1932

Abstract

Phylogenomics underpins a stable and mostly well-resolved hypothesis for the interrelationships of extant arthropods. Exceptionally preserved fossils are integrated into this framework by coding their morphological characters, as exemplified by total-evidence dating approaches that treat fossils as dated tips in analyses numerically dominated by molecular data. Cambrian fossils inform on the sequence of character acquisition in the arthropod stem group and in the stems of its main extant clades. The arthropod head problem incorporates unique appendage combinations and remains of the nervous system in fossils into a scheme mostly based on neuroanatomy and Hox expression domains for extant forms. Molecular estimates of arthropod origins in the Cryogenian or Ediacaran predate a coherent picture from the arthropod fossil record, which commences as trace fossils in the earliest Cambrian. Probabilistic morphological clock analysis of trilobites, which exemplify the earliest arthropod body fossils, supports a Cambrian origin, without the need to posit an unfossilized Ediacaran history.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011720-124437
2020-11-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-011720-124437.html?itemId=/content/journals/10.1146/annurev-ecolsys-011720-124437&mimeType=html&fmt=ahah

Literature Cited

  1. Aguinaldo AMA, Turbeville JM, Lindford LS, Rivera MC, Garey JR et al. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–93
    [Google Scholar]
  2. Aria C. 2019. Reviewing the bases for a nomenclatural uniformization of the highest taxonomic levels in arthropods. Geol. Mag. 156:1463–68
    [Google Scholar]
  3. Aria C, Caron J-B. 2015. Cephalic and limb anatomy of a new isoxyid from the Burgess Shale and the role of “stem bivalved arthropods” in the disparity of the frontalmost appendages. PLOS ONE 10:6e0124949
    [Google Scholar]
  4. Aria C, Caron J-B. 2017a. Burgess Shale fossils illustrate the origin of the mandibulate body plan. Nature 545:89–92
    [Google Scholar]
  5. Aria C, Caron J-B. 2017b. Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evol. Biol. 17:261
    [Google Scholar]
  6. Aria C, Caron J-B. 2019. A middle Cambrian arthropod with chelicerae and proto-book gills. Nature 573:586–89
    [Google Scholar]
  7. Aria C, Caron J-B, Gaines R 2015. A large new leanchoiliid from the Burgess Shale and the influence of inapplicable states on stem arthropod phylogeny. Palaeontology 58:629–60
    [Google Scholar]
  8. Aria C, Zhao F, Zeng H, Guo J, Zhu M 2020. Fossils from South China redefine the ancestral euarthropod body plan. BMC Evol. Biol. 20:4
    [Google Scholar]
  9. Ballesteros JA, Santibáñez López CE, Kováč L, Gavish-Regev E, Sharma PP 2019. Ordered phylogenomic subsampling enables diagnosis of systematic errors in the placement of the enigmatic arachnid order Palpigradi. Proc. R. Soc. B 286:20192426
    [Google Scholar]
  10. Ballesteros JA, Sharma PP. 2018. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst. Zool. 68:896–917
    [Google Scholar]
  11. Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T 2014. A transcriptome approach to ecdysozoan phylogeny. Mol. Phylogenetics Evol. 80:79–87
    [Google Scholar]
  12. Boxshall GA. 2004. The evolution of arthropod limbs. Biol. Rev. 79:253–300
    [Google Scholar]
  13. Briggs DEG. 1978. The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. Philos. Trans. R. Soc. B 281:439–87
    [Google Scholar]
  14. Budd GE. 1998. Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle. Lethaia 31:197–210
    [Google Scholar]
  15. Budd GE. 1999. The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland). Trans. R. Soc. Edinb. Earth Sci. 89:249–90
    [Google Scholar]
  16. Budd GE. 2002. A palaeontological solution to the arthropod head problem. Nature 417:271–75
    [Google Scholar]
  17. Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ et al. 2011. MicroRNAs and phylogenomics resolve the phylogenetic relationships of the Tardigrada, and suggest the velvet worms as the sister group of Arthropoda. PNAS 108:15920–24
    [Google Scholar]
  18. Carapelli A, Lió P, Nardi F, van der Wath E, Frati F 2007. Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea. BMC Evol. Biol. 7:S8
    [Google Scholar]
  19. Caron J-B, Aria C. 2017. Cambrian suspension-feeding lobopodians and the early evolution of panarthropods. BMC Evol. Biol. 17:29
    [Google Scholar]
  20. Caron J-B, Gaines RR, Aria C, Mángano MG, Streng M 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rocky Mountains. Nat. Commun. 5:3210
    [Google Scholar]
  21. Chipman AD, Edgecombe GD. 2019. Developing an integrated understanding of arthropod segmentation using fossils and evo-devo. Proc. R. Soc. B 286:20191881
    [Google Scholar]
  22. Cong P, Daley AC, Edgecombe GD, Hou X 2017. The functional head of the Cambrian radiodontan (stem-group Euarthropoda. Amplectobelua symbrachiata. BMC Evol. Biol. 17:208
    [Google Scholar]
  23. Daley AC, Antcliffe JB, Drage HB, Pates S 2018. Early fossil record of Euarthropoda and the Cambrian Explosion. PNAS 115:5323–31
    [Google Scholar]
  24. Daley AC, Edgecombe GD. 2014. Morphology of Anomalocaris canadensis from the Burgess Shale. J. Paleontol. 88:68–91
    [Google Scholar]
  25. Dell'Ampio E, Meusemann K, Szucsich NU, Peters RS, Meyer B et al. 2013. Decisive data sets in phylogenomics: lessons from studies on the phylogenetic relationships of primarily flightless insects. Mol. Biol. Evol. 31:239–49
    [Google Scholar]
  26. Dong X-P, Bengtson S, Gostling NJ, Cunningham JA, Harvey THP et al. 2010. The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: Early Cambrian to Early Ordovician scalidophorans. Palaeontology 53:1291–314
    [Google Scholar]
  27. Donoghue PCJ, Yang Z. 2016. The evolution of methods for establishing evolutionary timescales. Philos. Trans. R. Soc. B 371:20160020
    [Google Scholar]
  28. Dunlop JA, Lamsdell JC. 2017. Segmentation and tagmosis in Chelicerata. Arthropod Struct. Dev. 46:395–418
    [Google Scholar]
  29. Dzik J. 2011. The xenusian-to-anomalocaridid transition within the lobopodians. Boll. Soc. Paleontol. Ital. 50:65–74
    [Google Scholar]
  30. Edgecombe GD. 2017. Inferring arthropod phylogeny: fossils and their interaction with other data sources. Integr. Comp. Biol. 57:467–76
    [Google Scholar]
  31. Ertas B, von Reumont BM, Wägele J-W, Misof B, Burmester Y 2009. Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol. Biol. Evol. 26:2711–18
    [Google Scholar]
  32. Fleming JF, Kristensen RM, Sorensen MV, Park T-YS, Arakawa K et al. 2018. Molecular palaeontology illuminates the evolution of ecdysozoan vision. Proc. R. Soc. B 285:20182180
    [Google Scholar]
  33. Fu D, Tong G, Dai T, Liu W, Yang Y et al. 2019. The Qingjiang biota—a Burgess Shale-type Konservat-Lagerstätte from the early Cambrian of South China. Science 363:1338–42
    [Google Scholar]
  34. Gabriel WN, Goldstein B. 2007. Segmental expression of Pax3/7 and engrailed homologs in tardigrade development. Dev. Genes Evol. 217:421–33
    [Google Scholar]
  35. Giribet G, Edgecombe GD. 2017. Current understanding of Ecdysozoa and its internal phylogenetic relationships. Integr. Comp. Biol. 57:455–66
    [Google Scholar]
  36. Goloboff PA, Pittman M, Pol D, Xu X 2019. Morphological data sets fit a common mechanism much more poorly than DNA sequences and call into question the MkV model. Syst. Biol. 68:494–504
    [Google Scholar]
  37. Gross V, Mayer G. 2015. Neural development in the tardigrade Hyposibius dujardini based on anti-acetylated α-tubulin immunolabeling. EvoDevo 6:12
    [Google Scholar]
  38. Harvey THP, Butterfield NJ. 2017. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos. Nat. Ecol. Evol. 1:0022
    [Google Scholar]
  39. Haug JT, Briggs DEG, Haug C 2012a. Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix. BMC Evol. Biol. 12:162
    [Google Scholar]
  40. Haug JT, Maas A, Haug C, Waloszek D 2012b. Evolution of crustacean appendages. The Natural History of the Crustacea, Vol. 1: Functional Morphology and Diversity L Watling, M Thiel 34–73 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  41. Haug JT, Maas A, Waloszek D 2010a. Henningsmoenicaris scutula, †Sandtorpia vestrogothienis gen. et sp. nov. and heterochronic events in early crustacean evolution. Trans. R. Soc. Edinb. Earth. Sci. 100:311–50
    [Google Scholar]
  42. Haug JT, Waloszek D, Haug C, Maas A 2010b. High-level phylogenetic analysis using developmental sequences: the Cambrian †Martinssonia elongata, †Muscacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Struct. Dev. 39:154–74
    [Google Scholar]
  43. Haug JT, Waloszek D, Maas A, Liu Y, Haug C et al. 2012c. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55:369–99
    [Google Scholar]
  44. Holton TA, Pisani D. 2010. Deep genomic-scale analyses of the Metazoa reject Coleomata: evidence from single-and multigene families analysed under a supertree and supermatrix paradigm. Genome Biol. Evol. 2:310–24
    [Google Scholar]
  45. Hou X, Bergström J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils Strata 45:1–116
    [Google Scholar]
  46. Jago JB, García-Bellido DC, Gehling JG 2016. An early Cambrian chelicerate from the Emu Bay Shale, South Australia. Palaeontology 59:549–62
    [Google Scholar]
  47. Jensen S, Droser ML, Gehling JG 2005. Trace fossil preservation and the early evolution of animals. Palaeogeog. Palaeoclimatol. Palaeoecol. 220:19–29
    [Google Scholar]
  48. Jockusch EL. 2017. Developmental and evolutionary perspectives on the origin and diversification of arthropod appendages. Integr. Comp. Biol. 57:533–45
    [Google Scholar]
  49. Kesidis G, Slater BJ, Jensen S, Budd GE 2019. Caught in the act: priapulid burrowers in early Cambrian substrates. Proc. R. Soc. B 286:20182505
    [Google Scholar]
  50. Kühl G, Briggs DEG, Rust J 2009. A great-appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science 323:771–73
    [Google Scholar]
  51. Lamsdell JC. 2013. Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura. Zool. J. Linn. Soc. 167:1–27
    [Google Scholar]
  52. Laumer CE, Fernández R, Lemer S, Combosch D, Kocot KM et al. 2019. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. R. Soc. B 286:20190831
    [Google Scholar]
  53. Legg DA, Sutton MD, Edgecombe GD 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat. Commun. 4:2485
    [Google Scholar]
  54. Legg DA, Vannier J. 2013. The affinities of the cosmopolitan arthropod Isoxys and its implications for the origin of arthropods. Lethaia 46:540–50
    [Google Scholar]
  55. Liu J, Shu D, Han J, Zhang Z, Zhang X 2006. A large xenusiid lobopod with complex appendages from the Lower Cambrian Chengjiang Lagerstätte. Acta Palaentol. Pol. 51:215–22
    [Google Scholar]
  56. Liu J, Shu D, Han J, Zhang Z, Zhang X 2007. Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China. Acta Zool 88:279–88
    [Google Scholar]
  57. Liu Y, Xiao S, Shao T, Broce J, Zhang H 2014. The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans. Evol. Dev. 16:155–65
    [Google Scholar]
  58. Lozano-Fernandez J, Carton R, Tanner AR, Puttick MN, Blaxter M et al. 2016. A molecular palaeobiological exploration of arthropod terrestrialisation. Philos. Trans. R. Soc. B 371:20150133
    [Google Scholar]
  59. Lozano-Fernandez J, Giacomelli M, Fleming JF, Chen A, Vinther J et al. 2019b. Pancrustacean evolution illuminated by taxon-rich genomic-scale data sets with an expanded remipede sampling. Genome Biol. Evol. 11:2055–70
    [Google Scholar]
  60. Lozano-Fernandez J, Tanner AR, Vinther J, Giacomelli M, Carton R et al. 2019a. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat. Commun. 10:2295
    [Google Scholar]
  61. Luo A, Duchêne DA, Zhang C, Zhu C-D, Ho SYW 2019. A simulation-based evaluation of tip-dating under the fossilized birth-death model. Syst. Biol. 69:325–44
    [Google Scholar]
  62. Ma X, Aldridge RJ, Siveter DJ, Siveter DJ, Hou X et al. 2014. A new exceptionally preserved Cambrian priapulid from the Chengjiang Lagerstätte. J. Palaeontol. 88:371–84
    [Google Scholar]
  63. Maas A, Braun A, Dong X-P, Donoghue PCJ, Müller KJ et al. 2006. The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld 15:266–82
    [Google Scholar]
  64. Mángano MG, Buatois LA. 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proc. R. Soc. B 281:20140038
    [Google Scholar]
  65. Marlétaz F, Peijnenburg KTCA, Goto T, Satoh N, Rokhsar D 2019. A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Curr. Biol. 29:312–18
    [Google Scholar]
  66. Martín-Durán JM, Wolff GH, Strausfeld NJ, Hejnol A 2016. The larval nervous system of the penis worm Priapulus caudautus (Ecdysozoa). Philos. Trans. R. Soc. B 371:20150050
    [Google Scholar]
  67. Mayer G, Martin C, Rüdiger J, Kauschke S, Stevenson PA et al. 2013. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol. Biol. 13:230
    [Google Scholar]
  68. Mayer G, Whitington PM, Sunnucks P, Pflüger H-J 2010. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol. Biol. 10:255
    [Google Scholar]
  69. Misof B, Liu S, Meusemann K, Peters RS, Donath A et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67
    [Google Scholar]
  70. Noah KE, Hao J, Li L, Sun X, Foley B, Yang Q, Xia X 2020. Major revisions in arthropod phylogeny through improved supermatrix, with support for two possible waves of land invasion by chelicerates. Evol. Bioinform. 16: https://doi.org/10.1177/1176934320903735
    [Crossref] [Google Scholar]
  71. Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK 2013. Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Mol. Biol. Evol. 30:215–33
    [Google Scholar]
  72. Ortega-Hernández J. 2015. Lobopodians. Curr. Biol. 25:R873–75
    [Google Scholar]
  73. Ortega-Hernández J, Janssen R, Budd GE 2017. Origin and evolution of the panarthropod head—a palaeobiological and developmental perspective. Arthropod Struct. Dev. 46:354–79
    [Google Scholar]
  74. Ou G, Liu J, Shu D, Han J, Zhang Z et al. 2011. A rare onychophoran-like lobopodian from the lower Cambrian Chengjiang Lagerstätte, Southwestern China, and its phylogenetic implications. J. . Paleontol 85:587–94
    [Google Scholar]
  75. Park T-S, Kihm J-H, Woo J, Park C, Lee WY et al. 2018. Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head. Nat. Commun. 9:1019
    [Google Scholar]
  76. Paterson JR, Edgecombe GD, Lee MSY 2019. Trilobite evolutionary rates constrain the duration of the Cambrian explosion. PNAS 116:4394–99
    [Google Scholar]
  77. Paterson JR, García-Bellido DC, Lee MSY, Brock GA, Jago JB et al. 2011. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480:237–40
    [Google Scholar]
  78. Pyron RA. 2017. Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst. Biol. 66:38–56
    [Google Scholar]
  79. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B et al. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–83
    [Google Scholar]
  80. Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S et al. 2011. Dating the arthropod tree based on large-scale transcriptome data. Mol. Phylogenetics Evol. 61:880–87
    [Google Scholar]
  81. Richter S, Stein M, Frase T, Szucsich NU 2013. The arthropod head. Arthropod Biology and Evolution: Molecules, Development, Morphology A Minelli, G Boxshall, G Fusco 223–40 Berlin/Heidelberg, Ger: Springer
    [Google Scholar]
  82. Ronquist F, Klopstein S, Vilhelmsen L, Schulmeister S, Murray DL et al. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of Hymenoptera. Syst. Biol. 26:1663–76
    [Google Scholar]
  83. Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ et al. 2011. A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc. R. Soc. B 278:298–306
    [Google Scholar]
  84. Rota-Stabelli O, Daley AC, Pisani D 2013. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 23:392–98
    [Google Scholar]
  85. Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR 1998. The position of the Arthropoda in the phylogenetic system. J. Morphol. 238:263–85
    [Google Scholar]
  86. Scholtz G. 2002. The Articulata hypothesis—or what is a segment. Org. Divers. Evol. 2:197–215
    [Google Scholar]
  87. Scholtz G, Edgecombe GD. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev. Genes Evol. 216:395–415
    [Google Scholar]
  88. Scholtz G, Staude A, Dunlop JA 2019. Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities. Nat. Commun. 10:2503
    [Google Scholar]
  89. Schwentner M, Combosch DJ, Nelson JP, Giribet G 2017. A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Curr. Biol. 27:1818–24
    [Google Scholar]
  90. Sharma PP, Kaluziak ST, Perez-Porro AR, González VL, Hormiga G et al. 2014. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 31:2963–84
    [Google Scholar]
  91. Siveter DJ, Briggs DEG, Siveter DJ, Sutton MD 2019. The Herefordshire Lagerstätte: fleshing out Silurian marine life. J. Geol. Soc. 177:1–13
    [Google Scholar]
  92. Slater BJ, Harvey THP, Guilbaud R, Butterfield NJ 2017. A cryptic record of Burgess Shale-type diversity from the early Cambrian of Baltica. Palaeontology 60:117–40
    [Google Scholar]
  93. Smith FW, Boothby TC, Giovannini I, Rebecchi L, Jockusch EL, Goldstein B 2016. The compact body plan of tardigrades evolved by the loss of a large body region. Curr. Biol. 26:224–29
    [Google Scholar]
  94. Smith FW, Cumming M, Goldstein B 2018. Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains. EvoDevo 9:19
    [Google Scholar]
  95. Smith MR, Ortega-Hernández J. 2014. Hallucigenia’s onychophoran-like claws and the case for Tactopoda. Nature 514:363–66
    [Google Scholar]
  96. Stemme T, Iliffe TM, Bicker G, Harzsch S, Koenemann S 2012. Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon. BMC Evol. Biol. 12:168
    [Google Scholar]
  97. Strausfeld NJ. 2012. Arthropod Brains: Evolution, Functional Elegance, and Historical Significance Cambridge, MA: Harvard Univ. Press
  98. Strausfeld NJ, Ma X, Edgecombe GD 2016a. Fossils and the evolution of the arthropod brain. Curr. Biol. 26:R989–1000
    [Google Scholar]
  99. Strausfeld NJ, Ma X-Y, Edgecombe GD, Fortey RA, Land M et al. 2016b. Arthropod eyes: the early Cambrian fossil record and divergent evolution of visual systems. Arthropod Struct. Dev. 45:152–72
    [Google Scholar]
  100. Tanaka G, Hou X, Ma X, Edgecombe GD, Strausfeld NJ 2013. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502:364–67
    [Google Scholar]
  101. Van Roy P, Daley AC, Briggs DEG 2015. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature 522:77–80
    [Google Scholar]
  102. Vannier J, Aria C, Taylor RS, Caron J-B 2018. Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. R. Soc. Open Sci. 5:172206
    [Google Scholar]
  103. Vannier J, Liu J, Lerosey-Aubril R, Vinther J, Daley AC 2014. Sophisticated digestive systems in early arthropods. Nat. Commun. 5:3641
    [Google Scholar]
  104. Vinther J, Porras L, Young F, Budd GE, Edgecombe GD 2016. The mouth apparatus of the Cambrian gilled lobopodian Pambdelurion whittingtoni. . Palaeontology 59:841–49
    [Google Scholar]
  105. Wägele JW, Kück P. 2014. Arthropod phylogeny and the origin of Tracheata (= Atelocerata) from Remipedia-like ancestors. Deep Metazoan Phylogeny: The Backbone of the Tree of Life JW Wägele, T Bartolomaeus 285–341 Berlin/Boston: de Gruyter
    [Google Scholar]
  106. Wheat CW, Wahlberg N. 2013. Phylogenomic insights into the Cambrian Explosion, the colonization of land and the evolution of flight in Arthropoda. Syst. Biol. 61:93–109
    [Google Scholar]
  107. Wolfe JM. 2017. Metamorphosis is ancestral for crown arthropods, and evolved in the Cambrian or earlier. Integr. Comp. Biol. 59:499–509
    [Google Scholar]
  108. Wolfe JM, Daley AC, Legg DA, Edgecombe GD 2016. Fossil calibrations for the arthropod Tree of Life. Earth-Sci. Rev. 160:43–110
    [Google Scholar]
  109. Yang J, Ortega-Hernández J, Butterfield NJ, Liu Y, Boyan G et al. 2016. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. PNAS 113:2988–93
    [Google Scholar]
  110. Yang J, Ortega-Hernández J, Butterfield NJ, Zhang X 2013. Specialized appendages in fuxianhuiids and the head organization of early euarthropods. Nature 494:468–71
    [Google Scholar]
  111. Yang J, Ortega-Hernández J, Gerber S, Butterfield NJ, Hou J et al. 2015. A superarmoured lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora. PNAS 112:8678–83
    [Google Scholar]
  112. Yang J, Ortega-Hernández J, Legg DA, Lan T, Hou JB, Zhang XG 2018. Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nat. Commun. 9:470
    [Google Scholar]
  113. Young FJ, Vinther J. 2017. Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni. . Palaeontology 60:27–54
    [Google Scholar]
  114. Zhai D, Edgecombe GD, Bond AD, Mai H, Hou X, Liu Y 2019a. Fine-scale appendage structure of the Cambrian trilobitomorph Naraoia spinosa and its ontogenetic and ecological implications. Proc. R. Soc. B 286:20192371
    [Google Scholar]
  115. Zhai D, Ortega-Hernández J, Wolfe JM, Hou X, Cao C, Liu Y 2019b. Three-dimensionally preserved appendages in an early Cambrian stem-group pancrustacean. Curr. Biol. 29:171–77
    [Google Scholar]
  116. Zhai D, Williams M, Siveter DJ, Harvey THP, Sansom RS et al. 2019c. Variation in appendages in early Cambrian bradoriids reveals a wide range of body plans in stem-euarthropods. Commun. Biol. 2:329
    [Google Scholar]
  117. Zhang C, Stadler T, Klopstein S, Heath TA, Ronquist F 2016. Total-evidence dating under the fossilized birth-death process. Syst. Biol. 65:228–49
    [Google Scholar]
  118. Zhang H, Xiao S, Liu Y, Yuan X, Wan B et al. 2015. Armored kinorhynch-like scalidophoran animals from the early Cambrian. Sci. Rep. 5:16521
    [Google Scholar]
  119. Zhang X, Ahlberg P, Babcock LE, Choi DK, Geyer G et al. 2017. Challenges in defining the base of Cambrian Series 2 and Stage 3. Earth-Sci. Rev. 172:124–39
    [Google Scholar]
  120. Zhang X, Siveter DJ, Waloszek D, Maas A 2007. An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature 449:595–98
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011720-124437
Loading
/content/journals/10.1146/annurev-ecolsys-011720-124437
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error