]
  27. Fels SB, Lindzen RS 1974. The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 6:149–91
    [Google Scholar]
  28. Flasar FM 1986. Global dynamics and thermal structure of Jupiter's atmosphere. Icarus 65:280–303
    [Google Scholar]
  29. Flasar FM, Kunde VG, Achterberg RK, Conrath BJ, Simon-Miller AA et al. 2004. An intense stratospheric jet on Jupiter. Nature 427:132–35
    [Google Scholar]
  30. Flasar FM, Samuelson RE, Conrath BJ 1981. Titan's atmosphere: temperature and dynamics. Nature 292:693–98
    [Google Scholar]
  31. Ford PG, Pettengill GH 1992. Venus topography and kilometer-scale slopes. J. Geophys. Res. 97:13103–14
    [Google Scholar]
  32. Forget F, Bertrand T, Vangvichith M, Leconte J, Millour E, Lellouch E 2017. A post-New Horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus 287:54–71
    [Google Scholar]
  33. Forget F, Lebonnois S 2013. Global climate models of the terrestrial planets. Comparative Climatology of Terrestrial Planets SJ Mackwell, AA Simon-Miller, JW Harder, MA Bullock 213–29 Tucson: Univ. Ariz. Press
    [Google Scholar]
  34. Friedson AJ 1994. Gravity waves in Titan's atmosphere. Icarus 109:40–57
    [Google Scholar]
  35. Fukuhara T, Futaguchi M, Hashimoto GL, Horinouchi T, Imamura T et al. 2017. Large stationary gravity wave in the atmosphere of Venus. Nat. Geosci. 10:85–88
    [Google Scholar]
  36. Gierasch PJ 1975. Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci. 32:1038–44
    [Google Scholar]
  37. Glatzmaier GA, Roberts PH 1996. Rotation and magnetism of Earth's inner core. Science 274:1887–91
    [Google Scholar]
  38. Grassi D, Migliorini A, Montabone L, Lebonnois S, Cardesin-Moinelo A et al. 2010. The thermal structure of Venusian night-time mesosphere as observed by VIRTIS-Venus Express. J. Geophys. Res. 115:E09007
    [Google Scholar]
  39. Hammel HB, De Pater I, Gibbard SG, Lockwood GW, Rages K 2005. Uranus in 2003: zonal winds, banded structure, and discrete features. Icarus 175:534–45
    [Google Scholar]
  40. Hanel R, Conrath B, Flasar FM, Kunde V, Maguire W et al. 1981. Infrared observations of the Saturnian system from Voyager 1. Science 212:192–200
    [Google Scholar]
  41. Held IM 1975. Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci. 32:1494–97
    [Google Scholar]
  42. Held IM, Hou AY 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37:515–33
    [Google Scholar]
  43. Held IM, Suarez MJ 1994. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc. 75:1825–30
    [Google Scholar]
  44. Herrnstein A, Dowling TE 2007. Effect of topography on the spin-up of a Venus atmospheric model. J. Geophys. Res. 112:E04S08
    [Google Scholar]
  45. Hide R 1969. Dynamics of the atmospheres of the major planets, with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci. 26:841–53
    [Google Scholar]
  46. Hinson DP, Tyler GL 1983. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation. Icarus 54:337–52
    [Google Scholar]
  47. Holton JR 2004. An Introduction to Dynamic Meteorology Amsterdam: Academic Press, 4th ed..
  48. Hourdin F, Talagrand O, Sadourny R, Courtin R, Gautier D, McKay CP 1995. Numerical simulation of the general circulation of the atmosphere of Titan. Icarus 117:358–74
    [Google Scholar]
  49. Hubbard WB, Sicardy B, Miles R, Hollis AJ, Forrest RW et al. 1993. The occultation of 28 Sgr by Titan. Astron. Astrophys. 269:541–63
    [Google Scholar]
  50. Joshi M, Haberle R, Reynolds R 1997. Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129:450–65
    [Google Scholar]
  51. Kálnay de Rivas E 1975. Further numerical calculations of the circulation of the atmosphere of Venus. J. Atmos. Sci. 32:1017–24
    [Google Scholar]
  52. Kerzhanovich VV, Marov MI 1983. The atmospheric dynamics of Venus according to Doppler measurements by the Venera entry probes. Venus DM Hunten, L Colin, TM Donahue, VI Moroz 766–78 Tucson: Univ. Ariz. Press
    [Google Scholar]
  53. Khatuntsev IV, Patsaeva MV, Titov DV, Ignatiev NI, Turin AV et al. 2013. Cloud level winds from the Venus Express Monitoring Camera imaging. Icarus 226:140–58
    [Google Scholar]
  54. King-Hele DG 1964. The rotational speed of the upper atmosphere, determined from changes in satellite orbits. Planet. Space Sci. 12:835–53
    [Google Scholar]
  55. Kliore AJ, Patel IR 1980. Vertical structure of the atmosphere of Venus from Pioneer Venus orbiter radio occultations. J. Geophys. Res. 85:7957–62
    [Google Scholar]
  56. Kostiuk T, Fast KE, Livengood TA, Hewagama T, Goldstein J et al. 2001. Direct measurements of winds on Titan. Geophys. Res. Lett. 28:2361–64
    [Google Scholar]
  57. Kostiuk T, Hewagama T, Fast KE, Livengood TA, Annen J et al. 2010. High spectral resolution infrared studies of Titan: winds, temperature, and composition. Planet. Space Sci. 58:1715–23
    [Google Scholar]
  58. Kouyama T, Imamura T, Nakamura M, Satoh T, Futaana Y 2013. Long-term variation in the cloud-tracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. J. Geophys. Res. 118:37–46
    [Google Scholar]
  59. Kraucunas I, Hartmann DL 2005. Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J. Atmos. Sci. 62:371–89
    [Google Scholar]
  60. Laraia AL, Schneider T 2015. Superrotation in terrestrial atmospheres. J. Atmos. Sci. 72:4281–96
    [Google Scholar]
  61. Lebonnois S, Burgalat J, Rannou P, Charnay B 2012.a Titan Global Climate Model: new 3-dimensional version of the IPSL Titan GCM. Icarus 218:707–22
    [Google Scholar]
  62. Lebonnois S, Covey C, Grossman A, Parish H, Schubert G et al. 2012.b Angular momentum budget in General Circulation Models of superrotating atmospheres: a critical diagnostic. J. Geophys. Res. 117:E12004
    [Google Scholar]
  63. Lebonnois S, Flasar FM, Tokano T, Newman CE 2014. The general circulation of Titan's lower and middle atmosphere. Titan: Interior, Surface, Atmosphere and Space Environment I Mueller-Wodarg, C Griffith, E Lellouch, T Cravens 122–57 New York: Cambridge Univ. Press
    [Google Scholar]
  64. Lebonnois S, Hourdin F, Eymet V, Crespin A, Fournier R, Forget F 2010. Superrotation of Venus' atmosphere analyzed with a full general circulation model. J. Geophys. Res. 115:E06006
    [Google Scholar]
  65. Lebonnois S, Lee C, Yamamoto M, Dawson J, Lewis SR et al. 2013. Models of Venus atmosphere. Towards Understanding the Climate of Venus: Application of Terrestrial Models to Our Sister Planet L Bengtsson, RM Bonnet, D Grinspoon, S Koumoutsaris, S Lebonnois, D Titov 129–56 New York: Springer-Verlag
    [Google Scholar]
  66. Lebonnois S, Sugimoto N, Gilli G 2016. Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM. Icarus 278:38–51
    [Google Scholar]
  67. Lee C, Lewis SR, Read PL 2005. A numerical model of the atmosphere of Venus. Adv. Space Res. 36:2142–45
    [Google Scholar]
  68. Leovy CB 1973. Rotation of the upper atmosphere of Venus. J. Atmos. Sci. 30:1218–20
    [Google Scholar]
  69. Lewis SR, Dawson J, Lebonnois S, Yamamoto M 2013. Modeling efforts. Towards Understanding the Climate of Venus: Application of Terrestrial Models to Our Sister Planet L Bengtsson, RM Bonnet, D Grinspoon, S Koumoutsaris, S Lebonnois, D Titov 111–27 New York: Springer-Verlag
    [Google Scholar]
  70. Lewis SR, Read PL 2003. Equatorial jets in the dusty Martian atmosphere. J. Geophys. Res. 108:5034
    [Google Scholar]
  71. Limaye SS 1985. Venus atmospheric circulation: observations and implications of the thermal structure. Adv. Space Res. 5:51–62
    [Google Scholar]
  72. Limaye SS, Suomi VE 1981. Cloud motions on Venus: global structure and organization. J. Atmos. Sci. 38:1220–35
    [Google Scholar]
  73. Linkin VM, Blamont JE, Lipatov AN, Devyatkin SI, Dyachkov AV et al. 1986. Vertical thermal structure in the Venus atmosphere from provisional Vega 2 temperature and pressure data. Sov. Astron. Lett. 12:40–42
    [Google Scholar]
  74. Livermore PW, Hollerbach R, Jackson A 2013. Electromagnetically driven westward drift and inner-core superrotation in Earth's core. PNAS 110:15914–18
    [Google Scholar]
  75. Longuet-Higgins MS 1968. The eigenfunctions of Laplace's tidal equations over a sphere. Philos. Trans. R. Soc. A 262:511–607
    [Google Scholar]
  76. Lora JM, Lunine JI, Russell JL 2015. GCM simulations of Titan's middle and lower atmosphere and comparison to observations. Icarus 250:516–28
    [Google Scholar]
  77. Lorenz RD, Stiles BW, Aharonson O, Lucas A, Hayes AG et al. 2013. A global topographic map of Titan. Icarus 225:367–77
    [Google Scholar]
  78. Louden T, Wheatley PJ 2015. Spatially resolved eastward winds and rotation of HD189733b. Astrophys. J. Lett. 814:L24
    [Google Scholar]
  79. Luz D, Civeit T, Courtin R, Lebreton JP, Gautier D et al. 2005. Characterization of zonal winds in the stratosphere of Titan with UVES. Icarus 179:497–510
    [Google Scholar]
  80. Machado P, Luz D, Widemann T, Lellouch E, Witasse O 2012. Mapping zonal winds at Venus's cloud tops from ground-based Doppler velocimetry. Icarus 221:248–61
    [Google Scholar]
  81. Machado P, Widemann T, Peralta J, Gonçalves R, Donati JF, Luz D 2017. Venus cloud-tracked and Doppler velocimetry winds from CFHT/ESPaDOnS and Venus Express/VIRTIS in April 2014. Icarus 285:8–26
    [Google Scholar]
  82. Mayr HG, Harris I 1983. Quasi-axisymmetric circulation and superrotation in planetary atmospheres. Astron. Astrophys. 121:124–36
    [Google Scholar]
  83. Mellor GL, Yamada T 1982. Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20:851–75
    [Google Scholar]
  84. Mendonça JM, Read PL 2016. Exploring the Venus global super-rotation using a comprehensive general circulation model. Planet. Space Sci. 134:1–18
    [Google Scholar]
  85. Mendonça JM, Read PL, Wilson CF, Lee C 2015. A new, fast and flexible radiative transfer method for Venus general circulation models. Planet. Space Sci. 105:80–93
    [Google Scholar]
  86. Mendonça JM, Read PL, Wilson CF, Lewis SR 2012. Zonal winds at high latitudes on Venus: an improved application of cyclostrophic balance to Venus Express observations. Icarus 217:629–39
    [Google Scholar]
  87. Merlis TM, Schneider T 2010. Atmospheric dynamics of Earth-like tidally locked aquaplanets. J. Adv. Model. Earth Sys. 2:13
    [Google Scholar]
  88. Mitchell JL, Ádámkovics M, Caballero R, Turtle EP 2011. Locally enhanced precipitation organized by planetary-scale waves on Titan. Nat. Geosci. 4:589–92
    [Google Scholar]
  89. Mitchell JL, Vallis GK 2010. The transition to superrotation in terrestrial atmospheres. J. Geophys. Res. 115:E12008
    [Google Scholar]
  90. Moreno R, Marten A, Hidayat T 2005. Interferometric measurements of zonal winds on Titan. Astron. Astrophys. 437:319–28
    [Google Scholar]
  91. Moroz VI, Zasova LV 1997. VIRA-2: a review of inputs for updating the Venus International Reference Atmosphere. Adv. Space Res. 19:1191–201
    [Google Scholar]
  92. Nakamura M, Imamura T, Ishii N, Abe T, Kawakatsu Y et al. 2016. AKATSUKI returns to Venus. Earth Planets Space 68:75
    [Google Scholar]
  93. Newman CE, Lee C, Lian Y, Richardson MI, Toigo AD 2011. Stratospheric superrotation in the TitanWRF model. Icarus 213:636–54
    [Google Scholar]
  94. Newman M, Leovy CB 1992. Maintenance of strong rotational winds in Venus' middle atmosphere by thermal tides. Science 257:647–50
    [Google Scholar]
  95. Pechmann JB, Ingersoll AP 1984. Thermal tides in the atmosphere of Venus: comparison of model results with observations. J. Atmos. Sci. 41:3290–313
    [Google Scholar]
  96. Peralta J, Hueso R, Sánchez-Lavega A, Piccioni G, Lanciano O, Drossart P 2008. Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX-VIRTIS images. J. Geophys. Res. 113:E00B18
    [Google Scholar]
  97. Peralta J, Sánchez-Lavega A, López-Valverde MA, Luz D, Machado P 2015. Venus's major cloud feature as an equatorially trapped wave distorted by the wind. Geophys. Res. Lett. 42:705–11
    [Google Scholar]
  98. Piccialli A, Titov DV, Grassi D, Khatuntsev I, Drossart P et al. 2008. Cyclostrophic winds from the Visible and Infrared Thermal Imaging Spectrometer temperature sounding: a preliminary analysis. J. Geophys. Res. 113:E00B11
    [Google Scholar]
  99. Pierrehumbert RT 2011. A palette of climates for Gliese 581g. Astrophys. J. 726:L8
    [Google Scholar]
  100. Plumb RA 1977. Angular momentum advection by axisymmetric motions. Q. J. R. Meteorol. Soc. 103:479–85
    [Google Scholar]
  101. Pollack JB, Young RE 1975. Calculations of the radiative and dynamical state of the Venus atmosphere. J. Atmos. Sci. 32:1025–37
    [Google Scholar]
  102. Read PL 1986. Super-rotation and diffusion of axial angular momentum. II. A review of quasi-axisymmetric models of planetary atmospheres. Q. J. R. Meteorol. Soc. 112:253–72
    [Google Scholar]
  103. Read PL 2013. The dynamics and circulation of Venus atmosphere. Towards Understanding the Climate of Venus: Application of Terrestrial Models to Our Sister Planet L Bengtsson, RM Bonnet, D Grinspoon, S Koumoutsaris, S Lebonnois, D Titov 77–110 New York: Springer-Verlag
    [Google Scholar]
  104. Read PL, Lewis SR 2004. The Martian Climate Revisited Chichester, UK: Springer-Praxis
  105. Rossby CG 1947. On the distribution of angular velocity in gaseous envelopes under the influence of large-scale mixing processes. Bull. Am. Meteorol. Soc. 28:55–68
    [Google Scholar]
  106. Rossow WB 1983. A general circulation model of a Venus-like atmosphere. J. Atmos. Sci. 40:273–302
    [Google Scholar]
  107. Rossow WB, Williams GP 1979. Large-scale motion in the Venus stratosphere. J. Atmos. Sci. 36:1377–89
    [Google Scholar]
  108. Sanchez-Lavega A, Hueso R, Piccioni G, Drossart P, Peralta J et al. 2008. Variable winds on Venus mapped in three dimensions. Geophys. Res. Lett. 35:L13204
    [Google Scholar]
  109. Sanchez-Lavega A, Lebonnois S, Imamura T, Read PL, Luz D 2017. The atmospheric dynamics of Venus. Space Sci. Rev. 212:1541–616
    [Google Scholar]
  110. Saravanan R 1993. Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci. 50:1211–27
    [Google Scholar]
  111. Sardeshmukh PD, Hoskins BJ 1988. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 45:1228–51
    [Google Scholar]
  112. Schneider EK 1977. Axially symmetric steady state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci. 34:280–96
    [Google Scholar]
  113. Schneider T 2006. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34:655–88
    [Google Scholar]
  114. Schofield JT, Taylor FW 1983. Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus. Q. J. R. Meteorol. Soc. 109:57–80
    [Google Scholar]
  115. Seiff A, Kirk DB, Young RE, Blanchard RC, Findlay JT et al. 1980. Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations: results from the four Pioneer Venus probes. J. Geophys. Res. 85:7903–33
    [Google Scholar]
  116. Showman AP, Cho J, Menou K 2010. Atmospheric circulation of extrasolar planets. Exoplanets S Seager 471–516 Tucson: Univ. Ariz. Press
    [Google Scholar]
  117. Sicardy B, Ferri F, Roques F, Lecacheux J, Pau S et al. 1999. The structure of Titan's stratosphere from the 28 Sgr occultation. Icarus 142:357–90
    [Google Scholar]
  118. Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S 2010. The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465:1049–51
    [Google Scholar]
  119. Sobel AH, Nilsson J, Polvani LM 2001. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58:3650–65
    [Google Scholar]
  120. Sromovsky LA, Fry PM 1993. Dynamics of Neptune's major cloud features. Icarus 105:110–41
    [Google Scholar]
  121. Staniforth A, Thuburn J 2012. Horizontal grids for global weather and climate prediction models: a review. Q. J. R. Meteorol. Soc. 138:1–26
    [Google Scholar]
  122. Starr VP 1968. The Physics of Negative Viscosity Phenomena New York: McGraw-Hill
  123. Suarez MJ, Duffy DG 1992. Terrestrial super-rotation: a bifurcation of the general circulation. J. Atmos. Sci. 49:1541–54
    [Google Scholar]
  124. Sugimoto N, Takagi M, Matsuda Y 2014.a Baroclinic instability in the Venus atmosphere simulated by GCM. J. Geophys. Res. Planets 119:1950–68
    [Google Scholar]
  125. Sugimoto N, Takagi M, Matsuda Y 2014.b Waves in a Venus general circulation model. Geophys. Res. Lett. 41:7461–67
    [Google Scholar]
  126. Takagi M, Matsuda Y 2007. Effects of thermal tides on the Venus atmospheric superrotation. J. Geophys. Res. 112:D09112
    [Google Scholar]
  127. Taylor FW, Beer R, Chahine MT, Diner DJ, Elson LS et al. 1980. Structure and meteorology of the middle atmosphere of Venus: infrared remote sounding from the Pioneer Orbiter. J. Geophys. Res. 85:7963–8006
    [Google Scholar]
  128. Tellmann S, Häusler B, Hinson DP, Tyler GL, Andert TP et al. 2012. Small-scale temperature fluctuations seen by the VeRa Radio Science Experiment on Venus Express. Icarus 221:471–80
    [Google Scholar]
  129. Tellmann S, Pätzold M, Hausler B, Bird MK, Tyler GL 2009. Structure of the Venus neutral atmosphere as observed by the radio science experiment VeRa on Venus Express. J. Geophys. Res. 114:E00B36
    [Google Scholar]
  130. Wang P, Mitchell JL 2014. Planetary ageostrophic instability leads to superrotation. Geophys. Res. Lett. 41:4118–26
    [Google Scholar]
  131. Widemann T, Lellouch E, Donati JF 2008. Venus Doppler winds at cloud tops observed with ESPaDOnS at CFHT. Planet. Space Sci. 56:1320–34
    [Google Scholar]
  132. Yamamoto M, Takahashi M 2015. Dynamics of polar vortices at cloud top and base on Venus inferred from a general circulation model: case of a strong diurnal thermal tide. Planet. Space Sci. 113:109–19
    [Google Scholar]
  133. Young RE, Pollack JB 1977. A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci. 34:1315–51
    [Google Scholar]
  134. Young RE, Walterscheid RL, Schubert G, Pfister L, Houben H, Bindschadler DL 1994. Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus. J. Atmos. Sci. 51:1857–75
    [Google Scholar]
  135. Young RE, Walterscheid RL, Schubert G, Seiff A, Linkin VM, Lipatov AN 1987. Characteristics of gravity waves generated by surface topography on Venus: comparison with the VEGA Balloon results. J. Atmos. Sci. 44:2628–39
    [Google Scholar]
  136. Zalucha AM, Michaels TI 2013. A 3D general circulation model for Pluto and Triton with fixed volatile abundance and simplified surface forcing. Icarus 223:819–31
    [Google Scholar]
  137. Zasova LV, Ignatiev NI, Khatuntsev IA, Linkin V 2007. Structure of the Venus atmosphere. Planet. Space Sci. 55:1712–28
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082517-010137
Loading
/content/journals/10.1146/annurev-earth-082517-010137
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error