1932

Abstract

The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011121-021241
2021-11-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-011121-021241.html?itemId=/content/journals/10.1146/annurev-ecolsys-011121-021241&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal AF, Stinchcombe JR. 2009. How much do genetic covariances alter the rate of adaptation?. Proc. R. Soc. B 276:1182–91
    [Google Scholar]
  2. Álvarez-Castro JM. 2016. Genetic architecture. The Encyclopedia of Evolutionary Biology RM Kliman , 2127–35 Cambridge, MA: Academic
    [Google Scholar]
  3. Álvarez-Castro JM, Carlborg O. 2007. A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics 176:1151–67
    [Google Scholar]
  4. Andersen KH, Brander K 2009. Expected rate of fisheries-induced evolution is slow. PNAS 106:11657–60
    [Google Scholar]
  5. Araya-Ajoy YG, Ranke PS, Kvalnes T, Rønning B, Holand H et al. 2019. Characterizing morphological (co)variation using structural equation models: body size, allometric relationships and evolvability in a house sparrow metapopulation. Evolution 73:452–66
    [Google Scholar]
  6. Arnold SJ, Bürger R, Hohenlohe PA, Ajie BC, Jones AG. 2008. Understanding the evolution and stability of the G-matrix. Evolution 62:2451–61
    [Google Scholar]
  7. Barton NH, Etheridge AM, Veber A. 2017. The infinitesimal model: definition, derivation, and implications. Theor. Pop. Biol. 118:50–73
    [Google Scholar]
  8. Beatty J. 2016. The creativity of natural selection? Part I: Darwin, Darwinism, and the mutationists. J. Hist. Biol. 49:659–84
    [Google Scholar]
  9. Berger D, Postma E, Blanckenhorn WU, Walters RJ. 2013. Quantitative genetic divergence and standing genetic (co)variance in thermal reaction norms along latitude. Evolution 67:2385–99
    [Google Scholar]
  10. Blows MW, Chenoweth SF, Hine E. 2004. Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. Am. Nat. 163:329–40
    [Google Scholar]
  11. Blows MW, McGuigan K. 2015. The distribution of genetic variance across phenotypic space and the response to selection. Mol. Ecol. 24:2056–72
    [Google Scholar]
  12. Bolstad GH, Cassara JA, Márquez E, Hansen TF, van der Linde K et al. 2015. Selection and constraint in the evolution of allometry. PNAS 112:13284–89
    [Google Scholar]
  13. Bolstad GH, Hansen TF, Pélabon C, Falahati-Anbaran M, Pérez-Barrales R, Armbruster WS. 2014. Genetic constraints predict evolutionary divergence in Dalechampia blossoms. Phil. Trans. R. Soc. B 369:20130255
    [Google Scholar]
  14. Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–86
    [Google Scholar]
  15. Brigandt I 2015. From developmental constraint to evolvability: how concepts figure in explanation and disciplinary identity. Conceptual Change in Biology A Love 305–25 Heidelberg, Ger: Springer
    [Google Scholar]
  16. Bulmer M. 2003. Francis Galton: Pioneer of Heredity and Biometry Baltimore, MD: Johns Hopkins Univ. Press
  17. Bürger R. 1999. Evolution of genetic variability and the advantage of sex and recombination in a changing environment. Genetics 153:1055–69
    [Google Scholar]
  18. Burt A. 1995. The evolution of fitness. Evolution 49:1–8
    [Google Scholar]
  19. Carter AJR, Hermisson J, Hansen TF. 2005. The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theor. Pop. Biol. 68:179–96
    [Google Scholar]
  20. Charlesworth D, Charlesworth B. 1995. Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution 49:911–20
    [Google Scholar]
  21. Charmantier A, Garant D, Kruuk LEB 2014. Quantitative Genetics in the Wild Oxford, UK: Oxford Univ. Press
  22. Chebib J, Guillaume F. 2017. What affects the predictability of evolutionary constraints using a G-matrix? The relative effects of modular pleiotropy and mutational correlation. Evolution 71:2298–312
    [Google Scholar]
  23. Chenoweth SF, Rundle HD, Blows MW. 2010. The contribution of selection and genetic constraints to phenotypic divergence. Am. Nat. 175:186–96
    [Google Scholar]
  24. Cheverud JM. 1984. Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110:155–71
    [Google Scholar]
  25. Cheverud JM, Routman EJ. 1995. Epistasis and its contribution to genetic variance components. Genetics 139:1455–61
    [Google Scholar]
  26. Chevin LM. 2013. Genetic constraints on adaptation to a changing environment. Evolution 67:708–21
    [Google Scholar]
  27. Cleese J. 2008. The scientist at work. John Cleese Podcast #32, July 18. http://www.johncleesepodcast.co.uk/cleeseblog/2008/07/john-cleese-podcast-32-scientist-at.html
    [Google Scholar]
  28. Clo J, Gay L, Ronfort J. 2019. How does selfing affect the genetic variance of quantitative traits? An updated meta-analysis on empirical results in angiosperm species. Evolution 73:1578–90
    [Google Scholar]
  29. Crother BI, Murray CM. 2019. Early usage and meaning of evolvability. Ecol. Evol. 9:3784–93
    [Google Scholar]
  30. Dawkins R 1988. The evolution of evolvability. Artificial Life: The Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems C Langton 201–20 Boulder, CO: Westview Press
    [Google Scholar]
  31. Fisher RA. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edin. 3:399–433
    [Google Scholar]
  32. Galton F. 1897. Rate of racial change that accompanies different degrees of severity in selection. Nature 55:605–6
    [Google Scholar]
  33. Garcia-Gonzalez F, Simmons LW, Tomkins JL, Kotiaho JS, Evans JP. 2012. Comparing evolvabilities: common errors surrounding the calculation and use of coefficients of additive genetic variation. Evolution 66:2341–49
    [Google Scholar]
  34. Gomulkiewicz R, Holt RD. 1995. When does evolution by natural selection prevent extinction?. Evolution 49:201–7
    [Google Scholar]
  35. Gomulkiewicz R, Houle D. 2009. Demographic and genetic constraints on evolution. Am. Nat. 174:E218–29
    [Google Scholar]
  36. Goodnight C. 1988. Epistasis and the effect of founder events on the additive genetic variance. Evolution 42:441–54
    [Google Scholar]
  37. Grabowski M, Porto A. 2017. How many more? Sample size determination in studies of morphological integration and evolvability. Meth. Ecol. Evol. 8:592–603
    [Google Scholar]
  38. Hairston NG Jr., Ellner SP, Geber MA, Yoshida T, Fox JA. 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8:1114–27
    [Google Scholar]
  39. Halligan DL, Keightley PD. 2009. Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40:151–72
    [Google Scholar]
  40. Hansen TF. 2003. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69:83–94
    [Google Scholar]
  41. Hansen TF 2006. The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37:123–57
    [Google Scholar]
  42. Hansen TF 2013. Why epistasis is important for selection and adaptation. Evolution 67:3501–11
    [Google Scholar]
  43. Hansen TF, Álvarez-Castro JM, Carter AJR, Hermisson J, Wagner GP. 2006. Evolution of genetic architecture under directional selection. Evolution 60:1523–36
    [Google Scholar]
  44. Hansen TF, Armbruster WS, Carlson ML, Pélabon C. 2003a. Evolvability and genetic constraint in Dalechampia blossoms: genetic correlations and conditional evolvability. J. Exper. Zool. 296B:23–39
    [Google Scholar]
  45. Hansen TF, Houle D. 2008. Measuring and comparing evolvability and constraint in multivariate characters. J. Evol. Biol. 21:1201–19 Corrigendum 2009. J. Evol. Biol. 22:913–15
    [Google Scholar]
  46. Hansen TF, Pélabon C, Armbruster WS, Carlson ML. 2003b. Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability. J. Evol. Biol. 16:754–65
    [Google Scholar]
  47. Hansen TF, Pélabon C, Houle D. 2011. Heritability is not evolvability. Evol. Biol. 38:258–77
    [Google Scholar]
  48. Hansen TF, Solvin TM, Pavlicev M. 2019. Predicting evolutionary potential: a numerical test of evolvability measures. Evolution 73:689–703
    [Google Scholar]
  49. Hansen TF, Wagner GP. 2001. Modeling genetic architecture: a multilinear model of gene interaction. Theor. Pop. Biol. 59:61–86
    [Google Scholar]
  50. Hendrikse JL, Parsons TE, Hallgrimsson B. 2007. Evolvability as the proper focus of evolutionary developmental biology. Evol. Dev. 9:393–401
    [Google Scholar]
  51. Hendry AP. 2017. Eco-Evolutionary Dynamics Princeton, NJ: Princeton Univ. Press
  52. Hendry AP, Farrugia TJ, Kinnison MT. 2008. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17:20–29
    [Google Scholar]
  53. Hendry AP, Kinnison MT. 1999. The pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–53
    [Google Scholar]
  54. Hendry AP, Schoen DJ, Wolak ME, Reid JM. 2018. The contemporary evolution of fitness. Annu. Rev. Ecol. Evol. Syst. 49:457–76
    [Google Scholar]
  55. Hereford J, Hansen TF, Houle D. 2004. Comparing strengths of directional selection: How strong is strong?. Evolution 58:2133–43
    [Google Scholar]
  56. Hermisson J, Hansen TF, Wagner GP. 2003. Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection. Am. Nat. 161:708–34
    [Google Scholar]
  57. Hermisson J, Wagner GP. 2004. The population genetic theory of hidden variation and genetic robustness. Genetics 168:2271–84
    [Google Scholar]
  58. Holstad A. 2020. Does evolvability predict evolutionary divergence? Master's thesis, NTNU, Trondheim Norway:
  59. Hoffmann AA, Chown SL, Clusella-Trullas S. 2013. Upper thermal limits in terrestrial ectotherms: How constrained are they?. Funct. Ecol. 27:934–49
    [Google Scholar]
  60. Hoffmann AA, Merilä J, Kristensen TA. 2016. Heritability and evolvability of fitness and non-fitness traits: lessons from livestock. Evolution 70:1770–79
    [Google Scholar]
  61. Hoffmann AA, Parsons PA. 1991. Evolutionary Genetics and Environmental Stress Oxford, UK: Oxford Univ. Press
  62. Houle D. 1991. Genetic covariance of fitness correlates: What genetic correlations are made of and why it matters. Evolution 45:630–48
    [Google Scholar]
  63. Houle D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130:195–204
    [Google Scholar]
  64. Houle D. 1998. How should we explain variation in the genetic variance of traits?. Genetica 102/103:241–53
    [Google Scholar]
  65. Houle D, Bolstad GH, van der Linde K, Hansen TF. 2017. Mutation predicts 40 million years of fly wing evolution. Nature 548:447–50
    [Google Scholar]
  66. Houle D, Pélabon C, Wagner GP, Hansen TF. 2011. Measurement and meaning in biology. Q. Rev. Biol. 86:3–34
    [Google Scholar]
  67. Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH et al. 2013. Epistasis dominates the genetic architecture of Drosophila quantitative traits. PNAS 109:15553–59
    [Google Scholar]
  68. Jakobson CM, Jarosz DF. 2020. What has a century of quantitative genetics taught us about nature's genetic toolkit?. Annu. Rev. Genet. 54:439–64
    [Google Scholar]
  69. Janeiro MJ, Coltman DW, Festa-Bianchet M, Pelletier F, Morrissey MB. 2017. Towards robust evolutionary inference with integral projection models. J. Evol. Biol. 30:270–88
    [Google Scholar]
  70. Jones AG, Arnold SJ, Bürger R. 2003. Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution 57:1747–60
    [Google Scholar]
  71. Jones AG, Arnold SJ, Bürger R. 2019. The effect of epistasis and pleiotropy on genome-wide scans for adaptive outlier loci. J. Heredity 110:494–513
    [Google Scholar]
  72. Kellermann V, van Heerwaarden B, Sgrò CM, Hoffmann AA. 2009. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:1244–46
    [Google Scholar]
  73. Kopp M, Matuszewski S. 2014. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 7:169–91
    [Google Scholar]
  74. Kuparinen A, Festa-Bianchet M. 2017. Harvest-induced evolution: insights from aquatic and terrestrial systems. Phil. Trans. R. Soc. B 372:20160036
    [Google Scholar]
  75. Lande R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–34
    [Google Scholar]
  76. Lande R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33:402–16
    [Google Scholar]
  77. Lande R. 1980. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94:203–15
    [Google Scholar]
  78. Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution 37:1210–26
    [Google Scholar]
  79. Lande R, Porcher E. 2015. Maintenance of quantitative genetic variance under partial self-fertilization, with implications for evolution of selfing. Genetics 200:891–906
    [Google Scholar]
  80. Lee CE, Gelembiuk GW. 2008. Evolutionary origins of invasive populations. Evol. Appl. 1:427–48
    [Google Scholar]
  81. Le Rouzic A 2014. Estimating directional epistasis. Front. Genet. 5:198
    [Google Scholar]
  82. Le Rouzic A, Álvarez-Castro JM 2016. Epistasis-induced evolutionary plateaus in selection responses. Am. Nat. 188:E134–50
    [Google Scholar]
  83. Le Rouzic A, Álvarez-Castro JM, Carlborg O 2008. Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits. Genetics 179:1591–99
    [Google Scholar]
  84. Le Rouzic A, Álvarez-Castro JM, Hansen TF 2013. The evolution of canalization and evolvability in stable and fluctuating environments. Evol. Biol. 40:317–40
    [Google Scholar]
  85. Liu X, Li YI, Pritchard JK. 2019. Trans effects on gene expression can drive omnigenic inheritance. Cell 177:1022–34
    [Google Scholar]
  86. Lynch M, Blanchard J, Houle D, Kibota T, Schultz S et al. 1999. Spontaneous deleterious mutation. Evolution 53:645–63
    [Google Scholar]
  87. Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Characters Sunderland, MA: Sinauer
  88. Matthews G, Hangartner S, Chapple DG, Connallon T. 2019. Quantifying maladaptation during the evolution of sexual dimorphism. Proc. R. Soc. B 286:20191372
    [Google Scholar]
  89. McGlothlin JW, Kobiela ME, Wright HV, Mahler DL, Kolbe JJ et al. 2018. Adaptive radiation along a deeply conserved genetic line of least resistance in Anolis lizards. Evol. Lett. 2–4:310–22
    [Google Scholar]
  90. Melo D, Porto A, Cheverud JM, Marroig G. 2016. Modularity: genes, development, and evolution. Annu. Rev. Ecol. Evol. Syst. 47:463–86
    [Google Scholar]
  91. Merilä J, Hendry A. 2014. Climate change, adaptation and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7:1–14
    [Google Scholar]
  92. Milocco L, Salazar-Ciudad I. 2020. Is evolution predictable? Quantifying the accuracy of quantitative genetics predictions for complex genotype-phenotype maps. Evolution 74:230–44
    [Google Scholar]
  93. Mittell EA, Nakagawa S, Hadfield JD. 2015. Are molecular markers useful predictors of adaptive potential?. Ecol. Lett. 18:772–78
    [Google Scholar]
  94. Monnahan PJ, Kelly JK. 2015. Epistasis is a major determinant of the additive genetic variance in Mimulus guttatus. PLOS Genet 11:e1005201
    [Google Scholar]
  95. Morgan R, Finnøen MH, Jensen H, Pélabon C, Jutflet F 2020. Low potential for evolutionary rescue from climate change in a tropical fish. PNAS 117:33365–72
    [Google Scholar]
  96. Morrissey MB. 2014. Selection and evolution of causally covarying traits. Evolution 68:1748–61
    [Google Scholar]
  97. Morrissey MB. 2015. Evolutionary quantitative genetics of non-linear developmental systems. Evolution 69:2050–66
    [Google Scholar]
  98. Morrissey MB. 2016. Meta-analysis of magnitudes, differences, and variation in evolutionary parameters. J. Evol. Biol. 29:1882–904
    [Google Scholar]
  99. Noble DWA, Radersma R, Uller T 2019. Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. PNAS 116:13452–61
    [Google Scholar]
  100. Nuño de la Rosa L 2017. Computing the extended synthesis: mapping the dynamics and conceptual structure of the evolvability research front. J. Exp. Zool. (Mol. Dev. Evol.) 328B:395–411
    [Google Scholar]
  101. Omholt S, Plahte E, Øyehaug L, Xiang KF. 2000. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155:969–80
    [Google Scholar]
  102. Opedal ØH. 2019. The evolvability of animal-pollinated flowers: towards predicting adaptation to novel pollinator communities. New Phytol 221:1128–35
    [Google Scholar]
  103. Opedal ØH, Bolstad GH, Hansen TF, Armbruster WS, Pélabon C. 2017. The evolvability of herkogamy: quantifying the evolutionary potential of a composite trait. Evolution 71:1572–86
    [Google Scholar]
  104. Paccard A, Van Buskirk J, Willi Y 2016. Quantitative genetic architecture at latitudinal range boundaries: reduced variation but higher trait independence. Am. Nat. 187:667–77
    [Google Scholar]
  105. Paenke I, Sendhoff B, Kawecki TJ. 2007. Influence of plasticity and learning on evolution under directional selection. Am. Nat. 170:E47–58
    [Google Scholar]
  106. Pavlicev M, Hansen TF. 2011. Genotype-phenotype maps maximizing evolvability: modularity revisited. Evol. Biol. 38:371–89
    [Google Scholar]
  107. Pavlicev M, Le Rouzic A, Cheverud JM, Wagner GP, Hansen TF 2010. Directionality of epistasis in a murine intercross population. Genetics 185:1489–505
    [Google Scholar]
  108. Peccoud J, Vander Velden K, Podlich D, Winkler C, Arthur L, Cooper M. 2004. The selective values of alleles in a molecular network model are context dependent. Genetics 166:1715–25
    [Google Scholar]
  109. Pélabon C, Hilde CH, Einum S, Gamelon M. 2020. On the use of the coefficient of variation to quantify and compare trait variation. Evol. Lett. 4:180–88
    [Google Scholar]
  110. Pitchers W, Nye J, Marquez JE, Kowlaski A, Dworkin I, Houle D. 2019. A multivariate genome-wide association study of wing shape in Drosophila melanogaster. Genetics 211:1429–47
    [Google Scholar]
  111. Polly PD. 2008. Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution?. Evol. Biol. 35:83–96
    [Google Scholar]
  112. Postma E 2014. Four decades of estimating heritabilities in wild vertebrate populations: improved methods, more data, better estimates?. Quantitative Genetics in the Wild A Charmantier, D Garant, LEB Kruuk 16–33 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  113. Provine WB. 1971. The Origins of Theoretical Population Genetics Chicago: Chicago Univ. Press
  114. Reznick DN, Losos J, Travis J. 2019. From low to high gear: There has been a paradigm shift in our understanding of evolution. Ecol. Lett. 22:233–44
    [Google Scholar]
  115. Rowiński PK, Rogell B. 2017. Environmental stress corelates with increases in both genetic and residual variances: a meta-analysis of animal studies. Evolution 71:1339–51
    [Google Scholar]
  116. Rutherford SL. 2000. From genotype to phenotype: buffering mechanisms and the storage of genetic information. BioEssays 22:1095–105
    [Google Scholar]
  117. Schluter D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–74
    [Google Scholar]
  118. Stamp MA, Hadfield JD. 2020. The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis. Ecol. Lett. 23:1432–41
    [Google Scholar]
  119. Stinchcombe JR. 2005. Measuring natural selection on proportional traits: comparisons of three types of selection estimates for resistance and susceptibility to herbivore damage. Evol. Ecol. 19:363–73
    [Google Scholar]
  120. Stirling DG, Réale D, Roff DA. 2002. Selection, structure and the heritability of behaviour. J. Evol. Biol. 15:277–89
    [Google Scholar]
  121. Stoltzfus A, Cable K. 2014. Mendelian-mutationism: the forgotten evolutionary synthesis. J. Hist. Biol. 47:501–46
    [Google Scholar]
  122. Sztepanacz JL, Houle D. 2019. Cross-sex genetic covariances limit the evolvability of wing-shape within and among species of Drosophila. Evolution 73:1617–33
    [Google Scholar]
  123. Turelli M. 1984. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor. Pop. Biol. 25:138–93
    [Google Scholar]
  124. Uyeda JC, Hansen TF, Arnold SJ, Pienaar J 2011. The million-year wait for macroevolutionary bursts. PNAS 108:15908–13
    [Google Scholar]
  125. Vander Wal E, Garant D, Festa-Bianchet M, Pelletier F. 2013. Evolutionary rescue in vertebrates: evidence, applications and uncertainty. Phil. Trans. R. Soc. B 368:20120090
    [Google Scholar]
  126. Voje KL. 2016. Tempo does not correlate with mode in the fossil record. Evolution 70:2678–89
    [Google Scholar]
  127. Wagner A. 2005. Robustness and Evolvability in Living Systems Princeton, NJ: Princeton Univ. Press
  128. Wagner GP, Altenberg L. 1996. Complex adaptations and the evolution of evolvability. Evolution 50:967–76
    [Google Scholar]
  129. Walsh B, Blows MW. 2009. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40:41–59
    [Google Scholar]
  130. Walsh B, Lynch M. 2018. Evolution and Selection of Quantitative Traits Oxford, UK: Oxford Univ. Press
  131. Weber K, Diggins LT. 1990. Increased selection response in larger populations. II. Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes. Genetics 125:585–97
    [Google Scholar]
  132. Wheelwright NT, Keller LF, Postma E. 2014. The effect of trait type and strength of selection on heritability and evolvability in an island bird population. Evolution 68:3325–36
    [Google Scholar]
  133. Williams BR, van Heerwaarden B, Dowling DK, Sgrò CM. 2012. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster. J. Evol. Biol. 25:1415–26
    [Google Scholar]
  134. Wood JL, Yates MC, Fraser DJ. 2016. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol. Appl. 9:640–57
    [Google Scholar]
  135. Wray NR, Wimjenga C, Sullivan PF, Yang J, Visscher PM 2018. Common disease is more complex than implied by the core gene omnigenic model. Cell 173:1573–80
    [Google Scholar]
  136. Zuk O, Hechter E, Sunyaev SR, Lander ES 2012. The mystery of missing heritability: Genetic interactions create phantom heritability. PNAS 109:1193–98
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011121-021241
Loading
/content/journals/10.1146/annurev-ecolsys-011121-021241
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error