1932

Abstract

The budget of reactive nitrogen (Nr; oxidized and reduced inorganic and organic forms of nitrogen) has at least doubled since the preindustrial era due to human activities. Excess Nr causes significant detrimental effects on many terrestrial and aquatic ecosystems; less is known about the impact on the open ocean. Nr deposition may already rival biological N fixation quantitatively and will likely continue to rise. However, it is unclear how much of the Nr currently deposited to the ocean is external in origin. Understanding the importance of ocean Nr emissions versus external Nr deposition is key to quantifying the influence of deposition on ocean biogeochemistry and climate. This article reviews our understanding of the impacts of Nr deposition on the open ocean and the emissions of Nr from the ocean, placing particular emphasis on stable isotopes as a tool to investigate the surface ocean–lower atmosphere Nr cycle and its variations over time.

  • ▪   The ocean has a dynamic exchange of reactive nitrogen with the atmosphere and is not just a passive recipient of nitrogen pollution from land.
  • ▪   Tracing anthropogenic nitrogen deposition to the ocean is a challenge due to overlapping geochemical signatures with other nitrogen inputs.
  • ▪   However, studies suggest an imprint of external (anthropogenic) nitrogen deposition in the Mediterranean Sea and North Pacific Ocean.
  • ▪   Climate change will impact nitrogen emissions from the ocean through warming, acidification, stratification, and changes in food webs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-083120-052147
2021-05-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-083120-052147.html?itemId=/content/journals/10.1146/annurev-earth-083120-052147&mimeType=html&fmt=ahah

Literature Cited

  1. Aarnos H, Ylöstalo P, Vähätalo AV. 2012. Seasonal phototransformation of dissolved organic matter to ammonium, dissolved inorganic carbon, and labile substrates supporting bacterial biomass across the Baltic Sea. J. Geophys. Res. 117:G1G01004
    [Google Scholar]
  2. Abbatt JPD, Benz S, Cziczo DJ, Kanji Z, Lohmann U, Möhler O. 2006. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation. Science 313:57941770–73
    [Google Scholar]
  3. Agawin NSR, Tovar-Sanchez A, Stal LJ, Alvarez M, Agustí S, Duarte CM. 2011. Low water column nitrogen fixation in the Mediterranean Sea: basin-wide experimental evidence. Aquat. Microb. Ecol. 64:2135–47
    [Google Scholar]
  4. Alexander B, Sherwen T, Holmes CD, Fisher JA, Chen Q et al. 2020. Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations. Atmos. Chem. Phys. 20:63859–77
    [Google Scholar]
  5. Altieri KE, Fawcett SE, Peters AJ, Sigman DM, Hastings MG 2016. Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic. PNAS 113:4925–30
    [Google Scholar]
  6. Altieri KE, Hastings MG, Gobel AR, Peters AJ, Sigman DM. 2013. Isotopic composition of rainwater nitrate at Bermuda: the influence of air mass source and chemistry in the marine boundary layer. J. Geophys. Res. Atmos. 118:1911304–16
    [Google Scholar]
  7. Altieri KE, Hastings MG, Peters AJ, Oleynik S, Sigman DM. 2014. Isotopic evidence for a marine ammonium source in rainwater at Bermuda. Glob. Biogeochem. Cycles 28:101066–80
    [Google Scholar]
  8. Aluwihare LI, Meador T 2008. Chemical composition of marine dissolved organic nitrogen. Nitrogen in the Marine Environment EJ Carpenter, DG Capone 95–140 Saint Louis, MO: Elsevier Sci.
    [Google Scholar]
  9. Baker AR, Weston K, Kelly SD, Voss M, Streu P, Cape JN. 2007. Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: links to primary productivity and nitrogen fixation. Deep Sea Res. 54:101704–20
    [Google Scholar]
  10. Bange HW, Arévalo-Martínez DL, de la Paz M, Farías L, Kaiser J et al. 2019. A harmonized nitrous oxide (N2O) ocean observation network for the 21st century. Front. Mar. Sci. 6:157
    [Google Scholar]
  11. Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:7120752–55
    [Google Scholar]
  12. Beman JM, Chow CE, King AL, Feng Y, Fuhrman JA et al. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. PNAS 108:1208–13
    [Google Scholar]
  13. Berhanu TA, Savarino J, Erbland J, Vicars WC, Preunkert S et al. 2015. Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica. Atmos. Chem. Phys. 15:1911243–56
    [Google Scholar]
  14. Böttjer D, Dore JE, Karl DM, Letelier RM, Mahaffey C et al. 2017. Temporal variability of nitrogen fixation and particulate nitrogen export at Station ALOHA. Limnol. Oceanogr. 62:1200–16
    [Google Scholar]
  15. Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Hoek KWVD, Olivier JGJ. 1997. A global high-resolution emission inventory for ammonia. Glob. Biogeochem. Cycles 11:4561–87
    [Google Scholar]
  16. Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE et al. 2013. World Ocean Database 2013 Silver Spring, MD: NOAA
  17. Brandes JA, Devol AH. 2002. A global marine-fixed nitrogen isotopic budget: implications for Holocene nitrogen cycling. Glob. Biogeochem. Cycles 16:467–167-14
    [Google Scholar]
  18. Brenninkmeijer CAM, Janssen C, Kaiser J, Röckmann T, Rhee TS, Assonov SS. 2003. Isotope effects in the chemistry of atmospheric trace compounds. Chem. Rev. 103:125125–62
    [Google Scholar]
  19. Bronk DA, Gilbert PM, Ward BB. 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265:51801843–46
    [Google Scholar]
  20. Carpenter EJ, Harvey HR, Brian F, Capone DG. 1997. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep Sea Res. 44:127–38
    [Google Scholar]
  21. Casciotti KL, Buchwald C, Santoro AE, Frame C. 2011. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment. Methods Enzymol. 486:25380
    [Google Scholar]
  22. Cornell SE, Jickells TD, Cape JN, Rowland AP, Duce RA. 2003. Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos. Environ. 37:162173–91
    [Google Scholar]
  23. Cornell SE, Mace K, Coeppicus S, Duce R, Huebert B et al. 2001. Organic nitrogen in Hawaiian rain and aerosol. J. Geophys. Res. 106:D87973–83
    [Google Scholar]
  24. Dall'Osto M, Ceburnis D, Monahan C, Worsnop DR, Bialek J et al. 2012. Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. J. Geophys. Res. 117:D12D12311
    [Google Scholar]
  25. Dall'Osto M, Santl-Temkiv T, O'Dowd C, Harrison RM 2020. Enrichment of organic nitrogen in primary biological particles during advection over the North Atlantic. Atmos. Environ. 222:117160
    [Google Scholar]
  26. Deppeler SL, Davidson AT. 2017. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci. 4:40
    [Google Scholar]
  27. Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP. 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445:7124163–67
    [Google Scholar]
  28. Deutsch C, Sigman DM, Thunell RC, Meckler AN, Haug GH. 2004. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycles 18:4GB4012
    [Google Scholar]
  29. Dixon R, Kahn D. 2004. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2:8621–31
    [Google Scholar]
  30. Doney SC, Mahowald N, Lima I, Feely RA, Mackenzie FT et al. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. PNAS 104:3714580–85
    [Google Scholar]
  31. Dortch Q. 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. 61:183–201
    [Google Scholar]
  32. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:5878893–97
    [Google Scholar]
  33. Dugdale RC, Goering JJ. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12:2196–206
    [Google Scholar]
  34. Dutkiewicz S, Ward BA, Monteiro F, Follows MJ. 2012. Interconnection of nitrogen fixers and iron in the Pacific Ocean: theory and numerical simulations. Glob. Biogeochem. Cycles 26:1GB1012
    [Google Scholar]
  35. Eppley RW. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063–85
    [Google Scholar]
  36. Facchini MC, Decesari S, Rinaldi M, Carbone C, Finessi E et al. 2008a. Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 42:249116–21
    [Google Scholar]
  37. Facchini MC, Rinaldi M, Decesari S, Carbone C, Finessi E et al. 2008b. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 35:17L17814
    [Google Scholar]
  38. Felix JD, Elliott EM, Gish TJ, McConnell LL, Shaw SL. 2013. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun. Mass Spectrom. 27:202239–46
    [Google Scholar]
  39. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:5374237–40
    [Google Scholar]
  40. Fischer EV, Jaffe DA, Weatherhead EC. 2011. Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: potential causes of variability and timescale for trend detection. Atmos. Chem. Phys. 11:125641–54
    [Google Scholar]
  41. Fisher JA, Atlas EL, Barletta B, Meinardi S, Blake DR et al. 2018. Methyl, ethyl, and propyl nitrates: global distribution and impacts on reactive nitrogen in remote marine environments. J. Geophys. Res. Atmos. 123:2112429–51
    [Google Scholar]
  42. Fukuzaki N, Hayasaka H. 2009. Seasonal variations of nitrogen isotopic ratios of ammonium and nitrate in precipitations collected in the Yahiko-Kakuda Mountains area in Niigata Prefecture, Japan. Water Air Soil Pollut. 203:1391–97
    [Google Scholar]
  43. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:5878889–92
    [Google Scholar]
  44. Gobel AR, Altieri KE, Peters AJ, Hastings MG, Sigman DM. 2013. Insights into anthropogenic nitrogen deposition to the North Atlantic investigated using the isotopic composition of aerosol and rainwater nitrate. Geophys. Res. Lett. 40:225977–82
    [Google Scholar]
  45. Gorzelska K, Galloway JN, Watterson K, Keene WC. 1992. Water-soluble primary amine compounds in rural continental precipitation. Atmos. Environ. A 26:61005–18
    [Google Scholar]
  46. Großkopf T, Mohr W, Baustian T, Schunck H, Gill D et al. 2012. Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature 488:7411361–64
    [Google Scholar]
  47. Gruber N 2008. The marine nitrogen cycle: overview and challenges. Nitrogen in the Marine Environment DG Capone, DA Bronk, MR Mulholland, EJ Carpenter 1–50 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  48. Gruber N. 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A 3691943:1980–96
    [Google Scholar]
  49. Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:7176293–96
    [Google Scholar]
  50. Gruber N, Sarmiento JL. 1997. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11:2235–66
    [Google Scholar]
  51. Hamilton DS. 2015. Natural aerosols and climate: understanding the unpolluted atmosphere to better understand the impacts of pollution. Weather 70:9264–68
    [Google Scholar]
  52. Hansell DA, Olson DB, Dentener F, Zamora LM. 2007. Assessment of excess nitrate development in the subtropical North Atlantic. Mar. Chem. 106:3562–79
    [Google Scholar]
  53. Harms NC, Lahajnar N, Gaye B, Rixen T, Dähnke K et al. 2019. Nutrient distribution and nitrogen and oxygen isotopic composition of nitrate in water masses of the subtropical southern Indian Ocean. Biogeosciences 16:132715–32
    [Google Scholar]
  54. Hastings MG, Casciotti KL, Elliott EM. 2013. Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts. Elements 9:5339–44
    [Google Scholar]
  55. Hastings MG, Sigman DM, Lipschultz F. 2003. Isotopic evidence for source changes of nitrate in rain at Bermuda. J. Geophys. Res. 108:D244790
    [Google Scholar]
  56. Hawkins LN, Russell LM. 2010. Polysaccharides, proteins, and phytoplankton fragments: four chemically distinct types of marine primary organic aerosol classified by single particle spectromicroscopy. Adv. Meteorol. 2010.612132
    [Google Scholar]
  57. Henley SF, Cavan EL, Fawcett SE, Kerr R, Monteiro T et al. 2020. Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front. Mar. Sci. 7:581
    [Google Scholar]
  58. Hutchins DA, Fu F-X, Webb EA, Walworth N, Tagliabue A. 2013. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat. Geosci. 6:9790–95
    [Google Scholar]
  59. Jickells TD, Baker AR, Cape JN, Cornell SE, Nemitz E. 2013. The cycling of organic nitrogen through the atmosphere. Philos. Trans. R. Soc. B 368: 1621.20130115
    [Google Scholar]
  60. Jickells TD, Buitenhuis E, Altieri K, Baker AR, Capone D et al. 2017. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean: atmospheric nitrogen inputs. Glob. Biogeochem. Cycles 31:2289–305
    [Google Scholar]
  61. Jickells TD, Kelly SD, Baker AR, Biswas K, Dennis PF et al. 2003. Isotopic evidence for a marine ammonia source. Geophys. Res. Lett. 30:71374
    [Google Scholar]
  62. Johnson MT, Bell TG. 2008. Coupling between dimethylsulfide emissions and the ocean–atmosphere exchange of ammonia. Environ. Chem. 5:4259–67
    [Google Scholar]
  63. Johnson MT, Liss PS, Bell TG, Lesworth TJ, Baker AR et al. 2008. Field observations of the ocean-atmosphere exchange of ammonia: fundamental importance of temperature as revealed by a comparison of high and low latitudes. Glob. Biogeochem. Cycles 22:1GB1019
    [Google Scholar]
  64. Johnson MT, Sanders R, Avgoustidi V, Lucas M, Brown L et al. 2007. Ammonium accumulation during a silicate-limited diatom bloom indicates the potential for ammonia emission events. Mar. Chem. 106:163–75
    [Google Scholar]
  65. Joyce E, Carter T, Hastings MG 2020. Isotopic evidence that alkyl nitrates are important to aerosol nitrate formation in the Equatorial Pacific. Paper presented at the 2020 Fall Meeting of the American Geophysical Union, Virtual, Dec. 8
    [Google Scholar]
  66. Kamezaki K, Hattori S, Iwamoto Y, Ishino S, Furutani H et al. 2019. Tracing the sources and formation pathways of atmospheric particulate nitrate over the Pacific Ocean using stable isotopes. Atmos. Environ. 209:152–66
    [Google Scholar]
  67. Kanakidou M, Duce RA, Prospero JM, Baker AR, Benitez-Nelson C et al. 2012. Atmospheric fluxes of organic N and P to the global ocean. Glob. Biogeochem. Cycles 26:3GB3026
    [Google Scholar]
  68. Keene WC, Galloway JN, Likens GE, Deviney FA, Mikkelsen KN et al. 2015. Atmospheric wet deposition in remote regions: benchmarks for environmental change. J. Atmos. Sci. 72:82947–78
    [Google Scholar]
  69. Keene WC, Moody JL, Galloway JN, Prospero JM, Cooper OR et al. 2014. Long-term trends in aerosol and precipitation composition over the western North Atlantic Ocean at Bermuda. Atmos. Chem. Phys. 14:158119–35
    [Google Scholar]
  70. Kim I-N, Lee K, Gruber N, Karl DM, Bullister JL et al. 2014. Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346:62131102–6
    [Google Scholar]
  71. Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J et al. 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:7361429–33
    [Google Scholar]
  72. Knapp AN. 2012. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. Microbiol. 3:374
    [Google Scholar]
  73. Knapp AN, DiFiore PJ, Deutsch C, Sigman DM, Lipschultz F. 2008. Nitrate isotopic composition between Bermuda and Puerto Rico: implications for N2 fixation in the Atlantic Ocean. Glob. Biogeochem. Cycles 22:3GB3014
    [Google Scholar]
  74. Kouvarakis G, Mihalopoulos N, Tselepides A, Stavrakakis S. 2001. On the importance of atmospheric inputs of inorganic nitrogen species on the productivity of the eastern Mediterranean Sea. Glob. Biogeochem. Cycles 15:4805–17
    [Google Scholar]
  75. Krishnamurthy A, Moore JK, Mahowald N, Luo C, Zender CS. 2010. Impacts of atmospheric nutrient inputs on marine biogeochemistry. J. Geophys. Res. 115:G1G01006
    [Google Scholar]
  76. Letscher RT, Primeau F, Moore JK. 2016. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9:11815–19
    [Google Scholar]
  77. Li Z, Hastings MG, Walters WW, Tian L, Clemens SC et al. 2020. Isotopic evidence that recent agriculture overprints climate variability in nitrogen deposition to the Tibetan Plateau. Environ. Int. 138:105614
    [Google Scholar]
  78. Lin CT, Jickells TD, Baker AR, Marca A, Johnson MT. 2016. Aerosol isotopic ammonium signatures over the remote Atlantic Ocean. Atmos. Environ. 133:165–69
    [Google Scholar]
  79. Liss PS, Galloway JN 1993. Air-sea exchange of sulphur and nitrogen and their interaction in the marine atmosphere. Interactions of C, N, P, and S Biogeochemical Cycles and Global Change R Wollast, FT Mackenzie, L Chou 259–81 Berlin: Springer
    [Google Scholar]
  80. Mace KA, Duce RA, Tindale NW. 2003. Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia. J. Geophys. Res. 108:D114338
    [Google Scholar]
  81. Mackey KRM, Morris JJ, Morel FMM, Kranz SA. 2015. Response of photosynthesis to ocean acidification. Oceanography 28:274–91
    [Google Scholar]
  82. Mahowald N, Ward DS, Kloster S, Flanner MG, Heald CL et al. 2011. Aerosol impacts on climate and biogeochemistry. Annu. Rev. Environ. Resour. 36:45–74
    [Google Scholar]
  83. Mara P, Mihalopoulos N, Gogou A, Daehnke K, Schlarbaum T et al. 2009. Isotopic composition of nitrate in wet and dry atmospheric deposition on Crete in the eastern Mediterranean Sea. Glob. Biogeochem. Cycles 23:4GB4002
    [Google Scholar]
  84. Martin JH, Gordon M, Fitzwater SE. 1991. The case for iron. Limnol. Oceanogr. 36:81793–802
    [Google Scholar]
  85. Martin ST, Hung H-M, Park RJ, Jacob DJ, Spurr RJD et al. 2004. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing. Atmos. Chem. Phys. 4:1183–214
    [Google Scholar]
  86. Martiny AC, Pham CTA, Primeau FW, Vrugt JA, Moore JK et al. 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6:4279–83
    [Google Scholar]
  87. Michalski G, Bhattacharya SK, Mase DF 2012. Oxygen isotope dynamics of atmospheric nitrate and its precursor molecules. Handbook of Environmental Isotope Geochemistry I M Baskaran 613–35 Berlin: Springer
    [Google Scholar]
  88. Miyazaki Y, Kawamura K, Sawano M. 2010. Size distributions of organic nitrogen and carbon in remote marine aerosols: evidence of marine biological origin based on their isotopic ratios. Geophys. Res. Lett. 37:6L06803
    [Google Scholar]
  89. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:9701–10
    [Google Scholar]
  90. Mopper K, Zika RG. 1987. Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling. Nature 325:6101246–49
    [Google Scholar]
  91. Morin S, Savarino J, Frey MM, Domine F, Jacobi H-W et al. 2009. Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65°S to 79°N. J. Geophys. Res. 114:D5D05303
    [Google Scholar]
  92. Mulholland MR, Lomas MW 2008. Nitrogen uptake and assimilation. Nitrogen in the Marine Environment DG Capone, DA Bronk, MR Mulholland, EJ Carpenter 303–84 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  93. Müller C, Iinuma Y, Karstensen J, van Pinxteren D, Lehmann S et al. 2009. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmos. Chem. Phys. 9:249587–97
    [Google Scholar]
  94. Nielsen CJ, D'Anna B, Dye C, Graus M, Karl M et al. 2011. Atmospheric chemistry of 2-aminoethanol (MEA). Energy Procedia 4:2245–52
    [Google Scholar]
  95. O'Dowd CD, de Leeuw G. 2007. Marine aerosol production: a review of the current knowledge. Philos. Trans. R. Soc. A 365: 1856.1753–74
    [Google Scholar]
  96. Okin GS, Baker AR, Tegen I, Mahowald NM, Dentener FJ et al. 2011. Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus, and iron. Glob. Biogeochem. Cycles 25:2GB2022
    [Google Scholar]
  97. Oschlies A, Schulz KG, Riebesell U, Schmittner A. 2008. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export. Glob. Biogeochem. Cycles 22:4GB4008
    [Google Scholar]
  98. Pantoja S, Repeta DJ, Sachs JP, Sigman DM. 2002. Stable isotope constraints on the nitrogen cycle of the Mediterranean Sea water column. Deep Sea Res. 49:91609–21
    [Google Scholar]
  99. Paulot F, Jacob DJ, Johnson MT, Bell TG, Baker AR et al. 2015. Global oceanic emission of ammonia: constraints from seawater and atmospheric observations. Glob. Biogeochem. Cycles 29:81165–78
    [Google Scholar]
  100. Petters MD, Kreidenweis SM. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7:81961–71
    [Google Scholar]
  101. Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M et al. 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Geneva: IPCC
    [Google Scholar]
  102. Pringle KJ, Carslaw KS, Spracklen DV, Mann GM, Chipperfield MP. 2009. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model. Atmos. Chem. Phys. 9:124131–44
    [Google Scholar]
  103. Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C et al. 2011. Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences 8:4883–99
    [Google Scholar]
  104. Pye HOT, Nenes A, Alexander B, Ault AP, Barth MC et al. 2020. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. 20:84809–88
    [Google Scholar]
  105. Quinn PK, Bates TS, Johnson JE, Covert DS, Charlson RJ. 1990. Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean. J. Geophys. Res. 95:D1016405–16
    [Google Scholar]
  106. Quinn PK, Bates TS, Schulz KS, Coffman DJ, Frossard AA et al. 2014. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 7:3228–32
    [Google Scholar]
  107. Redfield AC. 1958. The biological control of chemical factors in the environment. Am. Sci. 46:3205–221
    [Google Scholar]
  108. Ren H, Chen Y-C, Wang XT, Wong GTF, Cohen AL et al. 2017. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356:6339749–52
    [Google Scholar]
  109. Rinaldi M, Fuzzi S, Decesari S, Marullo S, Santoleri R et al. 2013. Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol?. J. Geophys. Res. Atmos. 118:104964–73
    [Google Scholar]
  110. Saltzman ES. 2009. Marine aerosols. Geophys. Monogr. Ser. 187:17–35
    [Google Scholar]
  111. Sarmiento JL, Toggweiler JR. 1984. A new model for the role of the oceans in determining atmospheric PCO2. Nature 308:5960621–24
    [Google Scholar]
  112. Savarino J, Morin S, Erbland J, Grannec F, Patey MD et al. 2013. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer. PNAS 110:4417668–73
    [Google Scholar]
  113. Schlesinger WH, Hartley AE. 1992. A global budget for atmospheric NH3. Biogeochemistry 15:3191–211
    [Google Scholar]
  114. Seinfeld JH, Pandis SN. 2012. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change Hoboken, NJ: Wiley
  115. Seitzinger SP, Sanders RW. 1999. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnol. Oceanogr. 44:3721–30
    [Google Scholar]
  116. Sigman DM, Fripiat F 2019. Nitrogen isotopes in the ocean. Encyclopedia of Ocean Sciences JH Steele 263–78 Amsterdam: Academic
    [Google Scholar]
  117. Sigman DM, McCorkle DC, Martin WR. 1998. The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes. Glob. Biogeochem. Cycles 12:3409–27
    [Google Scholar]
  118. Sipler RE, Bronk DA 2015. Dynamics of dissolved organic nitrogen. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 127–232 Amsterdam: Academic. , 2nd ed..
    [Google Scholar]
  119. Somes CJ, Landolfi A, Koeve W, Oschlies A. 2016. Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model. Geophys. Res. Lett. 43:94500–9
    [Google Scholar]
  120. Sunda WG, Huntsman SA. 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50:1–4189–206
    [Google Scholar]
  121. Suntharalingam P, Buitenhuis E, Quéré CL, Dentener F, Nevison C et al. 2012. Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide. Geophys. Res. Lett. 39:7L07605
    [Google Scholar]
  122. Thiemens MH. 2013. Introduction to chemistry and applications in nature of mass independent isotope effects special feature. PNAS 110:4417631–37
    [Google Scholar]
  123. Tsigaridis K, Daskalakis N, Kanakidou M, Adams PJ, Artaxo P et al. 2014. The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys. 14:1910845–95
    [Google Scholar]
  124. van Vuuren DP, Bouwman LF, Smith SJ, Dentener F. 2011a. Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature. Curr. Opin. Environ. Sustain. 3:5359–69
    [Google Scholar]
  125. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A et al. 2011b. The representative concentration pathways: an overview. Clim. Change 109:15
    [Google Scholar]
  126. Vance TR, Davidson AT, Thomson PG, Levasseur M, Lizotte M et al. 2013. Rapid DMSP production by an Antarctic phytoplankton community exposed to natural surface irradiances in late spring. Aquat. Microb. Ecol. 71:2117–29
    [Google Scholar]
  127. Vicars WC, Savarino J. 2014. Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: ambient measurements from 50°N to 50°S using the nitrite-coated filter technique. Geochim. Cosmochim. Acta 135:270–87
    [Google Scholar]
  128. Volk T, Hoffert MI 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present 32 ET Sundquist, WS Broecker 99–110 Washington, DC: AGU
    [Google Scholar]
  129. Walters WW, Chai J, Hastings MG. 2019. Theoretical phase resolved ammonia–ammonium nitrogen equilibrium isotope exchange fractionations: applications for tracking atmospheric ammonia gas-to-particle conversion. ACS Earth Space Chem 3:179–89
    [Google Scholar]
  130. Walters WW, Simonini DS, Michalski G. 2016. Nitrogen isotope exchange between NO and NO2 and its implications for δ15N variations in tropospheric NOx and atmospheric nitrate. Geophys. Res. Lett. 43:1440–48
    [Google Scholar]
  131. Walters WW, Michalski G. 2015. Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NOy molecules. Geochim Cosmochim. Acta 164:284–97
    [Google Scholar]
  132. Wang XT, Cohen AL, Luu V, Ren H, Su Z et al. 2018. Natural forcing of the North Atlantic nitrogen cycle in the Anthropocene. PNAS 115:4210606–11
    [Google Scholar]
  133. Wedyan MA, Preston MR. 2008. The coupling of surface seawater organic nitrogen and the marine aerosol as inferred from enantiomer-specific amino acid analysis. Atmos. Environ. 42:378698–705
    [Google Scholar]
  134. Wentworth GR, Murphy JG, Croft B, Martin RV, Pierce JR et al. 2016. Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications. Atmos. Chem. Phys. 16:41937–53
    [Google Scholar]
  135. White AE, Spitz YH, Karl DM, Letelier RM. 2006. Flexible elemental stoichiometry in Trichodesmium spp. and its ecological implications. Limnol. Oceanogr. 51:41777–90
    [Google Scholar]
  136. Williams JE, Le Bras G, Kukui A, Ziereis H, Brenninkmeijer CAM 2014. The impact of the chemical production of methyl nitrate from the NO + CH3O2 reaction on the global distributions of alkyl nitrates, nitrogen oxides and tropospheric ozone: a global modelling study. Atmos. Chem. Phys. 14:52363–82
    [Google Scholar]
  137. Wolff EW. 2013. Ice sheets and nitrogen. Philos. Trans. R. Soc. B 368: 1621.20130127
    [Google Scholar]
  138. Xie H, Bélanger S, Song G, Benner R, Taalba A et al. 2012. Photoproduction of ammonium in the southeastern Beaufort Sea and its biogeochemical implications. Biogeosciences 9:83047–61
    [Google Scholar]
  139. Yang S, Gruber N. 2016. The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: nitrogen cycle feedbacks and the 15N Haber-Bosch effect. Glob. Biogeochem. Cycles 30:101418–40
    [Google Scholar]
  140. Yeatman SG, Spokes LJ, Dennis PF, Jickells TD. 2001. Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites. Atmos. Environ. 35:71307–20
    [Google Scholar]
  141. Yool A, Martin AP, Fernández C, Clark DR. 2007. The significance of nitrification for oceanic new production. Nature 447:7147999–1002
    [Google Scholar]
  142. Yoshikawa C, Makabe A, Shiozaki T, Toyoda S, Yoshida O et al. 2015. Nitrogen isotope ratios of nitrate and N* anomalies in the subtropical South Pacific. Geochem. Geophys. Geosyst. 16:51439–48
    [Google Scholar]
  143. Zamora LM, Landolfi A, Oschlies A, Hansell DA, Dietze H, Dentener F. 2010. Atmospheric deposition of nutrients and excess N formation in the North Atlantic. Biogeosciences 7:2777–93
    [Google Scholar]
  144. Zhang Q, Anastasio C. 2003. Conversion of fogwater and aerosol organic nitrogen to ammonium, nitrate, and NOx during exposure to simulated sunlight and ozone. Environ. Sci. Technol. 37:163522–30
    [Google Scholar]
  145. Zhang X, Ward BB, Sigman DM. 2020. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120:125308–51
    [Google Scholar]
  146. Zhao Y, Zhang L, Pan Y, Wang Y, Paulot F, Henze DK. 2015. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution. Atmos. Chem. Phys. 15:1810905–24
    [Google Scholar]
  147. Zyrichidou I, Κoukouli ME, Balis D, Markakis K, Poupkou A et al. 2015. Identification of surface NOx emission sources on a regional scale using OMI NO2. Atmos. Environ. 101:82–93
    [Google Scholar]
/content/journals/10.1146/annurev-earth-083120-052147
Loading
/content/journals/10.1146/annurev-earth-083120-052147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error