1932

Abstract

Commensalisms, interactions between two species in which one species benefits and the other experiences no net effect, are frequently mentioned in the ecological literature but are surprisingly little studied. Here we review and synthesize our limited understanding of commensalism. We then argue that commensalism is not a single type of interaction; rather, it is a suite of phenomena associated with distinct ecological processes and evolutionary consequences. For each form of commensalism we define, we present evidence for how, where, and why it occurs, including when it is evolutionarily persistent and when it is an occasional outcome of interactions that are usually mutualistic or antagonistic. We argue that commensalism should be of great interest in the study of species interactions due to its location at the center of the continuum between positive and negative outcomes. Finally, we offer a roadmap for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011720-040844
2020-11-02
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-011720-040844.html?itemId=/content/journals/10.1146/annurev-ecolsys-011720-040844&mimeType=html&fmt=ahah

Literature Cited

  1. Albrectsen BR, Siddique AB, Decker VHG, Unterseher M, Robinson KM 2018. Both plant genotype and herbivory shape aspen endophyte communities. Oecologia 187:535–45
    [Google Scholar]
  2. Alma AM, Pol RG, Pacheco LF, Vázquez DP 2015. No defensive role of ants throughout a broad latitudinal and elevational range of a cactus. Biotropica 47:347–54
    [Google Scholar]
  3. Andrade-Domínguez A, Salazar E, del Carmen Vargas-Lagunas M, Kolter R, Encarnación S 2014. Eco-evolutionary feedbacks drive species interactions. ISME J 8:1041–54
    [Google Scholar]
  4. Antonovics J, Bergmann J, Hempel S, Verbruggen E, Veresoglou S, Rillig M 2015. The evolution of mutualism from reciprocal parasitism: more ecological clothes for the Prisoner's Dilemma. Evol. Ecol. 29:627–41
    [Google Scholar]
  5. Aranda-Rickert A, Fracchia S, Yela N, Marazzi B 2017. Insights into a novel three-partner interaction between ants, coreids (Hemiptera: Coreidae) and extrafloral nectaries: implications for the study of protective mutualisms. Arthropod Plant. Interact. 11:525–36
    [Google Scholar]
  6. Archer SK, Hensel E, Layman CA 2018. Ambient nutrient availability drives the outcome of an interaction between a sponge (Halichondria melanadocia) and seagrass (Thalassia testudinum). J. Exp. Mar. Biol. Ecol. 503:86–91
    [Google Scholar]
  7. Archer SK, Stoner EW, Layman CA 2015. A complex interaction between a sponge (Halichondria melanadocia) and a seagrass (Thalassia testudinum) in a subtropical coastal ecosystem. J. Exp. Mar. Biol. Ecol. 465:33–40
    [Google Scholar]
  8. Arizmendi MC, Dominguez CA, Dirzo R 1996. The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Funct. Ecol. 10:119–27
    [Google Scholar]
  9. Batra LR 1979. Insect-Fungus Symbiosis: Nutrition, Mutualism, and Commensalism New York: Wiley
  10. Becker JW, Hogle SL, Rosendo K, Chisholm SW 2019. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J 13:1506–19
    [Google Scholar]
  11. Blubaugh CK, Asplund JS, Eigenbrode SD, Morra MJ, Philips CR et al. 2018. Dual-guild herbivory disrupts predator-prey interactions in the field. Ecology 99:1089–98
    [Google Scholar]
  12. Borowicz VA. 2010. The impact of arbuscular mycorrhizal fungi on strawberry tolerance to root damage and drought stress. Pedobiologia 53:265–70
    [Google Scholar]
  13. Bratbak G, Thingstad TF. 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser. 25:23–30
    [Google Scholar]
  14. Briones-Fourzán P, Pérez-Ortiz M, Negrete-Soto F, Barradas-Ortiz C, Lozano-Álvarez E 2012. Ecological traits of Caribbean sea anemones and symbiotic crustaceans. Mar. Ecol. Prog. Ser. 470:55–68
    [Google Scholar]
  15. Bronstein JL. 2001. The costs of mutualism. Am. Zool. 41:825–39
    [Google Scholar]
  16. Bronstein JL. 2009. The evolution of facilitation and mutualism. J. Ecol. 97:1160–70
    [Google Scholar]
  17. Bronstein JL. 2015. The study of mutualism. Mutualism JL Bronstein 3–19 New York: Oxford Univ. Press
    [Google Scholar]
  18. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA et al. 2008. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96:18–34
    [Google Scholar]
  19. Caullery M. 1952. 1922. Parasitism and Symbiosis London: Sidgwick and Jackson Ltd.
  20. Chamberlain SA, Holland JN. 2008. Density-mediated, context-dependent consumer resource interactions between ants and extrafloral nectar plants. Ecology 89:1364–74
    [Google Scholar]
  21. Chomicki G, Kiers ET, Renner SS 2020. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51:40932
    [Google Scholar]
  22. De Wert L, Mahon K, Ruxton GD 2012. Protection by association: evidence for aposematic commensalism. Biol. J. Linn. Soc. 106:81–89
    [Google Scholar]
  23. Dean AM. 1985. The dynamics of microbial commensalisms and mutualism. The Biology of Mutualism DH Boucher New York: Oxford Univ. Press
    [Google Scholar]
  24. Dean WRJ, MacDonald IAW. 1981. A review of African birds feeding in association with mammals. Ostrich 52:135–55
    [Google Scholar]
  25. Dickman CR. 1992. Commensal and mutualistic interactions among terrestrial vertebrates. Trends Ecol. Evol. 7:194–97
    [Google Scholar]
  26. Doña J, Proctor H, Serrano D, Johnson KP, van Oploo AO et al. 2019. Feather mites play a role in cleaning host feathers: new insights from DNA metabarcoding and microscopy. Mol. Ecol. 28:203–18
    [Google Scholar]
  27. Dvoretsky AG, Dvoretsky VG. 2009. Some aspects of the biology of the amphipods Ischyrocerus anguipes associated with the red king crab, Paralithodes camtschaticus, in the Barents Sea. Polar Biol 32:463–69
    [Google Scholar]
  28. Elgar MA. 1994. Experimental evidence of a mutualistic association between two web-building spiders. J. Anim. Ecol. 63:880–86
    [Google Scholar]
  29. Elliott J. 1992. The role of sea anemones as refuges and feeding habitats for the temperate fish Oxylebius pictus. . Environ. Biol. Fishes 35:381–400
    [Google Scholar]
  30. Fagundes R, Dáttilo W, Ribeiro SP, Rico-Gray V, Jordano P, Del-Claro K 2017. Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biol. J. Linn. Soc. 122:71–83
    [Google Scholar]
  31. Fernandez J, Goater TM, Esch GW 1991. Population dynamics of Chaetogaster limnaei (Oligochaeta) as affected by a trematode parasite in Helisoma anceps (Gastropoda). Am. Midl. Nat. 125:195–205
    [Google Scholar]
  32. Flury P, Vesga P, Dominguez-Ferreras A, Tinguely C, Ullrich IC et al. 2019. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME J 13:860–72
    [Google Scholar]
  33. Garcia LC, Eubanks MD. 2019. Overcompensation for insect herbivory: a review and meta-analysis of the evidence. Ecology 100:e02585
    [Google Scholar]
  34. Gavini SS, Quintero C, Tadey M 2019. Ecological role of a flower-dwelling predator in a tri-trophic interaction in northwestern Patagonia. Acta Oecol 95:100–7
    [Google Scholar]
  35. George SB, Boone S. 2003. The ectosymbiont crab Dissodactylus mellitae–sand dollar Mellita isometra relationship. J. Exp. Mar. Biol. Ecol. 294:235–55
    [Google Scholar]
  36. Godsoe W, Holland NK, Cosner C, Kendall BE, Brett A et al. 2017. Interspecific interactions and range limits: contrasts among interaction types. Theor. Ecol. 10:167–79
    [Google Scholar]
  37. Grange ZL, Gartrell BD, Biggs PJ, Nelson NJ, Marshall JC et al. 2015. Using a common commensal bacterium in endangered Takahe as a model to explore pathogen dynamics in isolated wildlife populations. Conserv. Biol. 29:1327–36
    [Google Scholar]
  38. Gurung TB, Urabe J, Nakanishi M 1999. Regulation of the relationship between phytoplankton Scenedesmus acutus and heterotrophic bacteria by the balance of light and nutrients. Aquat. Microb. Ecol. 17:27–35
    [Google Scholar]
  39. Haskell EF. 1949. A clarification of social science. Main Curr. Mod. Thought 7:45–51
    [Google Scholar]
  40. Hawksworth DL. 1988. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96:3–20
    [Google Scholar]
  41. Heard SB. 1994. Pitcher-plant midges and mosquitoes: a processing chain commensalism. Ecology 75:1647–60
    [Google Scholar]
  42. Heiling JM, Ledbetter TA, Richman SK, Ellison HK, Bronstein JL, Irwin RE 2018. Why are some plant–nectar robber interactions commensalisms. Oikos 127:1679–89
    [Google Scholar]
  43. Hembry DH, Raimundo RG, Newman EA, Atkinson L, Guo C et al. 2018. Does biological intimacy shape ecological network structure? A test using a brood pollination mutualism on continental and oceanic islands. J. Animal Ecol. 87:1160–71
    [Google Scholar]
  44. Henkel TP, Pawlik JR. 2014. Cleaning mutualist or parasite? Classifying the association between the brittlestar Ophiothrix lineata and the Caribbean reef sponge Callyspongia vaginalis. J. Exp. Mar. Biol. Ecol 454:42–48
    [Google Scholar]
  45. Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ et al. 2017. Changes in the bacteriome of honey bees associated with the parasite Varroadestructor, and pathogens Nosema and Lotmaria passim. Microb. Ecol 73:685–98
    [Google Scholar]
  46. Hulme-Beaman A, Dobney K, Cucchi T, Searle JB 2016. An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol. Evol. 31:633–45
    [Google Scholar]
  47. Ichihashi R, Tateno M. 2011. Strategies to balance between light acquisition and the risk of falls of four temperate liana species: to overtop host canopies or not?. J. Ecol. 99:1071–80
    [Google Scholar]
  48. Keller TA. 1992. The effect of the branchiobdellid Annelid Cambarincola fallax on the growth rate and condition of the crayfish Orconectes rusticus. J. Freshw. Ecol 7:165–71
    [Google Scholar]
  49. Kersch MF, Fonseca CR. 2005. Abiotic factors and the conditional outcome of an ant-plant mutualism. Ecology 86:2117–26
    [Google Scholar]
  50. Koch K, Algar D, Searle B, Pfenninger M, Schwenk K 2015. A voyage to Terra Australis: human-mediated dispersal of cats. BMC Evol. Biol. 15:262
    [Google Scholar]
  51. Kronauer DJC, Pierce NE. 2011. Myrmecophiles. Curr. Biol. 21:208–9
    [Google Scholar]
  52. Laihonen P, Furman ER. 1986. The site of settlement indicates commensalism between bluemussel and its epibiont. Oecologia 71:38–40
    [Google Scholar]
  53. Lee JH, Kim TW, Choe JC 2009. Commensalism or mutualism: conditional outcomes in a branchiobdellid–crayfish symbiosis. Oecologia 159:217–24
    [Google Scholar]
  54. Leimbach A, Hacker J, Dobrindt U 2013. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Between Pathogenicity and Commensalism U Dobrindt, J Hacker, C Svanborg 3–32 Curr. Top. Microbiol. Immunol 358 Berlin: Springer
    [Google Scholar]
  55. Leung T, Poulin R. 2008. Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie Milieu 58:107–15
    [Google Scholar]
  56. Lin XB, Wang T, Stothard P, Corander J, Wang J et al. 2018. The evolution of ecological facilitation within mixed-species biofilms in the mouse gastrointestinal tract. ISME J 12:2770–84
    [Google Scholar]
  57. Lin Y, Berger U, Grimm V, Ji Q-R 2012. Differences between symmetric and asymmetric facilitation matter: exploring the interplay between modes of positive and negative plant interactions. J. Ecol. 100:1482–91
    [Google Scholar]
  58. Lino MCG, Cavieres LA, Zotz G, Bader MY 2017. Carbohydrate reserves in the facilitator cushion plant Laretia acaulis suggest carbon limitation at high elevation and no negative effects of beneficiary plants. Oecologia 183:997–1006
    [Google Scholar]
  59. Löder MGJ, Boersma M, Kraberg AC, Aberle N, Wiltshire KH 2014. Microbial predators promote their competitors: commensalism within an intra-guild predation system in microzooplankton. Ecosphere 5:1–23
    [Google Scholar]
  60. Lombardero MJ, Ayres MP, Hofstetter RW, Moser JC, Lepzig KD 2003. Strong indirect interactions of Tarsonemus mites (Acarina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae). Oikos 102:243–52
    [Google Scholar]
  61. López-Legentil S, Song B, McMurray SE, Pawlik JR 2008. Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta. . Mol. Ecol 17:1840–49
    [Google Scholar]
  62. Lortie CJ, Turkington R. 2008. Species-specific positive effects in an annual plant community. Oikos 117:1511–21
    [Google Scholar]
  63. Macpherson AJ, Harris NL. 2004. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4:478–85
    [Google Scholar]
  64. Marsden ID. 1982. Population biology of the commensal asellotan Iais pubescens (Dana) and its sphaeromatid host Exosphaeroma obtusum (Dana) (Isopoda). J. Exp. Mar. Biol. Ecol. 58:233–57
    [Google Scholar]
  65. Mougi A. 2016. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep. 6:29929
    [Google Scholar]
  66. Mullen AJ. 1984. Autonomic tuning of a two predator, one prey system via commensalism. Math. Biosci. 72:71–81
    [Google Scholar]
  67. Naranjo C, Iriondo JM, Riofrio ML, Lara-Romero C 2019. Evaluating the structure of commensalistic epiphyte-phorophyte networks: a comparative perspective of biotic interactions. AoB Plants 11:plz011
    [Google Scholar]
  68. Novais SMA, DeRocha WD, Calderón-Cortés N, Quesada M 2017. Wood-boring beetles promote ant nest cavities: extended effects of a twig-girdler ecosystem engineer. Basic Appl. Ecol. 24:53–59
    [Google Scholar]
  69. Oommen MA, Shanker K. 2010. Shrewd alliances: mixed foraging associations between treeshrews, greater racket-tailed drongos and sparrowhawks on Great Nicobar Island, India. Biol. Lett. 6:304–7
    [Google Scholar]
  70. Pakeman RJ, Pugnaire FI, Michalet R, Lortie CJ, Schiffers K et al. 2009. Is the cask of facilitation ready for bottling? A symposium on the connectivity and future directions of positive plant interactions. Biol. Lett. 5:577–79
    [Google Scholar]
  71. Palumbi SR. 1985. Spatial variation in an alga-sponge commensalism and the evolution of ecological interactions. Am. Nat. 126:267–74
    [Google Scholar]
  72. Parmentier E, Das K. 2004. Commensal versus parasitic relationship between Carapini fish and their hosts: some further insight through δ13C and δ15N measurements. J. Exp. Mar. Biol. Ecol. 310:47–58
    [Google Scholar]
  73. Pawlik JR, Chanas B, Robert J, Fenical W 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127:183–94
    [Google Scholar]
  74. Peoples BK, Frimpong EA. 2016. Context-dependent outcomes in a reproductive mutualism between two freshwater fish species. Ecol. Evol. 6:1214–23
    [Google Scholar]
  75. Peres CA. 1992. Prey-capture benefits in a mixed-species group of Amazonian tamarins, Saguinus fuscicollis and S. mystax. . Behav. Ecol. Sociobiol 31:339–47
    [Google Scholar]
  76. Pierce NE, Young WR. 1986. Lycaenid butterflies and ants: two-species stable equilibria in mutualistic, commensal, and parasitic interactions. Am. Nat. 128:216–27
    [Google Scholar]
  77. Poreau B. 2014. L'histoire du commensalisme: une histoire contemporaine de la microbiologie. Hist. Sci. Méd. 48:61–68
    [Google Scholar]
  78. Purcell SW, Eriksson H. 2015. Echinoderms piggybacking on sea cucumbers: benign effects on sediment turnover and movement of hosts. Mar. Biol. Res. 11:666–70
    [Google Scholar]
  79. Queller DC, Strassmann JE. 2018. Evolutionary conflict. Annu. Rev. Ecol. Evol. Syst. 49:73–93
    [Google Scholar]
  80. Rees JD, Rees GL, Kingsford RT, Letnic M 2019. Indirect commensalism between an introduced apex predator and a native avian predator. Biodivers. Conserv. 28:2687–700
    [Google Scholar]
  81. Reilly PJ. 1974. Stability of commensalistic systems. Biotech. Bioeng. 16:1373–92
    [Google Scholar]
  82. Reithel JS, Billick I. 2006. Bottom-up mediation of an ant-membracid mutualism: effects from different host plants. Evol. Ecol. 20:27–38
    [Google Scholar]
  83. Rico-Gray V, Oliveira PS. 2007. The Ecology and Evolution of Ant-Plant Interactions Chicago: Univ. Chicago Press
  84. Rodríguez-Rodríguez MC, Jordano P, Valido A 2017. Functional consequences of plant-animal interactions along the mutualism-antagonism gradient. Ecology 98:1266–76
    [Google Scholar]
  85. Sachs JL, Skophammer RG, Bansal N, Stajich JE 2013. Evolutionary origins and diversification of proteobacterial mutualists. Proc. R. Soc. B 281:20132146
    [Google Scholar]
  86. Sanders D, van Veen FJF 2012. Indirect commensalism promotes persistence of secondary consumer species. Biol. Lett. 8:960–63
    [Google Scholar]
  87. Schafer M, Kotanen PM. 2004. Impacts of naturally-occurring soil fungi on seeds of meadow plants. Plant Ecol 175:19–35
    [Google Scholar]
  88. Schoner C, Schoner M, Kerth G, Grafe T 2013. Supply determines demand: influence of partner quality and quantity on the interactions between bats and pitcher plants. Oecologia 173:191–202
    [Google Scholar]
  89. Shapira M. 2016. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol. Evol. 31:539–49
    [Google Scholar]
  90. Shapiro JW, Turner PE. 2018. Evolution of mutualism from parasitism in experimental virus populations. Evolution 72:707–12
    [Google Scholar]
  91. Sharma TK. 1977. Development of commensalism between prey and predator. Am. Nat. 111:1009–10
    [Google Scholar]
  92. Silina AV, Zhukova NV. 2009. Topical and trophic relationships in a boring polychaete–scallop association: fatty acid biomarker approach. Mar. Ecol. Prog. Ser. 394:125–36
    [Google Scholar]
  93. Stadler B, Dixon AFG. 2008. Mutualism: Ants and Their Insect Partners Cambridge, UK: Cambridge Univ. Press
  94. Stenseth NC, Leirs H, Skonhoft A, Davis SA, Pech RP et al. 2003. Mice, rats, and people: the bio-economics of agricultural rodent pests. Front. Ecol. Environ. 1:367–75
    [Google Scholar]
  95. Stoll S, Früh D, Westerwald B, Hormel N, Haase P 2013. Density-dependent relationship between Chaetogaster limnaei limnaei (Oligochaeta) and the freshwater snail Physa acuta (Pulmonata). Freshw. Sci. 32:642–49
    [Google Scholar]
  96. Tamberg Y, Shunatova N, Yakovis E 2013. Solitary entoprocts living on bryozoans—commensals, mutualists or parasites. J. Exp. Mar. Biol. Ecol. 440:15–21
    [Google Scholar]
  97. Tchernov E. 1984. Commensal animals and human sedentism in the Middle East. Animals and Archaeology: 3. Early Herders and Their Flocks J Clutton-Brock, C Grigson 91–115 Oxford, UK: BAR
    [Google Scholar]
  98. Telles FJ, Gonzálvez FG, Rodríguez-Gironés MA, Freitas L 2019. The effect of a flower-dwelling predator on a specialized pollination system. Biol. J. Linn. Soc. 126:521–32
    [Google Scholar]
  99. Thompson JN, Fernandez CC. 2006. Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology 87:103–12
    [Google Scholar]
  100. Thompson V, Mohd-Saleh N. 1995. Spittle maggots: studies on Cladochaeta fly larvae living in association with Clastoptera spittlebug nymphs. Am. Midl. Nat. 134:215–25
    [Google Scholar]
  101. Uriz MJ, Rosell D, Maidonado M 1992. Parasitism, commensalism, or mutualism? The case of Scyphozoa (Coronatae) and horny sponges. Mar. Ecol. Prog. Ser. 81:247–56
    [Google Scholar]
  102. van Beneden PJ. 1876. Animal Parasites and Messmates New York: D. Appleton and Co.
  103. van Nouhuys S, Kraft TS 2012. Indirect interaction between butterfly species mediated by a shared pupal parasitoid. Popul. Ecol. 54:251–60
    [Google Scholar]
  104. von Beeren C, Brückner A, Maruyama M, Burke G, Wieschollek J, Kronauer DJC 2018. Chemical and behavioral integration of army ant-associated rove beetles—a comparison between specialists and generalists. Front. Zool. 15:8
    [Google Scholar]
  105. Wagner RH, Phillips DW, Standing JD, Hand C 1979. Commensalism or mutualism: attraction of a sea star towards its symbiotic polychaete. J. Exp. Mar. Biol. Ecol. 39:205–10
    [Google Scholar]
  106. Waterman JM, Roth JD. 2007. Interspecific associations of Cape ground squirrels with two mongoose species: benefit or cost. Behav. Ecol. Sociobiol. 61:1675–83
    [Google Scholar]
  107. Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA 2007. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. . PLOS Biol 5:e114
    [Google Scholar]
  108. Williams JD, McDermott JJ. 2004. Hermit crab biocoenoses: a worldwide review of the diversity and natural history of hermit crab associates. J. Exp. Mar. Biol. Ecol. 305:1–128
    [Google Scholar]
  109. Wilson DS, Knollenberg WG. 1987. Adaptive indirect effects: the fitness of burying beetles with and without their phoretic mites. Evol. Ecol. 1:139–59
    [Google Scholar]
  110. Zapalski M. 2011. Is absence of proof a proof of absence? Comments on commensalism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302:484–88
    [Google Scholar]
  111. Zeder MA. 2012. Pathways to animal domestication. Biodiversity in Agriculture: Domestication, Evolution, and Sustainability P Gepts, TR Famula, RL Bettinger, SB Brush, AB Damania et al.227–59 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  112. Zhou A, Kuang B, Gao Y, Liang G 2015. Density-dependent benefits in ant-hemipteran mutualism? The case of the ghost ant Tapinoma melanocephalum (Hymenoptera: Formicidae) and the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae). PLOS ONE 10:e0123885
    [Google Scholar]
  113. Zotz G. 2016. Plants on Plants: The Biology of Vascular Epiphytes Cham, Switz: Springer Int.
/content/journals/10.1146/annurev-ecolsys-011720-040844
Loading
/content/journals/10.1146/annurev-ecolsys-011720-040844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error