1932

Abstract

Linking interspecific interactions (e.g., mutualism, competition, predation, parasitism) to macroevolution (evolutionary change on deep timescales) is a key goal in biology. The role of species interactions in shaping macroevolutionary trajectories has been studied for centuries and remains a cutting-edge topic of current research. However, despite its deep historical roots, classic and current approaches to this topic are highly diverse. Here, we combine historical and contemporary perspectives on the study of ecological interactions in macroevolution, synthesizing ideas across eras to build a zoomed-out picture of the big questions at the nexus of ecology and macroevolution. We discuss the trajectory of this important and challenging field, dividing research into work done before the 1970s, research between 1970 and 2005, and work done since 2005. We argue that in response to long-standing questions in paleobiology, evidence accumulated to date has demonstrated that biotic interactions (including mutualism) can influence lineage diversification and trait evolution over macroevolutionary timescales, and we outline major open questions for future research in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011720-121505
2020-11-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-011720-121505.html?itemId=/content/journals/10.1146/annurev-ecolsys-011720-121505&mimeType=html&fmt=ahah

Literature Cited

  1. Afkhami ME, Mahler DL, Burns JH, Weber MG, Wojciechowski MF et al. 2018. Symbioses with nitrogen‐fixing bacteria: nodulation and phylogenetic data across legume genera. Ecology 99:502
    [Google Scholar]
  2. Agrawal AA, Salminen J-P, Fishbein M 2009. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–73
    [Google Scholar]
  3. Althoff DM, Segraves KA, Johnson MTJ 2014. Testing for coevolutionary diversification: linking pattern with process. Trends Ecol. Evol. 29:82–89
    [Google Scholar]
  4. Althoff DM, Segraves KA, Smith CI, Leebens-Mack J, Pellmyr O 2012. Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Mol. Phylogenetics Evol. 62:898–906
    [Google Scholar]
  5. Bambach RK. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131–44
    [Google Scholar]
  6. Bapst DW, Wright AM, Matzke NJ, Lloyd GT 2016. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biol. Lett. 12:20160237
    [Google Scholar]
  7. Barbeitos MS, Romano SL, Lasker HR 2010. Repeated loss of coloniality and symbiosis in scleractinian corals. PNAS 107:11877–82
    [Google Scholar]
  8. Barnosky AD. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21:172–85
    [Google Scholar]
  9. Baskett CA, Schroeder L, Weber MG, Schemske DW 2020. Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair. Ecol. Monogr. 90:e01397
    [Google Scholar]
  10. Bates HW. 1862. Contributions to an insect fauna of the Amazon Valley. Trans. Linn. Soc. 23:495–566
    [Google Scholar]
  11. Beaulieu JM, O'Meara BC. 2016. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65:583–601
    [Google Scholar]
  12. Bellard C, Cassey P, Blackburn TM 2016. Alien species as a driver of recent extinctions. Biol. Lett. 12:20150623
    [Google Scholar]
  13. Benton MJ. 1987. Progress and competition in macroevolution. Biol. Rev. 62:305–38
    [Google Scholar]
  14. Benton MJ. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728–32
    [Google Scholar]
  15. Blanchard BD, Moreau CS. 2017. Defensive traits exhibit an evolutionary trade‐off and drive diversification in ants. Evolution 71:315–28
    [Google Scholar]
  16. Boucher DH, James S, Keeler KH 1982. The ecology of mutualism. Annu. Rev. Ecol. Syst. 13:315–47
    [Google Scholar]
  17. Bronstein JL. 2015. Mutualism Oxford, UK: Oxford Univ. Press
  18. Brooks DR, McLennan DA. 1991. Phylogeny, Ecology, and Behavior: A Research Program in Comparative Biology Chicago: Univ. Chicago Press
  19. Brown WL, Wilson EO. 1956. Character displacement. Syst. Zool. 5:49–64
    [Google Scholar]
  20. Burin G, Kissling WD, Guimarães PR Jr., Şekercioğlu ÇH, Quental TB 2016. Omnivory is a macroevolutionary sink in birds. Nat. Commun 7:11250
    [Google Scholar]
  21. Carroll L. 1872. Through the Looking-Glass, and What Alice Found There Oxford, UK: Macmillan
  22. Chomicki G, Renner SS. 2017. Partner abundance controls mutualism stability and the pace of morphological change over geologic time. PNAS 114:3951–56
    [Google Scholar]
  23. Chomicki G, Ward PS, Renner SS 2015. Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proc. R. Soc. B 282:20152200
    [Google Scholar]
  24. Chomicki G, Weber M, Antonelli A, Bascompte J, Kiers ET 2019. The impact of mutualisms on species richness. Trends Ecol. Evol. 34:698–711
    [Google Scholar]
  25. Clayton DH, Bush SE, Johnson KP 2016. Coevolution of Life on Hosts: Integrating Ecology and History Chicago: Univ. Chicago Press
  26. Cody ML. 1966. A general theory of clutch size. Evolution 20:174–84
    [Google Scholar]
  27. Collins KS, Edie SM, Gao T, Bieler R, Jablonski D 2019. Spatial filters of function and phylogeny determine morphological disparity with latitude. PLOS ONE 14:e0221490
    [Google Scholar]
  28. Cooper N, Thomas GH, FitzJohn RG 2016. Shedding light on the ‘dark side’ of phylogenetic comparative methods. Methods Ecol. Evol. 7:693–99
    [Google Scholar]
  29. Cowen R. 1983. Algal symbiosis and its recognition in the fossil record. Biotic Interactions in Recent and Fossil Benthic Communities MJS Tevesz, PL McCall 431–78 Boston: Springer
    [Google Scholar]
  30. Crane PR, Friis EM, Pedersen KR 1989. Reproductive structure and function in Cretaceous Chloranthaceae. Plant Syst. Evol 165:211–26
    [Google Scholar]
  31. Crepet WL. 1984. Advanced (constant) insect pollination mechanisms: pattern of evolution and implications vis-à-vis angiosperm diversity. Ann. Mo. Bot. Gard. 71:607–30
    [Google Scholar]
  32. Crepet WL, Friis EM. 1987. The evolution of insect pollination in angiosperms. The Origins of Angiosperms and Their Biological Consequences EM Friis, WG Chaloner, PR Crane 181–201 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  33. Darwin CR. 1859. On the Origin of Species by Means of Natural Selection London: J. Murray
  34. Darwin CR. 1877. The Various Contrivances by Which Orchids Are Fertilized by Insects London: J. Murray, 2nd ed..
  35. Davis CC, Schaefer H, Xi Z, Baum DA, Donoghue MJ, Harmon LJ 2014. Long-term morphological stasis maintained by a plant-pollinator mutualism. PNAS 111:5914–19
    [Google Scholar]
  36. de Vienne DM, Refregier G, Lopez-Villavicencio M, Tellier A, Hood ME, Giraud T 2013. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol 198:347–85
    [Google Scholar]
  37. Dobzhansky T. 1950. Evolution in the tropics. Am. Sci. 38:209–21
    [Google Scholar]
  38. Drury J, Clavel J, Manceau M, Morlon H 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Syst. Biol. 65:700–10
    [Google Scholar]
  39. Drury JP, Grether GF, Garland T Jr., Morlon H 2018a. An assessment of phylogenetic tools for analyzing the interplay between interspecific interactions and phenotypic evolution. Syst. Biol. 67:413–27
    [Google Scholar]
  40. Drury JP, Tobias JA, Burns KJ, Mason NA, Shultz AJ, Morlon H 2018b. Contrasting impacts of competition on ecological and social trait evolution in songbirds. PLOS Biol 16:e2003563
    [Google Scholar]
  41. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608
    [Google Scholar]
  42. Eldredge N. 1971. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution 25:156–67
    [Google Scholar]
  43. Eldredge N. 1988. Macroevolutionary Dynamics: Species, Niches, and Adaptive Peaks New York: McGraw-Hill
  44. Eldredge N. 1999. The Pattern of Evolution New York: W. H. Freeman and Co.
  45. Eldredge N. 2003. The sloshing bucket: how the physical realm controls evolution. Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function J Crutchfield, P Schuster 3–30 New York: Oxford Univ. Press
    [Google Scholar]
  46. Eldredge N, Gould SJ. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Models in Paleobiology TJM Schopf 85–115 San Francisco: Freeman, Cooper and Co.
    [Google Scholar]
  47. Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D et al. 2005. The dynamics of evolutionary stasis. Paleobiology 31:133–45
    [Google Scholar]
  48. Endara M-J, Coley PD, Ghabash G, Nicholls JA, Dexter KG et al. 2017. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. PNAS 114:E7499–505
    [Google Scholar]
  49. Endara M-J, Nicholls JA, Coley PD, Forrister DL, Younkin GC et al. 2018. Tracking of host defenses and phylogeny during the radiation of Neotropical Inga-feeding sawflies (Hymenoptera; Argidae). Front. Plant Sci. 9:1237
    [Google Scholar]
  50. Finnegan S, Payne JL, Wang SC 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318–41
    [Google Scholar]
  51. Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Clarendon Press, 1st ed..
  52. Foisy MR, Albert LP, Hughes DW, Weber MG 2019. Do latex and resin canals spur plant diversification? Re‐examining a classic example of escape and radiate coevolution. J. Ecol. 107:1606–9
    [Google Scholar]
  53. Friedman J, Barrett SC. 2008. A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int. J. Plant Sci. 169:49–58
    [Google Scholar]
  54. Friis EM, Pedersen KR, Crane PR 2006. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclim. Palaeoecol. 232:251–93
    [Google Scholar]
  55. Futuyma DJ, Agrawal AA. 2009. Macroevolution and the biological diversity of plants and herbivores. PNAS 106:18054–61
    [Google Scholar]
  56. Gao T, Yin X, Shih C, Rasnitsyn AP, Xu X, Chen S et al. 2019. New insects feeding on dinosaur feathers in mid-Cretaceous amber. Nat. Commun. 10:5424
    [Google Scholar]
  57. Gómez JM, Verdú M. 2012. Mutualism with plants drives primate diversification. Syst. Biol. 61:567–77
    [Google Scholar]
  58. Gould SJ. 1982. Darwinism and the expansion of evolutionary theory. Science 216:380–87
    [Google Scholar]
  59. Gould SJ. 2002. The Structure of Evolutionary Theory Cambridge, MA: Harvard Univ. Press
  60. Graham CH, Storch D, Machac A 2018. Phylogenetic scale in ecology and evolution. Global Ecol. Biogeogr. 27:175–87
    [Google Scholar]
  61. Grant PR, Grant BR. 2008. How and Why Species Multiply: The Adaptive Radiation of Darwin's Finches Princeton, NJ: Princeton Univ. Press
  62. Grant V, Grant KA. 1965. Flower Pollination in the Phlox Family New York: Columbia Univ. Press
    [Google Scholar]
  63. Gurevitch J, Padilla DK. 2004. Are invasive species a major cause of extinctions. ? Trends Ecol. Evol. 19:470–74
    [Google Scholar]
  64. Hargreaves AL, Germain RM, Bontrager M, Persi J, Angert AL 2020. Local adaptation to biotic interactions: a meta-analysis across latitudes. Am. Nat. 195:395–411
    [Google Scholar]
  65. Harmon LJ. 2019. Phylogenetic comparative methods: learning from trees. EcoEvoRxiv. https://doi.org/10.32942/osf.io/e3xnr
    [Crossref] [Google Scholar]
  66. Harmon LJ, Andreazzi CS, Débarre F, Drury J, Goldberg EE et al. 2019. Detecting the macroevolutionary signal of species interactions. J. Evol. Biol. 32:769–82
    [Google Scholar]
  67. Harmon LJ, Schulte JA, Larson A, Losos JB 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961–64
    [Google Scholar]
  68. Harvey PH, Pagel MD. 1991. The Comparative Method in Evolutionary Biology Oxford, UK: Oxford Univ. Press
  69. Hembry DH, Kawakita A, Gurr NE, Schmaedick MA, Baldwin BG, Gillespie RG 2013. Non-congruent colonizations and diversification in a coevolving pollination mutualism on oceanic islands. Proc. R. Soc. B 280:20130361
    [Google Scholar]
  70. Hembry DH, Raimundo RL, Newman EA, Atkinson L, Guo C et al. 2018. Does biological intimacy shape ecological network structure? A test using a brood pollination mutualism on continental and oceanic islands. J. Anim. Ecol. 87:1160–71
    [Google Scholar]
  71. Hembry DH, Yoder JB, Goodman KR 2014. Coevolution and the diversification of life. Am. Nat. 184:425–38
    [Google Scholar]
  72. Hoso M, Kameda Y, Wu S-P, Asami T, Kato M, Hori M 2010. A speciation gene for left-right reversal in snails results in anti-predator adaptation. Nat. Commun. 1:133
    [Google Scholar]
  73. Hunt G, Slater GJ. 2016. Integrating paleontological and phylogenetic approaches to macroevolution. Annu. Rev. Ecol. Evol. Syst. 47:189–213
    [Google Scholar]
  74. Jablonski D. 2008a. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 64:715–39
    [Google Scholar]
  75. Jablonski D. 2008b. Species selection: theory and data. Annu. Rev. Ecol. Evol. Syst. 39:501–24
    [Google Scholar]
  76. Jablonski D. 2017. Approaches to macroevolution: 2. Sorting of variation, some overarching issues, and general conclusions. Evol. Biol. 44:451–75
    [Google Scholar]
  77. Jablonski D, Lidgard S, Taylor PD 1997. Comparative ecology of bryozoan radiations: origin of novelties in cyclostomes and cheilostomes. PALAIOS 12:505–23
    [Google Scholar]
  78. Kaur KM, Malé PJG, Spence E, Gomez C, Frederickson ME 2019. Using text-mined trait data to test for cooperate-and-radiate co-evolution between ants and plants. PLOS Comput. Biol. 15:e1007323
    [Google Scholar]
  79. Kay KM, Reeves PA, Olmstead RG, Schemske DW 2005. Rapid speciation and the evolution of hummingbird pollination in Neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences. Am. J. Bot. 92:1899–910
    [Google Scholar]
  80. Kay KM, Schemske DW. 2003. Pollinator assemblages and visitation rates for 11 species of Neotropical Costus (Costaceae). Biotropica 35:198–207
    [Google Scholar]
  81. Kiessling W, Baron-Szabo RC. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeogr. Palaeoclim. Palaeoecol. 214:195–223
    [Google Scholar]
  82. Knoll AH. 1984. Patterns of extinction in the fossil record of vascular plants. Extinctions MH Nitecki 21–68 Chicago: Univ. Chicago Press
    [Google Scholar]
  83. Labandeira CC. 1998. Early history of arthropod and vascular plant associations. Annu. Rev. Earth Planet. Sci. 26:329–77
    [Google Scholar]
  84. Labandeira CC, Currano ED. 2013. The fossil record of plant-insect dynamics. Annu. Rev. Earth Planet. Sci. 41:287–311
    [Google Scholar]
  85. Lack DL. 1947. Darwin's Finches Cambridge, UK: Cambridge Univ. Press
  86. Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC 2016. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol 210:1430–42
    [Google Scholar]
  87. Lagomarsino LP, Forrestel EJ, Muchhala N, Davis CC 2017. Repeated evolution of vertebrate pollination syndromes in a recently diverged Andean plant clade. Evolution 71:1970–85
    [Google Scholar]
  88. Lengyel S, Gove AD, Latimer AM, Majer JD, Dunn RR 2009. Ants sow the seeds of global diversification in flowering plants. PLOS ONE 4:e5480
    [Google Scholar]
  89. Lieberman BS. 2012. Adaptive radiations in the context of macroevolutionary theory: a paleontological perspective. Evol. Biol. 39:181–91
    [Google Scholar]
  90. Liow LH, Di Martino E, Krzeminska M, Ramsfjell M, Rust S et al. 2017. Relative size predicts competitive outcome through 2 million years. Ecol. Lett. 20:981–88
    [Google Scholar]
  91. Liow LH, Di Martino E, Voje KL, Rust S, Taylor PD 2016. Interspecific interactions through 2 million years: Are competitive outcomes predictable. ? Proc. R. Soc. B 283:20160981
    [Google Scholar]
  92. Lloyd GT. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118:131–51
    [Google Scholar]
  93. Losos JB. 2007. Detective work in the West Indies: integrating historical and experimental approaches to study island lizard evolution. BioScience 57:585–97
    [Google Scholar]
  94. Losos JB. 2009. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles Berkeley: Univ. Calif. Press
  95. Losos JB. 2011. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am. Nat. 177:709–27
    [Google Scholar]
  96. Losos JB, Jackman TR, Larson A, de Queiroz K, Rodríguez-Schettino L 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–18
    [Google Scholar]
  97. Louca S, Pennell MW. 2020. Extant timetrees are consistent with a myriad of diversification histories. Nature 580:502–5
    [Google Scholar]
  98. Luo S-X, Zhang L-J, Yuan S, Ma Z-H, Zhang D-X, Renner SS 2018. The largest early-diverging angiosperm family is mostly pollinated by ovipositing insects and so are most surviving lineages of early angiosperms. Proc. R. Soc. B 285:20172365
    [Google Scholar]
  99. Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J et al. 2018. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9:5451
    [Google Scholar]
  100. MacArthur RH. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599–619
    [Google Scholar]
  101. Mahler DL, Revell LJ, Glor RE, Losos JB 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64:2731–45
    [Google Scholar]
  102. Marazzi B, Sanderson MJ. 2010. Large-scale patterns of diversification in the widespread legume genus Senna and the evolutionary role of extrafloral nectaries. Evolution 64:3570–92
    [Google Scholar]
  103. Margulis L. 1970. Origin of Eukaryotic Cells New Haven, CT: Yale Univ. Press
  104. Marshall CR. 2006. Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci. 34:355–84
    [Google Scholar]
  105. Martén‐Rodríguez S, Fenster CB, Agnarsson I, Skog LE, Zimmer EA 2010. Evolutionary breakdown of pollination specialization in a Caribbean plant radiation. New Phytol 188:403–17
    [Google Scholar]
  106. Mayr E. 1942. Systematics and the Origin of Species from the Viewpoint of a Zoologist New York: Columbia Univ. Press
  107. McKinney FK. 1995. One hundred million years of competitive interactions between bryozoan clades: asymmetrical but not escalating. Biol. J. Linn. Soc. 56:465–81
    [Google Scholar]
  108. Miller AI, Sepkoski JJ Jr 1988. Modeling bivalve diversification: the effect of interaction on a macroevolutionary system. Paleobiology 14:364–69
    [Google Scholar]
  109. Moles AT, Ollerton J. 2016. Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea. ? Biotropica 48:141–45
    [Google Scholar]
  110. Müller F. 1879. Ituna and Thuridia: a remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879:xx–xxix
    [Google Scholar]
  111. Myers CE, Saupe EE. 2013. A macroevolutionary expansion of the modern synthesis and the importance of extrinsic abiotic factors. Palaeontology 56:1179–98
    [Google Scholar]
  112. Nascimento LF, Guimarães PR Jr., Onstein RE, Kissling WD, Pires MM 2020. Associated evolution of fruit size, fruit color and spines in Neotropical palms. J. Evol. Biol 33:858–68
    [Google Scholar]
  113. Nelsen MP, Ree RH, Moreau CS 2018. Ant-plant interactions evolved through increasing interdependence. PNAS 115:12253–58
    [Google Scholar]
  114. Nevesskaja LA, Paramonova NP, Popov SP 2001. History of Lymnocardiinae (Bivalvia, Cardiidae). Paleontol. J. 35:Suppl. 3S147–217
    [Google Scholar]
  115. Nevesskaya LA. 1967. Problems of species differentiation in light of paleontological data. Paleontol. J. 4:1–17
    [Google Scholar]
  116. Nuismer SL, Harmon LJ. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecol. Lett. 18:17–27
    [Google Scholar]
  117. Okuyama Y, Pellmyr O, Kato M 2008. Parallel floral adaptations to pollination by fungus gnats within the genus Mitella (Saxifragaceae). Mol. Phylogenetics Evol. 46:560–75
    [Google Scholar]
  118. O'Meara BC. 2012. Evolutionary inferences from phylogenies: a review of methods. Annu. Rev. Ecol. Evol. Syst. 43:267–85
    [Google Scholar]
  119. Ovcharenko VN. 1969. Transitional forms and species differentiation of brachiopods. Paleontol. J. 3:57–63
    [Google Scholar]
  120. Pellmyr O. 1992. Evolution of insect pollination and angiosperm diversification. Trends Ecol. Evol. 7:46–49
    [Google Scholar]
  121. Pennell MW, Harmon LJ. 2013. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Ann. N.Y. Acad. Sci. 1289:90–105
    [Google Scholar]
  122. Philiptschenko J. 1927. Variabilität und Variation Berlin: Gebrüder Borntraeger
  123. Pires MM, Silvestro D, Quental TB 2017. Interactions within and between clades shaped the diversification of terrestrial carnivores. Evolution 71:1855–64
    [Google Scholar]
  124. Ponisio LC, Valdovinos F, Allhoff KT, Gaiarsa M, Barner A et al. 2019. A network perspective for community assembly. Front. Ecol. Evol. 7:103
    [Google Scholar]
  125. Price PW. 1980. Evolutionary Biology of Parasites Princeton, NJ: Princeton Univ. Press
  126. Rabosky DL. 2013. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44:481–502
    [Google Scholar]
  127. Rabosky DL, Goldberg EE. 2015. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64:340–55
    [Google Scholar]
  128. Rabosky DL, McCune AR. 2010. Reinventing species selection with molecular phylogenies. Trends Ecol. Evol. 25:68–74
    [Google Scholar]
  129. Ramírez SR, Eltz T, Fujiwara MK, Gerlach G, Goldman-Huertas B et al. 2011. Asynchronous divergence in a specialized plant-pollinator mutualism. Science 333:1742–46
    [Google Scholar]
  130. Raup DM. 1991. Extinction: Bad Genes or Bad Luck? New York: W. W. Norton and Co.
  131. Raup DM, Gould SJ. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23:305–22
    [Google Scholar]
  132. Ren D. 1998. Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins. Science 280:85–88
    [Google Scholar]
  133. Ren D, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih C et al. 2009. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science 326:840–47
    [Google Scholar]
  134. Rensch B. 1947. Neuere Probleme der Abstammungslehre, die Transspezifische Evolution Stuttgart, Ger.: Enke, 1st ed..
  135. Rensch B. 1959. Evolution Above the Species Level New York: Columbia Univ. Press
  136. Revell LJ, Harmon LJ, Collar DC 2008. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57:591–601
    [Google Scholar]
  137. Rolland J, Condamine FL. 2019. The contribution of temperature and continental fragmentation to amphibian diversification. J. Biogeogr. 46:1857–73
    [Google Scholar]
  138. Rosen BR, Turnšek D. 1989. Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Mem. Assoc. Australas. Palaeontol. 8:355–70
    [Google Scholar]
  139. Rozanov AYu, Leonova TB, Ijina LB, Popov SV, Barskov IS et al. 2010. Lidiya Aleksandrovna Nevesskaya (1923–2009). Paleontol. J. 44:595–97
    [Google Scholar]
  140. Ruzhentsev VYe. 1964. The problem of transition in paleontology. Int. Geol. Rev. 6:2204–13
    [Google Scholar]
  141. Sachs JL, Simms EL. 2006. Pathways to mutualism breakdown. Trends Ecol. Evol. 21:585–92
    [Google Scholar]
  142. Sargent RD. 2004. Floral symmetry affects speciation rates in angiosperms. Proc. R. Soc. B 271:603–8
    [Google Scholar]
  143. Sato H, Toju H. 2019. Timing of evolutionary innovation: scenarios of evolutionary diversification in a species‐rich fungal clade, Boletales. New Phytol 222:1924–35
    [Google Scholar]
  144. Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K 2009. Is there a latitudinal gradient in the importance of biotic interactions. ? Annu. Rev. Ecol. Evol. Syst. 40:245–69
    [Google Scholar]
  145. Schluter D. 2000. The Ecology of Adaptive Radiation Oxford, UK: Oxford Univ. Press
  146. Schluter D. 2016. Speciation, ecological opportunity, and latitude. Am. Nat. 187:1–18
    [Google Scholar]
  147. Schmalhausen II 1949. Factors of Evolution: The Theory of Stabilizing Selection Philadelphia: Blakiston Co.
  148. Seilacher A. 1990. Aberrations in bivalve evolution related to photo‐ and chemosymbiosis. Hist. Biol. 3:289–311
    [Google Scholar]
  149. Sepkoski JJ Jr 1996. Competition in macroevolution: the double wedge revisited. Evolutionary Paleobiology D Jablonski, DH Erwin, JH Lipps 211–55 Chicago: Univ. Chicago Press
    [Google Scholar]
  150. Sepkoski JJ Jr., McKinney FK, Lidgard S. 2000. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:7–18
    [Google Scholar]
  151. Silvestro D, Antonelli A, Salamin N, Quental TB 2015. The role of clade competition in the diversification of North American canids. PNAS 112:8684–89
    [Google Scholar]
  152. Simpson GG. 1944. Tempo and Mode in Evolution New York: Columbia Univ. Press
  153. Simpson GG. 1953. The Major Features of Evolution New York: Columbia Univ. Press
  154. Simpson GG. 1996. The Dechronization of Sam Magruder New York: St. Martin's Griffin
  155. Slater GJ. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous‐Palaeogene boundary. Methods Ecol. Evol. 4:734–44
    [Google Scholar]
  156. Slater GJ. 2015. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution. PNAS 112:4897–902
    [Google Scholar]
  157. Smith CI, Pellmyr O, Althoff DM, Balcázar-Lara M, Leebens-Mack J, Segraves KA 2008. Pattern and timing of diversification in Yucca (Agavaceae): Specialized pollination does not elevate rates of diversification. Proc. R. Soc. B 275:249–58
    [Google Scholar]
  158. Smith JW, Benkman CW. 2007. A coevolutionary arms race causes ecological speciation in crossbills. Am. Nat. 169:455–65
    [Google Scholar]
  159. Stanley SM. 1975. A theory of evolution above the species level. PNAS 72:646–50
    [Google Scholar]
  160. Stanley SM. 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. Am. J. Sci. 276:56–76
    [Google Scholar]
  161. Stanley SM. 1979. Macroevolution: Pattern and Process Baltimore, MD: Johns Hopkins Univ. Press
  162. Stanley SM. 2008. Predation defeats competition on the seafloor. Paleobiology 34:1–21
    [Google Scholar]
  163. Stebbins GL. 1974. Flowering Plants: Evolution Above the Species Level Cambridge, MA: Belknap
  164. Stebbins GL. 1981. Coevolution of grasses and herbivores. Ann. Mo. Bot. Gard. 68:75–86
    [Google Scholar]
  165. Strömberg CAE. 2006. Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32:236–58
    [Google Scholar]
  166. Thayer CW. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Biotic Interactions in Recent and Fossil Benthic Communities MJS Tevesz, PL McCall 479–625 Boston: Springer
    [Google Scholar]
  167. Thompson JN. 1994. The Coevolutionary Process Chicago: Univ. Chicago Press
  168. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
  169. Tripp EA, Tsai Y-HE. 2017. Disentangling geographical, biotic, and abiotic drivers of plant diversity in Neotropical Ruellia (Acanthaceae). PLOS ONE 12:e0176021
    [Google Scholar]
  170. van der Niet T, Johnson SD 2012. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol. Evol. 27:353–61
    [Google Scholar]
  171. Van Valen L. 1973. A new evolutionary law. Evol. Theor. 1:1–30
    [Google Scholar]
  172. Vermeij GJ. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–58
    [Google Scholar]
  173. Vermeij GJ. 1978. Biogeography and Adaptation: Patterns of Marine Life Cambridge, MA: Harvard Univ. Press
  174. Vermeij GJ. 1987. Evolution and Escalation: An Ecological History of Life Princeton, NJ: Princeton Univ. Press
  175. Vermeij GJ. 1994. The evolutionary interaction among species: selection, escalation, and coevolution. Annu. Rev. Ecol. Syst. 25:219–36
    [Google Scholar]
  176. Vermeij GJ. 2013. On escalation. Annu. Rev. Earth Planet. Sci. 41:1–19
    [Google Scholar]
  177. Voje KL. 2018. Assessing adequacy of models of phyletic evolution in the fossil record. Methods Ecol. Evol. 9:2402–13
    [Google Scholar]
  178. Voje KL, Holen ØH, Liow LH, Stenseth NC 2015. The role of biotic forces in driving macroevolution: beyond the Red Queen. Proc. R. Soc. B 282:20150186
    [Google Scholar]
  179. Vrba ES. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S. Afr. J. Sci. 81:229–36
    [Google Scholar]
  180. Vrba ES. 1993. Turnover-pulses, the Red Queen, and related topics. Am. J. Sci. 293:418–52
    [Google Scholar]
  181. Wagner CE, Harmon LJ, Seehausen O 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:366–69
    [Google Scholar]
  182. Wagner CE, Harmon LJ, Seehausen O 2014. Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecol. Lett. 17:583–92
    [Google Scholar]
  183. Wang A-Y, Peng Y-Q, Harder LD, Huang J-F, Yang D-R et al. 2019. The nature of interspecific interactions and co‐diversification patterns, as illustrated by the fig microcosm. New Phytol 224:1304–15
    [Google Scholar]
  184. Weber MG, Agrawal AA. 2012. Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends Ecol. Evol. 27:394–403
    [Google Scholar]
  185. Weber MG, Agrawal AA. 2014. Defense mutualisms enhance plant diversification. PNAS 111:16442–47
    [Google Scholar]
  186. Weber MG, Clement WL, Donoghue MJ, Agrawal AA 2012. Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (Adoxaceae). Am. Nat. 180:450–63
    [Google Scholar]
  187. Weber MG, Wagner CE, Best RJ, Harmon LJ, Matthews B 2017. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32:291–304
    [Google Scholar]
  188. Werner GD, Cornelissen JH, Cornwell WK, Soudzilovskaia NA, Kattge J et al. 2018. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. PNAS 115:5229–34
    [Google Scholar]
  189. Wiens JJ, Lapoint RT, Whiteman NK 2015. Herbivory increases diversification across insect clades. Nat. Commun. 6:8370
    [Google Scholar]
  190. Yoder JB, Nuismer SL. 2010. When does coevolution promote diversification. ? Am. Nat. 176:802–17
    [Google Scholar]
  191. Zavada MS, Crepet WL. 1981. Investigations of angiosperms from the Middle Eocene of North America: flowers of the Celtidoideae. Am. J. Bot. 68:924–33
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011720-121505
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error