1932

Abstract

Flower evolution is characterized by widespread repetition, with adaptations to pollinator environment evolving in parallel. Recent studies have expanded our understanding of the developmental basis of adaptive floral novelties—petal fusion, bilateral symmetry, heterostyly, and floral dimensions. In this article, we describe patterns of trait evolution and review developmental genetic mechanisms underlying floral novelties. We discuss the diversity of mechanisms for parallel adaptation, the evidence for constraints on these mechanisms, and how constraints help explain observed macroevolutionary patterns. We describe parallel evolution resulting from similarities at multiple hierarchical levels—genetic, developmental, morphological, functional—which indicate general principles in floral evolution, including the central role of hormone signaling. An emerging pattern is mutational bias that may contribute to rapid patterns of parallel evolution, especially if the derived trait can result from simple degenerative mutations. We argue that such mutational bias may be less likely to govern the evolution of novelties patterned by complex developmental pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011720-124511
2020-11-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-011720-124511.html?itemId=/content/journals/10.1146/annurev-ecolsys-011720-124511&mimeType=html&fmt=ahah

Literature Cited

  1. Abouheif E. 1997. Developmental genetics and homology: a hierarchical approach. Trends Ecol. Evol. 12:10405–8
    [Google Scholar]
  2. Armbruster WS. 2014. Floral specialization and angiosperm diversity: phenotypic divergence, fitness trade-offs and realized pollination accuracy. AoB Plants 6:plu003
    [Google Scholar]
  3. Baldwin BG, Kalisz S, Armbruster WS 2011. Phylogenetic perspectives on diversification, biogeography, and floral evolution of Collinsia and Tonella (Plantaginaceae). Am. J. Bot. 98:4731–53
    [Google Scholar]
  4. Ballerini ES, Kramer EM, Hodges SA 2019. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development. BMC Genom 20:1668
    [Google Scholar]
  5. Barrett SCH. 2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3:4274–84
    [Google Scholar]
  6. Barrett SCH, Ness RW, Vallejo-Marin M 2009. Evolutionary pathways to self-fertilization in a tristylous plant species. New Phytol 183:3546–56
    [Google Scholar]
  7. Barrett SCH, Shore JS. 2008. New insights on heterostyly: comparative biology, ecology and genetics. Self-Incompatibility in Flowering Plants: Evolution, Diversity, and Mechanisms VE Franklin-Tong 3–32 Berlin/Heidelberg, Ger: Springer
    [Google Scholar]
  8. Bartlett ME, Specht CD. 2011. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. Am. J. Bot. 98:2227–43
    [Google Scholar]
  9. Box MS, Dodsworth S, Rudall PJ, Bateman RM, Glover BJ 2011. Characterization of Linaria KNOX genes suggests a role in petal-spur development. Plant J 68:4703–14
    [Google Scholar]
  10. Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P 2008. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. PNAS 105:269117–22
    [Google Scholar]
  11. Busch A, Horn S, Mühlhausen A, Mummenhoff K, Zachgo S 2011. Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family. Mol. Biol. Evol. 29:41241–54
    [Google Scholar]
  12. Busch A, Zachgo S. 2007. Control of corolla monosymmetry in the Brassicaceae Iberis amara. . PNAS 104:4216714–19
    [Google Scholar]
  13. Busch JW, Delph LF. 2012. The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann. Bot. 109:3553–62
    [Google Scholar]
  14. Chapman MA, Tang S, Draeger D, Nambeesan S, Shaffer H et al. 2012. Genetic analysis of floral symmetry in Van Gogh's sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLOS Genet 8:3e1002628
    [Google Scholar]
  15. Charlesworth D. 2016. The status of supergenes in the 21st century: recombination suppression in Batesian mimicry and sex chromosomes and other complex adaptations. Evol. Appl. 9:174–90
    [Google Scholar]
  16. Citerne HL, Pennington RT, Cronk QCB 2006. An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. PNAS 103:3212017–20
    [Google Scholar]
  17. Citerne HL, Reyes E, Le Guilloux M, Delannoy E, Simonnet F et al. 2017. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. Ann. Bot. 119:3367–78
    [Google Scholar]
  18. Cocker JM, Wright J, Li J, Swarbreck D, Dyer S et al. 2018. Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene. Sci. Rep. 8:17942
    [Google Scholar]
  19. Cohen JI. 2016. Floral evolution in Lithospermum (Boraginaceae): independent origins of similar flower types. Bot. J. Linn. Soc. 180:2213–28
    [Google Scholar]
  20. Corley SB, Carpenter R, Copsey L, Coen E 2005. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. . PNAS 102:145068–73
    [Google Scholar]
  21. Crozier TS, Thomas JF. 1993. Normal floral ontogeny and cool temperature–induced aberrant floral development in Glycine max (Fabaceae). Am. J. Bot. 80:4429–48
    [Google Scholar]
  22. Cubas P, Coen E, Martinez Zapater JM 2001. Ancient asymmetries in the evolution of flowers. Curr. Biol. 11:1050–52
    [Google Scholar]
  23. Cui M-L, Copsey L, Green AA, Bangham JA, Coen E 2010. Quantitative control of organ shape by combinatorial gene activity. PLOS Biol 8:11e1000538
    [Google Scholar]
  24. Cullen E, Fernández-Mazuecos M, Glover BJ 2018. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion. Ann. Bot. 122:5801–9
    [Google Scholar]
  25. Damerval C, Becker A. 2017. Genetics of flower development in Ranunculales—a new, basal eudicot model order for studying flower evolution. New Phytol 216:2361–66
    [Google Scholar]
  26. Darwin CR. 1876. The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom London: Murray
  27. de Vos JM, Wueest RO, Conti E 2014. Small and ugly? Phylogenetic analyses of the “selfing syndrome” reveal complex evolutionary fates of monomorphic primrose flowers. Evolution 68:41042–57
    [Google Scholar]
  28. Delgado-Benarroch L, Causier B, Weiss J, Egea-Cortines M 2009. FORMOSA controls cell division and expansion during floral development in Antirrhinum majus. . Planta 229:61219–29
    [Google Scholar]
  29. Ding B, Xia R, Lin Q, Gurung V, Sagawa JM et al. 2018. Developmental genetics of corolla tube formation: role of the tasiRNA-ARF pathway and a conceptual model. bioRxiv 253112. https://doi.org/10.1101/253112
    [Crossref]
  30. Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M 2006. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr. Biol. 16:3272–79
    [Google Scholar]
  31. Doebley J, Stec A, Hubbard L 1997. The evolution of apical dominance in maize. Nature 386:6624485–88
    [Google Scholar]
  32. Endress PK. 2001. Origins of flower morphology. J. Exp. Zool. 291:2105–15
    [Google Scholar]
  33. Faegri K, van der Pijl L 1979. The Principles of Pollination Ecology Oxford, UK: Pergamon, 3rd ed..
  34. Fambrini M, Bellanca M, Muñoz MC, Usai G, Cavallini A, Pugliesi C 2018. Ligulate inflorescence of Helianthus × multiflorus, cv. Soleil d'Or, correlates with a mis-regulation of a CYCLOIDEA gene characterised by insertion of a transposable element. Plant Biol 20:6956–67
    [Google Scholar]
  35. Fambrini M, Salvini M, Pugliesi C 2011. A transposon-mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. . Genetica 139:111521–29
    [Google Scholar]
  36. Feng G, Qin Z, Yan J, Zhang X, Hu Y 2011. Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol 191:3635–46
    [Google Scholar]
  37. Feng X, Zhao Z, Tian Z, Xu S, Luo Y et al. 2006. Control of petal shape and floral zygomorphy in Lotus japonicus. . PNAS 103:134970–75
    [Google Scholar]
  38. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD 2004. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35:375–403
    [Google Scholar]
  39. Fernández-Mazuecos M, Blanco‐Pastor JL, Juan A, Carnicero P, Forrest A et al. 2019. Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. New Phytol 222:21123–38
    [Google Scholar]
  40. Friedman WE. 2009. The meaning of Darwin's “abominable mystery. .” Am. J. Bot. 96:15–21
    [Google Scholar]
  41. Fujikura U, Jing R, Hanada A, Takebayashi Y, Sakakibara H et al. 2018. Variation in splicing efficiency underlies morphological evolution in Capsella. Dev. Cell 44:2192–203
    [Google Scholar]
  42. Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M 2004. PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:205021–30
    [Google Scholar]
  43. Galego L, Almeida J. 2002. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev 16:7880–91
    [Google Scholar]
  44. Garcês HMP, Spencer VMR, Kim M 2016. Control of floret symmetry by RAY3, SvDIV1B, and SvRAD in the capitulum of Senecio vulgaris. . Plant Physiol 171:32055–68
    [Google Scholar]
  45. Golz JF, Keck EJ, Hudson A 2002. Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Curr. Biol 12:7515–22
    [Google Scholar]
  46. Gottsberger G. 2016. Generalist and specialist pollination in basal angiosperms (ANITA grade, basal monocots, magnoliids, Chloranthaceae and Ceratophyllaceae): what we know now. Plant Div. Evol. 131:263–362
    [Google Scholar]
  47. Green AA, Kennaway JR, Hanna AI, Bangham JA, Coen E 2010. Genetic control of organ shape and tissue polarity. PLOS Biol 8:11e1000537
    [Google Scholar]
  48. Gübitz T, Caldwell A, Hudson A 2003. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives. Mol. Biol. Evol. 20:91537–44
    [Google Scholar]
  49. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV et al. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15:211899–911
    [Google Scholar]
  50. Hermann K, Klahre U, Venail J, Brandenburg A, Kuhlemeier C 2015. The genetics of reproductive organ morphology in two Petunia species with contrasting pollination syndromes. Planta 241:51241–54
    [Google Scholar]
  51. Hileman LC. 2014. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos. Trans. R. Soc. B 369:164820130348
    [Google Scholar]
  52. Hileman LC, Baum DA. 2003. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Mol. Biol. Evol. 20:4591–600
    [Google Scholar]
  53. Hodges SA. 1997. Floral nectar spurs and diversification. Int. J. Plant Sci. 158:6S81–88
    [Google Scholar]
  54. Howarth DG, Martins T, Chimney E, Donoghue MJ 2011. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Ann. Bot. 107:91521–32
    [Google Scholar]
  55. Hu S, Dilcher DL, Jarzen DM, Taylor DW 2008. Early steps of angiosperm–pollinator coevolution. PNAS 105:1240–45
    [Google Scholar]
  56. Hu Y, Poh HM, Chua N-H 2006. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J 47:11–9
    [Google Scholar]
  57. Hu YX, Xie O, Chua NH 2003. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:91951–61
    [Google Scholar]
  58. Huang T, Irish VF. 2015. Temporal control of plant organ growth by TCP transcription factors. Curr. Biol. 25:131765–70
    [Google Scholar]
  59. Husband BC, Schemske DW. 1996. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:154–70
    [Google Scholar]
  60. Huu CN, Kappel C, Keller B, Sicard A, Takebayashi Y et al. 2016. Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses. eLife 5:e17956
    [Google Scholar]
  61. Igic B, Busch JW. 2013. Is self-fertilization an evolutionary dead end. ? New Phytol 198:2386–97
    [Google Scholar]
  62. Iwasaki M, Nitasaka E. 2006. The FEATHERED gene is required for polarity establishment in lateral organs especially flowers of the Japanese morning glory (Ipomoea nil). Plant Mol. Biol. 62:6913–25
    [Google Scholar]
  63. Jabbour F, Cossard G, Le Guilloux M, Sannier J, Nadot S, Damerval C 2014. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae. PLOS ONE 9:4e95727
    [Google Scholar]
  64. Jabbour F, Renner SS. 2012. Spurs in a spur: perianth evolution in the Delphinieae (Ranunculaceae). Int. J. Plant Sci. 173:91036–54
    [Google Scholar]
  65. Kappel C, Huu CN, Lenhard M 2017. A short story gets longer: recent insights into the molecular basis of heterostyly. J. Exp. Bot. 68:21/225719–30
    [Google Scholar]
  66. Kelly JK, Mojica JP. 2011. Interactions among flower-size QTL of Mimulus guttatus are abundant but highly variable in nature. Genetics 189:1461–71
    [Google Scholar]
  67. Kim M, Cui M-L, Cubas P, Gillies A, Lee K et al. 2008. Regulatory genes control a key morphological and ecological trait transferred between species. Science 322:59041116–19
    [Google Scholar]
  68. Kohn J, Barrett S. 1992. Experimental studies on the functional significance of heterostyly. Evolution 46:143–55
    [Google Scholar]
  69. Kosugi S, Ohashi Y. 1997. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–19
    [Google Scholar]
  70. Kramer EM. 2019. Plus ça change, plus c'est la même chose: the developmental evolution of flowers. Curr. Top. Dev. Biol. 131:211–38
    [Google Scholar]
  71. Krizek BA. 1999. Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev. Genet. 25:3224–36
    [Google Scholar]
  72. Krizek BA. 2011. Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. J. Exp. Bot. 62:103311–19
    [Google Scholar]
  73. Krizek BA, Anderson JT. 2013. Control of flower size. J. Exp. Bot. 64:61427–37
    [Google Scholar]
  74. Landis JB, O'Toole RD, Ventura KL, Gitzendanner MA, Oppenheimer DG et al. 2016. The phenotypic and genetic underpinnings of flower size in Polemoniaceae. Front. Plant Sci. 6:1144
    [Google Scholar]
  75. Li J, Cocker JM, Wright J, Webster MA, McMullan M et al. 2016. Genetic architecture and evolution of the S locus supergene in Primula vulgaris.Nat. . Plants 2:1216188
    [Google Scholar]
  76. Li J, Webster MA, Wright J, Cocker JM, Smith MC et al. 2015. Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization. New Phytol 208:1137–48
    [Google Scholar]
  77. Li Y, Zheng L, Corke F, Smith C, Bevan MW 2008. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. . Genes Dev 22:101331–36
    [Google Scholar]
  78. Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E 1999. Control of organ asymmetry in flowers of Antirrhinum. . Cell 99:4367–76
    [Google Scholar]
  79. Luo D, Carpenter R, Vincent C, Copsey L, Coen E 1996. Origin of floral asymmetry in Antirrhinum. . Nature 383:6603794–99
    [Google Scholar]
  80. Mack J-LK, Davis AR. 2015. The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae). Ann. Bot. 115:4641–49
    [Google Scholar]
  81. Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends Plant Sci 15:131–39
    [Google Scholar]
  82. Mast AR, Kelso S, Conti E 2006. Are any primroses (Primula) primitively monomorphic. ? New Phytol 171:3605–16
    [Google Scholar]
  83. Mizukami Y, Fischer RL. 2000. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. PNAS 97:2942–47
    [Google Scholar]
  84. Moyroud E, Glover BJ. 2017. The evolution of diverse floral morphologies. Curr. Biol. 27:17R941–51
    [Google Scholar]
  85. Naiki A. 2012. Heterostyly and the possibility of its breakdown by polyploidization. Plant Species Biol. 27:13–29
    [Google Scholar]
  86. Nikolov LA, Runions A, Das Gupta M, Tsiantis M 2019. Leaf development and evolution. Curr. Top. Dev. Biol. 131:109–39
    [Google Scholar]
  87. Nowak MD, Russo G, Schlapbach R, Huu CN, Lenhard M, Conti E 2015. The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biol 16:12
    [Google Scholar]
  88. Ollerton J, Alarcón R, Waser NM, Price MV, Watts S et al. 2009. A global test of the pollination syndrome hypothesis. Ann. Bot. 103:91471–80
    [Google Scholar]
  89. Ollerton J, Winfree R, Tarrant S 2011. How many flowering plants are pollinated by animals. ? Oikos 120:3321–26
    [Google Scholar]
  90. Panero JL, Funk VA. 2008. The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol. Phylogenet. Evol. 47:2757–82
    [Google Scholar]
  91. Pang H-B, Sun Q-W, He S-Z, Wang Y-Z 2010. Expression of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia (Gesneriaceae). J. Syst. Evol. 48:5309–17
    [Google Scholar]
  92. Preston JC, Hileman LC. 2012. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 3:16
    [Google Scholar]
  93. Preston JC, Martinez CC, Hileman LC 2011. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. PNAS 108:62343–48
    [Google Scholar]
  94. Preston JC, Powers B, Kostyun JL, Driscoll H, Zhang F, Zhong J 2019. Implications of region-specific gene expression for development of the partially fused petunia corolla. Plant J 100:1158–75
    [Google Scholar]
  95. Puzey JR, Gerbode SJ, Hodges SA, Kramer EM, Mahadevan L 2012. Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy. Proc. R. Soc. B 279:17331640–45
    [Google Scholar]
  96. Raimundo J, Sobral R, Bailey P, Azevedo H, Galego L et al. 2013. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. Plant J 75:4527–38
    [Google Scholar]
  97. Rast MI, Simon R. 2008. The meristem-to-organ boundary: more than an extremity of anything. Curr. Opin. Genet. Dev. 18:4287–94
    [Google Scholar]
  98. Rebocho AB, Kennaway JR, Bangham JA, Coen E 2017. Formation and shaping of the Antirrhinum flower through modulation of the CUP boundary gene. Curr. Biol. 27:172610–22.e3
    [Google Scholar]
  99. Reinhardt D, Pesce E-R, Stieger P, Mandel T et al. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426:6964255–60
    [Google Scholar]
  100. Reyes E, Nadot S, von Balthazar M, Schönenberger J, Sauquet H 2018. Testing the impact of morphological rate heterogeneity on ancestral state reconstruction of five floral traits in angiosperms. Sci. Rep. 8:9473
    [Google Scholar]
  101. Reyes E, Sauquet H, Nadot S 2016. Perianth symmetry changed at least 199 times in angiosperm evolution. TAXON 65:5945–64
    [Google Scholar]
  102. Sauquet H, Magallón S. 2018. Key questions and challenges in angiosperm macroevolution. New Phytol 219:41170–87
    [Google Scholar]
  103. Sauquet H, von Balthazar M, Magallón S, Doyle JA, Endress PK et al. 2017. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8:16047
    [Google Scholar]
  104. Shimizu KK, Tsuchimatsu T. 2015. Evolution of selfing: recurrent patterns in molecular adaptation. Annu. Rev. Ecol. Evol. Syst. 46:593–622
    [Google Scholar]
  105. Shore JS, Hamam HJ, Chafe PDJ, Labonne JDJ, Henning PM, McCubbin AG 2019. The long and short of the S-locus in Turnera (Passifloraceae). New Phytol 224:31316–29
    [Google Scholar]
  106. Sicard A, Kappel C, Lee YW, Woźniak NJ, Marona C et al. 2016. Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella. . PNAS 113:4813911–16
    [Google Scholar]
  107. Sicard A, Stacey N, Hermann K, Dessoly J, Neuffer B et al. 2011. Genetics, evolution, and adaptive significance of the selfing syndrome in the genus Capsella. . Plant Cell 23:93156–71
    [Google Scholar]
  108. Simon-Porcar VI, Meagher TR, Arroyo J 2015. Disassortative mating prevails in style-dimorphic Narcissus papyraceus despite low reciprocity and compatibility of morphs. Evolution 69:92276–88
    [Google Scholar]
  109. Simonini S, Bencivenga S, Trick M, Østergaard L 2017. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. . Plant Cell 29:81864–82
    [Google Scholar]
  110. Smyth DR. 2018. Evolution and genetic control of the floral ground plan. New Phytol 220:170–86
    [Google Scholar]
  111. Souer E, van Houwelingen A, Kloos D, Mol J, Koes R 1996. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:2159–70
    [Google Scholar]
  112. Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H et al. 2012. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J 70:6978–90
    [Google Scholar]
  113. Specht CD, Howarth DG. 2015. Adaptation in flower form: a comparative evodevo approach. New Phytol 206:174–90
    [Google Scholar]
  114. Stebbins GL. 1970. Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annu. Rev. Ecol. Syst. 1:307–26
    [Google Scholar]
  115. Stull GW, Schori M, Soltis DE, Soltis PS 2018. Character evolution and missing (morphological) data across Asteridae. Am. J. Bot. 105:3470–79
    [Google Scholar]
  116. Stuurman J, Hoballah ME, Broger L, Moore J, Basten C, Kuhlemeier C 2004. Dissection of floral pollination syndromes in Petunia. . Genetics 168:31585–99
    [Google Scholar]
  117. Thomson JD, Wilson P. 2008. Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. Int. J. Plant Sci. 169:123–38
    [Google Scholar]
  118. Tsai T, Diggle PK, Frye HA, Jones CS 2018. Contrasting lengths of Pelargonium floral nectar tubes result from late differences in rate and duration of growth. Ann. Bot. 121:3549–60
    [Google Scholar]
  119. Ushijima K, Nakano R, Bando M, Shigezane Y, Ikeda K et al. 2012. Isolation of the floral morph-related genes in heterostylous flax (Linum grandiflorum): the genetic polymorphism and the transcriptional and post-transcriptional regulations of the S locus. Plant J 69:2317–31
    [Google Scholar]
  120. van Es SW, Silveira SR, Rocha DI, Bimbo A, Martinelli AP et al. 2018. Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis. Plant J 94:5867–79
    [Google Scholar]
  121. Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS, Gerats T 2009. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. . Plant Cell 21:82269–83
    [Google Scholar]
  122. Varaud E, Brioudes F, Szecsi J, Leroux J, Brown S et al. 2011. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23:3973–83
    [Google Scholar]
  123. Verbeke JA. 1992. Fusion events during floral morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:583–98
    [Google Scholar]
  124. Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J 2000. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127:235157–65
    [Google Scholar]
  125. Vert G, Walcher CL, Chory J, Nemhauser JL 2008. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. PNAS 105:289829–34
    [Google Scholar]
  126. Wang J, Wang Y, Luo D 2010. LjCYC genes constitute floral dorsoventral asymmetry in Lotus japonicus. J. Integr. Plant Biol 52:11959–70
    [Google Scholar]
  127. Wang Z, Li N, Jiang S, Gonzalez N, Huang X et al. 2016. SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat. Commun 7:11192
    [Google Scholar]
  128. Wang Z, Luo Y, Li X, Wang L, Xu S et al. 2008. Genetic control of floral zygomorphy in pea (Pisum sativum L.). PNAS 105:3010414–19
    [Google Scholar]
  129. Wessinger CA, Rausher MD. 2012. Lessons from flower colour evolution on targets of selection. J. Exp. Bot. 63:165741–49
    [Google Scholar]
  130. Wessinger CA, Rausher MD, Hileman LC 2019. Adaptation to hummingbird pollination is associated with reduced diversification in Penstemon. Evol. Lett 3:5521–33
    [Google Scholar]
  131. Whittall JB, Hodges SA. 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:7145706–12
    [Google Scholar]
  132. Woźniak NJ, Sicard A. 2018. Evolvability of flower geometry: convergence in pollinator-driven morphological evolution of flowers. Semin. Cell Dev. Biol. 79:3–15
    [Google Scholar]
  133. Wu M, Kostyun JL, Hahn MW, Moyle LC 2018. Dissecting the basis of novel trait evolution in a radiation with widespread phylogenetic discordance. Mol. Ecol. 27:163301–16
    [Google Scholar]
  134. Xu R, Li Y. 2011. Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana. . Development 138:204545–54
    [Google Scholar]
  135. Xu S, Luo Y, Cai Z, Cao X, Hu X et al. 2013. Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus.J. Integr. . Plant Biol 55:3221–31
    [Google Scholar]
  136. Yan J, Cai X, Luo J, Sato S, Jiang Q et al. 2010. The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus. . Plant Physiol 152:2797–807
    [Google Scholar]
  137. Yant L, Collani S, Puzey J, Levy C, Kramer EM 2015. Molecular basis for three-dimensional elaboration of the Aquilegia petal spur. Proc. R. Soc. B 282:180320142778
    [Google Scholar]
  138. Yasui Y, Mori M, Aii J, Abe T, Matsumoto D et al. 2012. S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLOS ONE 7:2e31264
    [Google Scholar]
  139. Young HJ. 2008. Selection on spur shape in Impatiens capensis. . Oecologia 156:3535–43
    [Google Scholar]
  140. Zhang W, Kramer EM, Davis CC 2010. Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. PNAS 107:146388–93
    [Google Scholar]
  141. Zhang W, Kramer EM, Davis CC 2012. Similar genetic mechanisms underlie the parallel evolution of floral phenotypes. PLOS ONE 7:4e36033
    [Google Scholar]
  142. Zhang W, Steinmann VW, Nikolov L, Kramer EM, Davis C 2013. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Front. Plant Sci. 4:302
    [Google Scholar]
  143. Zhao Y, Pfannebecker K, Dommes AB, Hidalgo O, Becker A, Elomaa P 2018. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytol 220:1317–31
    [Google Scholar]
  144. Zhong J, Kellogg EA. 2015. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales. Am. J. Bot. 102:81260–67
    [Google Scholar]
  145. Zhong J, Powell S, Preston JC 2016. Organ boundary NAC-domain transcription factors are implicated in the evolution of petal fusion. Plant Biol 18:6893–902
    [Google Scholar]
  146. Zhong J, Preston JC. 2015. Bridging the gaps: evolution and development of perianth fusion. New Phytol 208:2330–35
    [Google Scholar]
  147. Zhong J, Preston JC, Hileman LC, Kellogg EA 2017. Repeated and diverse losses of corolla bilateral symmetry in the Lamiaceae. Ann. Bot. 119:71211–23
    [Google Scholar]
  148. Zhong L, Barrett SCH, Wang X-J, Wu Z-K, Sun H-Y et al. 2019. Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants. New Phytol 224:31290–303
    [Google Scholar]
  149. Zhou C, Han L, Fu C, Wen J, Cheng X et al. 2013. The trans-acting short interfering RNA3 pathway and NO APICAL MERISTEM antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula. . Plant Cell 25:124845–62
    [Google Scholar]
  150. Zhou W, Barrett SCH, Wang H, Li D-Z 2015. Reciprocal herkogamy promotes disassortative mating in a distylous species with intramorph compatibility. New Phytol 206:41503–12
    [Google Scholar]
  151. Zhou X-R, Wang Y-Z, Smith JF, Chen R 2008. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytol 178:3532–43
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011720-124511
Loading
/content/journals/10.1146/annurev-ecolsys-011720-124511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error