1932

Abstract

The major ion balance of the ocean, particularly the concentrations of magnesium (Mg), calcium (Ca), and sulfate (SO), has evolved over the Phanerozoic (last 550 million years) in concert with changes in sea level and the partial pressure of carbon dioxide (CO). We review these changes, along with changes in Mg/Ca and strontium/calcium (Sr/Ca) of the ocean; how the changes were reconstructed; and the implication of the suggested changes for the overall charge balance of the ocean. We conclude that marine Mg, Ca, and SO concentrations are responding to different aspects of coupled tectonic changes over the Phanerozoic and the resulting effect on sea level. We suggest a broad conceptual model for the Phanerozoic changes in Mg, Ca, and SO concentrations along with the seawater 87Sr/86Sr and sulfur isotope composition.

  • ▪  Marine concentrations of magnesium, sulfate, and calcium have varied over the last 550 million years in sync with changes in sea level and atmospheric carbon dioxide.
  • ▪  Seawater chemistry and sea level both respond to supercontinent formation and breakup, age of the ocean floor, and extent of continental shelf area.
  • ▪  Changes in plate tectonics impact the ocean's chemical balance and the carbon cycle in varied ways, resulting in cyclical changes in key climatic variables over geological time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082517-010305
2019-05-30
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-082517-010305.html?itemId=/content/journals/10.1146/annurev-earth-082517-010305&mimeType=html&fmt=ahah

Literature Cited

  1. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fursich FT et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100
    [Google Scholar]
  2. Alt JC 1995. Sulfur isotopic profile through the oceanic crust: sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology 23:585–88
    [Google Scholar]
  3. Alt JC, Anderson TF, Bonnell L 1989. The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B. Geochim. Cosmochim. Acta 53:1011–23
    [Google Scholar]
  4. Antonelli M, Pester NJ, Brown ST, DePaolo DJ 2017. Effect of paleoseawater composition on hydrothermal exchange in midocean ridges. PNAS 114:12413–18
    [Google Scholar]
  5. Arvidson RS, Guidry MW, Mackenzie FT 2011. Dolomite controls on Phanerozoic seawater chemistry. Aquat. Geochem. 17:735–47
    [Google Scholar]
  6. Baker PA, Gieskes JM, Elderfield H 1982. Diagenesis of carbonates in deep-sea sediments—evidence from Sr/Ca ratios and interstitial dissolved Sr2+ data. J. Sediment. Res. 52:71–82
    [Google Scholar]
  7. Bambach RK 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55
    [Google Scholar]
  8. Berner EK, Berner RA 2012. Global Environment: Water, Air, and Geochemical Cycles Princeton, NJ: Princeton Univ. Press. , 2nd ed..
  9. Berner RA 1991. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291:339–76
    [Google Scholar]
  10. Berner RA 2004. A model for calcium, magnesium, and sulfate in seawater over Phanerozoic time. Am. J. Sci. 304:438–53
    [Google Scholar]
  11. Berner RA, Lasaga AC, Garrells RM 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641–83
    [Google Scholar]
  12. Blättler CL, Claire MW, Prave AR, Kirsimäe K, Higgins JA et al. 2018. Two-billion-year-old evaporites capture Earth's great oxidation. Science 360:320–23
    [Google Scholar]
  13. Blättler CL, Higgins JA 2014. Calcium isotopes in evaporites record variations in Phanerozoic seawater SO4 and Ca. Geology 42:711–14
    [Google Scholar]
  14. Bots P, Benning LG, Rickaby REM, Shaw S 2011. The role of SO4 in the switch from calcite to aragonite seas. Geology 39:331–34
    [Google Scholar]
  15. Bradley DC 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Sci. Rev. 108:16–33
    [Google Scholar]
  16. Brennan ST, Lowenstein TK 2002. The major-ion composition of Silurian seawater. Geochim. Cosmochim. Acta 66:2682–700
    [Google Scholar]
  17. Brennan ST, Lowenstein TK, Horita J 2004. Seawater chemistry and the advent of biocalcification. Geology 32:473–76
    [Google Scholar]
  18. Broecker W, Yu J 2011. What do we know about the evolution of Mg to Ca ratios in seawater. ? Paleoceanography Paleoclimatol 26:PA3203
    [Google Scholar]
  19. Caldeira K 1995. Long-term control of atmospheric carbon dioxide: low-temperature seafloor alteration or terrestrial silicate-rock weathering. ? Am. J. Sci. 295:1077–114
    [Google Scholar]
  20. Cerling TE 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71:229–40
    [Google Scholar]
  21. Cerling TE 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291:464–75
    [Google Scholar]
  22. Claypool GE, Hosler WT, Kaplan IA, Satai H, Zak I 1980. The age curves of sulfur and oxygen isotopes in sulfate and their mutual interpretation. Chem. Geol. 28:199–260
    [Google Scholar]
  23. Coggon RM, Teagle DAH, Smith-Duque CE, Alt JC, Cooper MJ 2010. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327:1114–17
    [Google Scholar]
  24. Coogan LA 2009. Altered oceanic crust as an inorganic record of paleoseawater Sr concentration. Geochem. Geophys. Geosystems 10:Q04001
    [Google Scholar]
  25. Coogan LA, Dosso SE 2015. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415:38–46
    [Google Scholar]
  26. De La Rocha CL, DePaolo DJ 2000. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289:1176–78
    [Google Scholar]
  27. Demicco RV, Lownstein TK, Hardie LA, Spencer RJ 2005. Model of seawater composition for the Phanerozoic. Geology 33:877–80
    [Google Scholar]
  28. DePaolo DJ 2011. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Acta 75:1039–56
    [Google Scholar]
  29. Dickson JAD 2002. Fossil echinoderms a monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298:1222–24
    [Google Scholar]
  30. Dickson JAD 2004. Echinoderm skeleton preservation: calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. J. Sediment. Res. 74:355–65
    [Google Scholar]
  31. Dunlea AG, Murray RW, Santiago Ramos DP, Higgins JA 2017. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering. Nat. Commun. 8:844–47
    [Google Scholar]
  32. Edmond JM, Measures C, McDuff RE, Chan LH, Collier R et al. 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett. 46:1–18
    [Google Scholar]
  33. Elderfield H, Cooper M, Ganssen G 2000. Sr/Ca in multiple species of planktonic foraminifera: implications for reconstructions of seawater Sr/Ca. Geochem. Geophys. Geosystems 1:1017
    [Google Scholar]
  34. Elderfield H, Schultz A 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24:191–224
    [Google Scholar]
  35. Fantle MS, DePaolo DJ 2005. Variations in the marine Ca cycle over the past 20 million years. Earth Planet. Sci. Lett. 237:102–17
    [Google Scholar]
  36. Fike DA, Bradley AS, Rose CV 2015. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43:593–622
    [Google Scholar]
  37. Fofonoff NP 1985. Physical properties of seawater: a new salinity scale and equation of state for seawater. J. Geophys. Res. 90:C23332–42
    [Google Scholar]
  38. Gaetani GA, Cohen AL 2006. Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim. Cosmochim. Acta 70:4617–34
    [Google Scholar]
  39. Gaffin S 1987. Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change. Am. J. Sci. 287:596–611
    [Google Scholar]
  40. Gaucher EA, Govindarajan S, Ganesh OK 2008. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704–7
    [Google Scholar]
  41. Gothmann AM, Stolarski J, Adkins JF, Schoene B, Dennis KJ et al. 2015. Fossil corals as an archive of secular variations in seawater chemistry since the Mesozoic. Geochim. Cosmochim. Acta 160:188–208
    [Google Scholar]
  42. Halevy I, Bachan A 2017. The geologic history of seawater pH. Science 355:1069–71
    [Google Scholar]
  43. Halevy I, Peters SE, Fischer WW 2012. Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337:331–34
    [Google Scholar]
  44. Hallam A 1984. Pre-Quaternary sea-level changes. Annu. Rev. Earth Planet. Sci. 12:205–43
    [Google Scholar]
  45. Hansen KW, Wallman K 2003. Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: a model perspective. Am. J. Sci. 303:91–148
    [Google Scholar]
  46. Haq BU, Al-Qahtani AM 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10:127–60
    [Google Scholar]
  47. Haq BU, Hardenbol J, Vail PR 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:1156–67
    [Google Scholar]
  48. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF 2009. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–37
    [Google Scholar]
  49. Hardie LA 1991. On the significance of evaporites. Annu. Rev. Earth Planet. Sci. 19:131–68
    [Google Scholar]
  50. Hardie LA 1996. Secular variation in seawater chemistry: an explanation for the coupled variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–83
    [Google Scholar]
  51. Hasiuk FJ, Lohmann KC 2008. Mississippian paleocean chemistry from biotic and abiotic carbonate, Muleshoe Mound, Lake Valley Formation, New Mexico, USA. J. Sediment. Res. 78:147–64
    [Google Scholar]
  52. Heim NA, Peters SE 2011. Covariation in macrostratigraphic and macroevolutionary patterns in the marine record of North America. Geol. Soc. Am. Bull. 123:620–30
    [Google Scholar]
  53. Higgins JA, Schrag DP 2012. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth Planet. Sci. Lett. 357–58:386–96
    [Google Scholar]
  54. Holland HD 1984. The Chemical Evolution of the Atmosphere and Oceans Princeton, NJ: Princeton Univ. Press
  55. Holland HD 2003. The geologic history of seawater. Treatise on Geochemistry, Vol. 6: The Oceans and Marine Geochemistry H Elderfield, HD Holland, TK Turekian 583–625 Amsterdam: Elsevier
    [Google Scholar]
  56. Holland HD 2005. Sea level, sediments, and the composition of seawater. Am. J. Sci. 305:220–39
    [Google Scholar]
  57. Holland HD, Zimmermann H 2000. The dolomite problem revisited. Int. Geol. Rev. 42:481–90
    [Google Scholar]
  58. Horita J, Friedman TJ, Lazar B, Holland HD 1991. The composition of Permian seawater. Geochim. Cosmochim. Acta 55:417–32
    [Google Scholar]
  59. Horita J, Zimmermann H, Holland HD 2002. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66:3733–56
    [Google Scholar]
  60. Humphrey JD, Howell RP 1999. Effect of differential stress on strontium partitioning in calcite. J. Sediment. Res. 69:208–15
    [Google Scholar]
  61. Jaffres JBD, Shields GA, Wallman K 2007. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle for the past 3.4 billion years. Earth-Sci. Rev. 82:83–122
    [Google Scholar]
  62. Kah LC, Lyons TW, Frank TD 2001. Low marine sulfate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–38
    [Google Scholar]
  63. Kampschulte A, Strauss H 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 204:255–86
    [Google Scholar]
  64. Kasting JF, Catling D 2003. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41:429–63
    [Google Scholar]
  65. Kasting JF, Howard MT, Wallman K, Veizer J, Shields G, Jaffres J 2006. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sci. Lett. 252:82–93
    [Google Scholar]
  66. Katz A, Sass E, Starinsky A, Holland HD 1972. Strontium behavior in the aragonite-calcite transformation: an experimental study at 40–98°C. Geochim. Cosmochim. Acta 36:481–96
    [Google Scholar]
  67. Kovalevich VM, Peryt TM, Petrichenko OI 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. J. Geol. 106:695–712
    [Google Scholar]
  68. Kump LR, Arthur MA 1997. Global chemical erosion during the Cenozoic: weatherability balances the budget. Tectonic Uplift and Climate Change W Ruddiman 399–426 New York: Plenum Press
    [Google Scholar]
  69. Kump LR, Bralower TJ, Ridgwell A 2009. Ocean acidification in deep time. Oceanography 22:494–107
    [Google Scholar]
  70. Lammers LN, Mitnick EH 2019. Magnesian calcite solid solution thermodynamics inferred from authigenic deep-sea carbonate. Geochim. Cosmochim. Acta 248:343–55
    [Google Scholar]
  71. Larsen K, Bechgaard K, Stipp SLS 2010. The effect of the Ca2+ to CO32− activity ration on spiral growth at the calcite surface. Geochim. Cosmochim. Acta 74:2099–109
    [Google Scholar]
  72. Lazar B, Holland HD 1988. The analysis of fluid inclusions in halite. Geochim. Cosmochim. Acta 52:485–90
    [Google Scholar]
  73. Lear CH, Elderfield H, Wilson PA 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–72
    [Google Scholar]
  74. Lear CH, Elderfield H, Wilson PA 2003. A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth Planet. Sci. Lett. 208:69–84
    [Google Scholar]
  75. Livingstone DA 1963. The sodium cycle and the age of the ocean. Geochim. Cosmochim. Acta 27:1055–69
    [Google Scholar]
  76. Lorens RB 1981. Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 45:553–61
    [Google Scholar]
  77. Lowenstein TK, Hardie LA, Timofeeff MN, Demicco RV 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31:857–60
    [Google Scholar]
  78. Lowenstein TK, Kendall B, Anbar AD 2014. The geologic history of seawater. Treatise on Geochemistry KD Turekian, HD Holland 569–621 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  79. Lowenstein TK, Timofeeff MN, Brennan ST, Hardie LA, Demicco RV 2001. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions in salt deposits. Science 294:1086–88
    [Google Scholar]
  80. Lowenstein TK, Timofeeff MN, Kovalevych VM, Horita J 2005. The major-ion composition of Permian seawater. Geochim. Cosmochim. Acta 69:1701–19
    [Google Scholar]
  81. Lyman J, Fleming RH 1940. The composition of seawater. J. Mar. Res. 3:134–46
    [Google Scholar]
  82. Mackenzie FT, Garrels RM 1966. Chemical mass balance between rivers and the ocean. Am. J. Sci. 264:507–25
    [Google Scholar]
  83. Maher K, Chamberlain CP 2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343:1502–4
    [Google Scholar]
  84. Malone MJ, Baker PA 1999. Temperature dependence of the strontium distribution coefficient in calcite: an experimental study from 40° to 200°C and application to natural diagenetic calcites. J. Sediment. Res. 69:216–23
    [Google Scholar]
  85. McArthur JM, Howarth RJ, Shields GA 2012. Strontium isotope stratigraphy. The Geologic Time Scale 2012 FM Gradstein, JG Ogg, M Schmitz, G Ogg 127–44 Amsterdam: Elsevier
    [Google Scholar]
  86. McCauley SE, DePaolo DJ 1997. The marine 87Sr/86Sr and δ18O records, Himalayan alkalinity fluxes, and Cenozoic climate models. Tectonic Uplift and Climate Change WF Ruddiman 427–67 Boston, MA: Springer
    [Google Scholar]
  87. McDuff RE, Edmond JM 1982. On the fate of sulfate during hydrothermal circulation at mid-ocean ridges. Earth Planet. Sci. Lett. 57:117–32
    [Google Scholar]
  88. McDuff RE, Morel FMM 1980. The geochemical control of seawater (Sillen revisited). Environ. Sci. Technol. 14:1182–86
    [Google Scholar]
  89. McMahon WJ, Davies NS 2018. Evolution of alluvial mudrock forced by early land plants. Science 359:1022–24
    [Google Scholar]
  90. Meyers SR, Peters SE 2011. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth Planet. Sci. Lett. 303:174–80
    [Google Scholar]
  91. Miller KG, Kominz MA, Broning JV, Wright JD, Mountain GS et al. 2005. The Phanerozoic record of global sea-level change. Science 310:1293–98
    [Google Scholar]
  92. Morse JW, Wang Q, Tsio MY 1997. Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology 25:85–87
    [Google Scholar]
  93. Mottl MJ, Wheat CG 1994. Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim. Cosmochim. Acta 58:2225–37
    [Google Scholar]
  94. Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:1357–62
    [Google Scholar]
  95. Nance RD, Guttierrez-Alonso G, Keppie JD, Linnemann U, Brendan Murphy J et al. 2010. Evolution of the Rheic Ocean. Gondwana Res 17:194–222
    [Google Scholar]
  96. Nehrke G, Reichart GJ, Van Cappellen P, Meile C, Bijma J 2007. Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: non-Kossel crystal growth. Geochim. Cosmochim. Acta 71:2240–49
    [Google Scholar]
  97. Nielsen LC, De Yoreo JJ, DePaolo DJ 2013. General model for calcite growth kinetics in the presence of impurity ions. Geochim. Cosmochim. Acta 115:100–14
    [Google Scholar]
  98. Nürnberg D, Bijma J, Hemleben C 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature. Geochim. Cosmochim. Acta 60:803–14
    [Google Scholar]
  99. Pilson MEQ 1998. An Introduction to the Chemistry of the Sea Upper Saddle River, NJ: Prentice Hall
  100. Raymo ME, Ruddiman WF 1992. Tectonic forcing of late Cenozoic climate. Nature 359:117–22
    [Google Scholar]
  101. Rennie VCF, Paris G, Sessions A, Abramovich S, Turchyn AV, Adkins JF 2018. Cenozoic record of δ34S in foraminiferal calcite implies an early Eocene shift to deep-ocean sulfide burial. Nat. Geoscience 11:761–65
    [Google Scholar]
  102. Richter FM, Liang Y 1993. The rate and consequences of Sr diagenesis in deep-sea carbonates. Earth Planet. Sci. Lett. 117:553–65
    [Google Scholar]
  103. Ridgwell A, Zeebe RE 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234:299–315
    [Google Scholar]
  104. Ries JB 2004. Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: a record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology 32:981–84
    [Google Scholar]
  105. Ries JB 2010. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7:2795–849
    [Google Scholar]
  106. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ 2010. No climate paradox under the faint early Sun. Nature 464:744–47
    [Google Scholar]
  107. Rowley DB 2008. Extrapolating oceanic age distributions: a lesson from the Pacific region. J. Geol. 116:587–98
    [Google Scholar]
  108. Royer DL 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev. Palaeobot. Palynol. 114:1–28
    [Google Scholar]
  109. Rubey WW 1951. The geological history of sea water: an attempt to state the problem. Geol. Soc. Am. Bull. 62:1111–48
    [Google Scholar]
  110. Sandberg PA 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305:19–22
    [Google Scholar]
  111. Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–59
    [Google Scholar]
  112. Seton M, Gaina C, Müller RD, Heine C 2009. Mid-Cretaceous seafloor spreading pulse: fact or fiction. ? Geology 37:687–90
    [Google Scholar]
  113. Siemann MG 2003. Extensive and rapid changes in seawater chemistry during the Phanerozoic: evidence from Br contents of basal halite. Terra Nova 15:243–48
    [Google Scholar]
  114. Sillén LG 1967. The ocean as a chemical system. Science 156:1189–97
    [Google Scholar]
  115. Sleep NH, Zahnle K 2001. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 106:E11373–99
    [Google Scholar]
  116. Stanley SM, Hardie LA 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144:3–19
    [Google Scholar]
  117. Stanley SM, Hardie LA 1999. Hypercalcification: Paleontology links plate tectonics and geochemistry to sedimentology. GSA Today 9:1–7
    [Google Scholar]
  118. Steuber T, Veizer J 2002. Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology 30:1123–26
    [Google Scholar]
  119. Stoll HM, Schrag DP 1998. Effects of Quaternary sea level cycles on strontium in seawater. Geochim. Cosmochim. Acta 62:1107–18
    [Google Scholar]
  120. Stolper DA, Keller CB 2018. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553:323–26
    [Google Scholar]
  121. Strauss H 1999. Geological evolution from isotope proxy signals—sulfur. Chem. Geol. 161:89–101
    [Google Scholar]
  122. Sun X, Higgins JA, Turchyn AV 2016. Diffusive cation fluxes in deep-sea sediments and insight into the global geochemical cycles of calcium, magnesium, sodium and potassium. Mar. Geol. 373:64–77
    [Google Scholar]
  123. Tang J, Kohler SJ, Dietzel M 2008. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite precipitation I: Sr incorporation. Geochim. Cosmochim. Acta 72:3718–32
    [Google Scholar]
  124. Tesoreiro AJ, Pankow JF 1996. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim. Cosmochim. Acta 60:1053–63
    [Google Scholar]
  125. Timofeeff MN, Lowenstein TK, Blackburn WH 2000. ESEM-EDS: an improved technique for major element chemical analysis of fluid inclusions. Chem. Geol. 164:171–82
    [Google Scholar]
  126. Timofeeff MN, Lowenstein TK, Brennan ST, Demicco RV, Zimmermann H et al. 2001. Evaluating seawater chemistry from fluid inclusions in halite: examples from modern marine and nonmarine environments. Geochim. Cosmochim. Acta 65:2293–300
    [Google Scholar]
  127. Timofeeff MN, Lowenstein TK, Silva MAM, Harris NB 2006. Secular variations in the major-ion chemistry of seawater: evidence from fluid inclusions in Cretaceous halites. Geochim. Cosmochim. Acta 70:1977–94
    [Google Scholar]
  128. Tipper ET, Galy A, Gaillardet J, Bickle MJ, Elderfield H, Carder EA 2006. The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth Planet. Sci. Lett. 250:241–53
    [Google Scholar]
  129. Tripati AK, Allmon WD, Sampson DE 2009. Possible evidence for a large decrease in seawater strontium/calcium ratios and strontium concentrations during the Cenozoic. Earth Planet. Sci. Lett. 282:122–30
    [Google Scholar]
  130. Turchyn AV, Alt JC, Brown ST, DePaolo DJ, Coggon RM et al. 2013. Reconstructing the oxygen isotope composition of Late Cambrian and Cretaceous hydrothermal vent fluid. Geochim. Cosmochim. Acta 123:440–58
    [Google Scholar]
  131. Vail PR, Mitchum RW, Thompson S 1977. Seismic stratigraphy and global changes of sea level 4: global cycles of relative changes in sea level. Am. Assoc. Pet. Geol. Mem. 26:82–97
    [Google Scholar]
  132. Walker JCG, Hays PB, Kasting JF 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86:C109776–82
    [Google Scholar]
  133. Watkins JM, Hunt JD, Ryerson FJ, DePaolo DJ 2014. The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite. Earth Planet. Sci. Lett. 404:332–43
    [Google Scholar]
  134. Watkins JM, Nielsen LC, Ryerson FJ, DePaolo DJ 2013. The influence of kinetics on the oxygen isotope composition of calcium carbonate. Earth Planet. Sci. Lett. 375:349–60
    [Google Scholar]
  135. Wilkinson BH, Algeo TJ 1989. Sedimentary carbonate record of calcium-magnesium cycling. Am. J. Sci. 289:1158–94
    [Google Scholar]
  136. Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E et al. 2007. Emergence of a habitable planet. Space Sci. Rev. 129:33–78
    [Google Scholar]
  137. Zeebe RE 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40:141–65
    [Google Scholar]
  138. Zhang S, DePaolo DJ 2018. Equilibrium calcite fluid Sr/Ca partition coefficient from marine sediment pore fluids Poster presented at Goldschmidt Boston, MA: Aug. 12–17
/content/journals/10.1146/annurev-earth-082517-010305
Loading
/content/journals/10.1146/annurev-earth-082517-010305
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error