1932

Abstract

Our understanding of ungulate migration is advancing rapidly due to innovations in modern animal tracking. Herein, we review and synthesize nearly seven decades of work on migration and other long-distance movements of wild ungulates. Although it has long been appreciated that ungulates migrate to enhance access to forage, recent contributions demonstrate that their movements are fine tuned to dynamic landscapes where forage, snow, and drought change seasonally. Researchers are beginning to understand how ungulates navigate migrations, with the emerging view that animals blend gradient tracking with spatial memory, some of which is socially learned. Although migration often promotes abundant populations—with broad effects on ecosystems—many migrations around the world have been lost or are currently threatened by habitat fragmentation, climate change, and barriers to movement. Fortunately, new efforts that use empirical tracking data to map migrations in detail are facilitating effective conservation measures to maintain ungulate migration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-011516
2021-11-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-011516.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-011516&mimeType=html&fmt=ahah

Literature Cited

  1. Aikens EO, Kauffman MJ, Merkle JA, Dwinnell SPH, Fralick GL, Monteith KL. 2017. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20:741–50
    [Google Scholar]
  2. Aikens EO, Monteith KL, Merkle JA, Dwinnell SPH, Fralick GL, Kauffman MJ. 2020a. Drought reshuffles plant phenology and reduces the foraging benefit of green-wave surfing for a migratory ungulate. Glob. Change Biol. 26:4215–25
    [Google Scholar]
  3. Aikens EO, Mysterud A, Merkle JA, Cagnacci F, Rivrud IM et al. 2020b. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30:3444–49.e4
    [Google Scholar]
  4. Albon SD, Langvatn R. 1992. Plant phenology and the benefits of migration in a temperate ungulate. Oikos 65:502–13
    [Google Scholar]
  5. Alerstam T. 2006. Conflicting evidence about long-distance animal navigation. Science 313:791–94
    [Google Scholar]
  6. Altizer S, Bartel R, Han BA 2011. Animal migration and infectious disease risk. Science 331:296–302
    [Google Scholar]
  7. Augustine DJ, Veblen KE, Goheen JR, Riginos C, Young TP 2011. Pathways for positive cattle wildlife interactions in semiarid rangelands. Smithsonian Contrib. Zool. 2011:55–71
    [Google Scholar]
  8. Bannikov A. 1981. The Asian Wild Ass transl. M. Proutkina Moscow: Lesnaya Promyshlennost (from Russian)
  9. Bartlam-Brooks H, Bonyongo M, Harris S 2011. Will reconnecting ecosystems allow long-distance mammal migrations to resume? A case study of a zebra Equus burchelli migration in Botswana. Oryx 45:210–16
    [Google Scholar]
  10. Bauer S, Hoye BJ. 2014. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344:1242552
    [Google Scholar]
  11. Bekenov A, Grachev IA, Milner-Gulland E. 1998. The ecology and management of the saiga antelope in Kazakhstan. Mammal. Rev. 28:1–52
    [Google Scholar]
  12. Bell RH. 1971. A grazing ecosystem in the Serengeti. Sci. Am. 225:86–93
    [Google Scholar]
  13. Berger J. 1986. Wild Horses of the Great Basin: Social Competition and Population Size Chicago: Univ. Chicago Press
  14. Berger J. 2004. The last mile: how to sustain long-distance migration in mammals. Conserv. Biol. 18:320–31
    [Google Scholar]
  15. Bischof R, Loe LE, Meisingset EL, Zimmermann B, Van Moorter B, Mysterud A. 2012. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave?. Am. Nat. 180:407–24
    [Google Scholar]
  16. Bolger DT, Newmark WD, Morrison TA, Doak DF. 2008. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11:63–77
    [Google Scholar]
  17. Boroff K, Kauffman M, Peck D, Maichak E, Scurlock B, Schumaker B. 2016. Risk assessment and management of brucellosis in the southern greater Yellowstone area (II): cost-benefit analysis of reducing elk brucellosis prevalence. Prev. Vet. Med. 134:39–48
    [Google Scholar]
  18. Bracis C, Mueller T. 2017. Memory, not just perception, plays an important role in terrestrial mammalian migration. Proc. R. Soc. B 284:20170449
    [Google Scholar]
  19. Brashares JS, Arcese P, Sam MK 2001. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. B 268:2473–78
    [Google Scholar]
  20. Bull JW, Suttle KB, Singh NJ, Milner-Gulland E. 2013. Conservation when nothing stands still: moving targets and biodiversity offsets. Front. Ecol. Environ. 11:203–10
    [Google Scholar]
  21. Cantalapiedra JL, FitzJohn RG, Kuhn TS, Fernández MH, DeMiguel D et al. 2014. Dietary innovations spurred the diversification of ruminants during the Caenozoic. Proc. R. Soc. B 281:20132746
    [Google Scholar]
  22. Courtemanch AB, Kauffman MJ, Kilpatrick S, Dewey SR 2017. Alternative foraging strategies enable a mountain ungulate to persist after migration loss. Ecosphere 8:e01855
    [Google Scholar]
  23. Craighead JJ, Atwell G, O'Gara BW. 1972. Elk migrations in and near Yellowstone National Park. Wildlife Monogr 1972:3–48
    [Google Scholar]
  24. Cronwright-Schreiner SC. 1899. The Trek-bokke (Gazella euchore) of the Cape Colony. Zoologist 3:213–19
    [Google Scholar]
  25. Daskin JH, Pringle RM. 2018. Warfare and wildlife declines in Africa's protected areas. Nature 553:328–32
    [Google Scholar]
  26. Debeffe L, Morellet N, Cargnelutti B, Lourtet B, Bon R et al. 2012. Condition-dependent natal dispersal in a large herbivore: Heavier animals show a greater propensity to disperse and travel further. J. Anim. Ecol. 81:1327
    [Google Scholar]
  27. Demment MW, Van Soest PJ. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125:641–72
    [Google Scholar]
  28. Dobson A. 2009. Food-web structure and ecosystem services: insights from the Serengeti. Philos. Trans. R. Soc. B 364:1665–82
    [Google Scholar]
  29. Dobson AP, Borner M, Sinclair ARE, Hudson PJ, Anderson TM et al. 2010. Road will ruin Serengeti. Nature 467:272–73
    [Google Scholar]
  30. Dukes H. 1955. The Physiology of Domestic Animals Ithaca, NY: Cornell Univ. Press, 7th ed..
  31. Duncan C, Chauvenet ALM, McRae LM, Pettorelli N. 2012. Predicting the future impact of droughts on ungulate populations in arid and semi-arid environments. PLOS ONE 7:e51490
    [Google Scholar]
  32. Esmaeili S, Jesmer BR, Albeke SE, Aikens EO, Schoenecker KA et al. 2021. Body size and digestive system shape resource selection by ungulates: a cross-taxa test of the Forage Maturation Hypothesis. Ecol. Lett. 24:217891
    [Google Scholar]
  33. Estes RD. 1966. Behaviour and life history of the wildebeest (Connochaetes taurinus Burchell). Nature 212:999–1000
    [Google Scholar]
  34. Estes RD. 1991. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates Berkeley: Univ. Calif. Press
  35. Fagan WF, Gurarie E, Bewick S, Howard A, Cantrell RS, Cosner C. 2017. Perceptual ranges, information gathering, and foraging success in dynamic landscapes. Am. Nat. 189:474–89
    [Google Scholar]
  36. Fagan WF, Lewis MA, Auger-Methe M, Avgar T, Benhamou S et al. 2013. Spatial memory and animal movement. Ecol. Lett. 16:1316–29
    [Google Scholar]
  37. Folstad I, Nilssen AC, Halvorsen O, Andersen J. 1991. Parasite avoidance: the cause of post-calving migrations in Rangifer?. Can. J. Zool. 69:2423–29
    [Google Scholar]
  38. Fryxell JM, Greever J, Sinclair ARE 1988. Why are migratory ungulates so abundant?. Am. Nat. 131:781–98
    [Google Scholar]
  39. Fryxell JM, Sinclair ARE 1988. Seasonal migration by white-eared kob in relation to resources. Afr. J. Ecol. 26:17–31
    [Google Scholar]
  40. Fryxell JM, Wilmshurst JF, Sinclair ARE. 2004. Predictive models of movement by Serengeti grazers. Ecology 85:2429–35
    [Google Scholar]
  41. Gaston KJ, Jackson SF, Cantú-Salazar L, Cruz-Piñón G. 2008. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39:93–113
    [Google Scholar]
  42. Geremia C, Merkle JA, Eacker DR, Wallen RL, White PJ et al. 2019. Migrating bison engineer the green wave. PNAS 116:25707–13
    [Google Scholar]
  43. Gordon IJ, Prins HHT 2008. The Ecology of Browsing and Grazing New York: Springer
  44. Gregr EJ, Christensen V, Nichol L, Martone RG, Markel RW et al. 2020. Cascading social-ecological costs and benefits triggered by a recovering keystone predator. Science 368:1243–47
    [Google Scholar]
  45. Hansen BB, Isaksen K, Benestad RE, Kohler J, Pedersen ÅØ et al. 2014. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 9:114021
    [Google Scholar]
  46. Harris G, Thirgood S, Hopcraft JGC, Cromsigt J, Berger J 2009. Global decline in aggregated migrations of large terrestrial mammals. Endangered Species Res 7:55–76
    [Google Scholar]
  47. Hebblewhite M, Merrill E, McDermid G 2008. A multi-scale test of the forage maturation hypothesis in a partially migratory ungulate population. Ecol. Monogr. 78:141–66
    [Google Scholar]
  48. Hebblewhite M, Merrill EH. 2007. Multiscale wolf predation risk for elk: Does migration reduce risk?. Oecologia 152:377–87
    [Google Scholar]
  49. Hess AN, Hess RJ, Hess JL, Paulan B, Hess JA 2014. American bison influences on lepidopteran and wild blue lupine distribution in an oak savanna landscape. J. Insect Conserv. 18:327–38
    [Google Scholar]
  50. Hilty J, Worboys GL, Keeley A, Woodley S, Lausche B et al. 2020. Guidelines for Conserving Connectivity through Ecological Networks and Corridors Best Pract. Prot. Area Guidel. Ser. 30 Gland, Switz: Int. Union Conserv. Nat.
  51. Holdo RM, Holt RD, Fryxell JM. 2009. Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the Serengeti. Am. Nat. 173:431–45
    [Google Scholar]
  52. Illius A, Gordon I. 1987. The allometry of food intake in grazing ruminants. J. Anim. Ecol. 56:989–99
    [Google Scholar]
  53. Jakes AF, Gates CC, DeCesare NJ, Jones PF, Goldberg JF et al. 2018a. Classifying the migration behaviors of pronghorn on their northern range. J. Wildlife Manag. 82:1229–42
    [Google Scholar]
  54. Jakes AF, Jones PF, Paige LC, Seidler RG, Huijser MP. 2018b. A fence runs through it: a call for greater attention to the influence of fences on wildlife and ecosystems. Biol. Conserv. 227:310–18
    [Google Scholar]
  55. Janis C. 1976. The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion. Evolution 30:757–74
    [Google Scholar]
  56. Janis C. 2008. An evolutionary history of browsing and grazing ungulates. See Gordon & Prins 2008 21–45
  57. Jarman P. 1974. The social organisation of antelope in relation to their ecology. Behaviour 48:215–67
    [Google Scholar]
  58. Jesmer BR, Merkle JA, Goheen JR, Aikens EO, Beck JL et al. 2018. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361:1023–25
    [Google Scholar]
  59. Johnson HE, Sushinsky JR, Holland A, Bergman EJ, Balzer T et al. 2017. Increases in residential and energy development are associated with reductions in recruitment for a large ungulate. Glob. Change Biol. 23:578–91
    [Google Scholar]
  60. Joly K, Gurarie E, Sorum MS, Kaczensky P, Cameron MD et al. 2020. Longest terrestrial migrations and movements around the world. Sci. Rep. 9:15333
    [Google Scholar]
  61. Jones PF, Jakes AF, MacDonald AM, Hanlon JA, Eacker DR et al. 2020. Evaluating responses by sympatric ungulates to fence modifications across the northern great plains. Wildlife Soc. Bull. 44:130–41
    [Google Scholar]
  62. Kaczensky P, Ganbataar O, Altansukh N, Enkhsaikhan N, Stauffer C, Walzer C. 2011. The danger of having all your eggs in one basket—winter crash of the re-introduced Przewalski's horses in the Mongolian Gobi. PLOS ONE 6:e28057
    [Google Scholar]
  63. Kartzinel TR, Chen PA, Coverdale TC, Erickson DL, Kress WJ et al. 2015. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. PNAS 112:8019–24
    [Google Scholar]
  64. Kauffman MJ, Cagnacci F, Chamaillé-Jammes S, Hebblewhite M, Hopcraft JGC et al. 2021. Mapping out a future for ungulate migrations. Science 372:6542566–69
    [Google Scholar]
  65. Kauffman MJ, Copeland H, Berg J, Bergen S, Cole E et al. 2020. Ungulate migrations of the western United States, Vol. 1 U.S. Geol. Surv. Sci. Investig. Rep.2020–5101 US Geol. Surv. Reston, VA: https://doi.org/10.3133/sir20205101
    [Crossref] [Google Scholar]
  66. Kauffman MJ, Meacham JE, Sawyer H, Rudd W, Ostlind E 2018. Wild Migrations: Atlas of Wyoming's Ungulates Corvallis: Or. State Univ. Press
  67. Knapp AK, Blair JM, Briggs JM, Collins SL, Hartnett DC et al. 1999. The keystone role of bison in North American tallgrass prairie: Bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. BioScience 49:39–50
    [Google Scholar]
  68. Kock RA, Orynbayev M, Robinson S, Zuther S, Singh NJ et al. 2018. Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci. Adv. 4:eaao2314
    [Google Scholar]
  69. Laforge MP, Bonar M, Vander Wal E. 2021. Tracking snowmelt to jump the green wave: phenological drivers of migration in a northern ungulate. Ecology 102:e03268
    [Google Scholar]
  70. Larsen F, Hopcraft JGC, Hanley N, Hongoa JR, Hynes S et al. 2020. Wildebeest migration drives tourism demand in the Serengeti. Biol. Conserv. 248:108688
    [Google Scholar]
  71. Leblond M, St-Laurent M-H, Côté SD. 2016. Caribou, water, and ice—fine-scale movements of a migratory arctic ungulate in the context of climate change. Mov. Ecol. 4:14
    [Google Scholar]
  72. Liedvogel M, Åkesson S, Bensch S 2011. The genetics of migration on the move. Trends Ecol. Evol. 26:561–69
    [Google Scholar]
  73. Linnell JDC, Cretois B, Nilsen EB, Rolandsen CM, Solberg EJ et al. 2020. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe's Anthropocene. Biol. Conserv. 244:108500
    [Google Scholar]
  74. Lowrey B, McWhirter DE, Proffitt KM, Monteith KL, Courtemanch AB et al. 2020. Individual variation creates diverse migratory portfolios in native populations of a mountain ungulate. Ecol. Appl. 30:e2106
    [Google Scholar]
  75. MacFadden BJ. 2005. Fossil horses—evidence for evolution. Science 307:1728–30
    [Google Scholar]
  76. Martin PS, Szuter CR. 1999. War zones and game sinks in Lewis and Clark's west. Conserv. Biol. 13:36–45
    [Google Scholar]
  77. Martínez-García R, Calabrese JM, Mueller T, Olson KA, López C. 2013. Optimizing the search for resources by sharing information: Mongolian gazelles as a case study. Phys. Rev. Lett. 110:248106
    [Google Scholar]
  78. Mason N, Ward M, Watson JEM, Venter O, Runting RK. 2020. Global opportunities and challenges for transboundary conservation. Nat. Ecol. Evol. 4:694–701
    [Google Scholar]
  79. McNaughton S. 1976. Serengeti migratory wildebeest: facilitation of energy flow by grazing. Science 191:92–94
    [Google Scholar]
  80. McNaughton S. 1979. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am. Nat. 113:691–703
    [Google Scholar]
  81. McNulty SA, Porter WF, Mathews NE, Hill JA. 1997. Localized management for reducing white-tailed deer populations. Wildlife Soc. Bull.265–71
    [Google Scholar]
  82. Merkle JA, Monteith KL, Aikens EO, Hayes MM, Hersey KR et al. 2016. Large herbivores surf waves of green-up during spring. Proc. R. Soc. B 283:20160456
    [Google Scholar]
  83. Merkle JA, Sawyer H, Monteith KL, Dwinnell SPH, Fralick GL, Kauffman MJ. 2019. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecol. Lett. 22:1797–805
    [Google Scholar]
  84. Middleton AD, Kauffman MJ, McWhirter DE, Cook JG, Cook RC et al. 2013. Animal migration amid shifting patterns of phenology and predation: lessons from a Yellowstone elk herd. Ecology 94:1245–56
    [Google Scholar]
  85. Middleton AD, Merkle JA, McWhirter DE, Cook JG, Cook RC et al. 2018. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 127:1060–68
    [Google Scholar]
  86. Middleton AD, Sawyer H, Merkle JA, Kauffman MJ, Cole EK et al. 2020. Conserving transboundary wildlife migrations: recent insights from the Greater Yellowstone Ecosystem. Front. Ecol. Environ. 18:83–91
    [Google Scholar]
  87. Mihlbachler MC, Rivals F, Solounias N, Semprebon GM. 2011. Dietary change and evolution of horses in North America. Science 331:1178–81
    [Google Scholar]
  88. Monteith KL, Bleich VC, Stephenson TR, Pierce BM, Conner MM et al. 2011. Timing of seasonal migration in mule deer: effects of climate, plant phenology, and life-history characteristics. Ecosphere 2:1–34
    [Google Scholar]
  89. Monteith KL, Bleich VC, Stephenson TR, Pierce BM, Conner MM et al. 2014. Life-history characteristics of mule deer: effects of nutrition in a variable environment. Wildlife Monogr 186:1–62
    [Google Scholar]
  90. Monteith KL, Klaver RW, Hersey KR, Holland AA, Thomas TP, Kauffman MJ 2015. Effects of climate and plant phenology on recruitment of moose at the southern extent of their range. Oecologia 178:1137–48
    [Google Scholar]
  91. Morjan MD, Rayl ND, Elkan PW, Deutsch JC, Henke MB, Fuller TK. 2018. Armed conflict and development in South Sudan threatens some of Africa's longest and largest ungulate migrations. Biodivers. Conserv. 27:365–80
    [Google Scholar]
  92. Morrison TA, Merkle JA, Hopcraft JGC, Aikens EO, Beck JL et al. 2021. Drivers of site fidelity in ungulates. J. Anim. Ecol. 90:955–66
    [Google Scholar]
  93. Msoffe FU, Ogutu JO, Said MY, Kifugo SC, De Leeuw J et al. 2019. Wildebeest migration in East Africa: status, threats and conservation measures. bioRxiv 546747. https://doi.org/10.1101/546747
    [Crossref]
  94. Mueller T, Fagan WF. 2008. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117:654–64
    [Google Scholar]
  95. Mueller T, Fagan WF, Grimm V. 2011a. Integrating individual search and navigation behaviors in mechanistic movement models. Theor. Ecol. 4:341–55
    [Google Scholar]
  96. Mueller T, O'Hara RB, Converse SJ, Urbanek RP, Fagan WF. 2013. Social learning of migratory performance. Science 341:999–1002
    [Google Scholar]
  97. Mueller T, Olson KA, Dressler G, Leimgruber P, Fuller TK et al. 2011b. How landscape dynamics link individual- to population-level movement patterns: a multispecies comparison of ungulate relocation data. Glob. Ecol. Biogeogr. 20:683–94
    [Google Scholar]
  98. Mysterud A, Loe LE, Zimmermann B, Bischof R, Veiberg V, Meisingset E. 2011. Partial migration in expanding red deer populations at northern latitudes—a role for density dependence?. Oikos 120:1817–25
    [Google Scholar]
  99. Nandintsetseg D, Bracis C, Olson KA, Böhning-Gaese K, Calabrese JM et al. 2019. Challenges in the conservation of wide-ranging nomadic species. J. Appl. Ecol. 56:1916–26
    [Google Scholar]
  100. Nandintsetseg D, Kaczensky P, Ganbaatar O, Leimgruber P, Mueller T. 2016. Spatiotemporal habitat dynamics of ungulates in unpredictable environments: the khulan (Equus hemionus) in the Mongolian Gobi desert as a case study. Biol. Conserv. 204:313–21
    [Google Scholar]
  101. Natl. Acad. Sci. Eng. Med 2017. Revisiting Brucellosis in the Greater Yellowstone Area Washington, DC: Natl. Acad. Press
  102. Nelson ME. 1998. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76:426–32
    [Google Scholar]
  103. Olden JD, Schooley RL, Monroe JB, Poff NL 2004. Context-dependent perceptual ranges and their relevance to animal movements in landscapes. J. Anim. Ecol. 73:1190–94
    [Google Scholar]
  104. Parker KL, Robbins CT, Hanley TA. 1984. Energy expenditures for locomotion by mule deer and elk. J. Wildlife Manag. 48:474–88
    [Google Scholar]
  105. Parlee BL, Sandlos J, Natcher DC. 2018. Undermining subsistence: barren-ground caribou in a “tragedy of open access. .” Sci. Adv. 4:e1701611
    [Google Scholar]
  106. Payne BL, Bro-Jørgensen J. 2016. Disproportionate climate-induced range loss forecast for the most threatened African antelopes. Curr. Biol. 26:1200–5
    [Google Scholar]
  107. Pennycuick L. 1975. Movements of the migratory wildebeest population in the Serengeti area between 1960 and 1973. Afr. J. Ecol. 13:65–87
    [Google Scholar]
  108. Porter WF, Mathews NE, Underwood HB, Sage RW, Behrend DF. 1991. Social organization in deer: implications for localized management. Environ. Manag. 15:809–14
    [Google Scholar]
  109. Pruitt WO Jr. 1959. Snow as a factor in the winter ecology of the barren ground caribou (Rangifer arcticus). Arctic 12:129–92
    [Google Scholar]
  110. Ranc N, Moorcroft PR, Ossi F, Cagnacci F 2020. Experimental evidence of memory-based foraging decisions in a large wild mammal. PNAS 118:e2014856118
    [Google Scholar]
  111. Redfern JV, Grant R, Biggs H, Getz WM. 2003. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84:2092–107
    [Google Scholar]
  112. Rudd WJ, Ward AL, Irwin LL 1983. Do split hunting seasons influence elk migrations from Yellowstone National Park?. Wildlife Soc. Bull. 11:328–31
    [Google Scholar]
  113. Santini L, Saura S, Rondinini C. 2016. Connectivity of the global network of protected areas. Divers. Distributions 22:199–211
    [Google Scholar]
  114. Sawyer H, Kauffman MJ. 2011. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80:1078–87
    [Google Scholar]
  115. Sawyer H, Kauffman MJ, Middleton AD, Morrison TA, Nielson RM, Wyckoff TB. 2013. A framework for understanding semi-permeable barrier effects on migratory ungulates. J. Appl. Ecol. 50:68–78
    [Google Scholar]
  116. Sawyer H, Kauffman MJ, Nielson RM, Horne JS. 2009. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19:2016–25
    [Google Scholar]
  117. Sawyer H, Lambert MS, Merkle JA 2020. Migratory disturbance thresholds with mule deer and energy development. J. Wildlife Manag. 84:930–37
    [Google Scholar]
  118. Sawyer H, Merkle JA, Middleton AD, Dwinnell SPH, Monteith KL. 2019. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88:450–60
    [Google Scholar]
  119. Sawyer H, Rodgers PA, Hart T 2016. Pronghorn and mule deer use of underpasses and overpasses along U.S. Highway 191. Wildlife Soc. Bull. 40:211–16
    [Google Scholar]
  120. Schaller GB. 1977. Mountain Monarchs. Wild Sheep and Goats of the Himalaya Chicago: Univ. Chicago Press
    [Google Scholar]
  121. Schaller GB. 2000. Wildlife of the Tibetan Steppe Chicago: Univ. Chicago Press
  122. Spaulding M, O'Leary MA, Gatesy J. 2009. Relationships of Cetacea (Artiodactyla) among mammals: Increased taxon sampling alters interpretations of key fossils and character evolution. PLOS ONE 4:9e7062
    [Google Scholar]
  123. Stabach JA, Boone RB, Worden JS, Florant G 2015. Habitat disturbance effects on the physiological stress response in resident Kenyan white-bearded wildebeest (Connochaetes taurinus). Biol. Conserv. 182:177–86
    [Google Scholar]
  124. Subalusky AL, Dutton CL, Rosi EJ, Post DM 2017. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. PNAS 114:7647–52
    [Google Scholar]
  125. Tack JD, Jakes AF, Jones PF, Smith JT, Newton RE et al. 2019. Beyond protected areas: Private lands and public policy anchor intact pathways for multi-species wildlife migration. Biol. Conserv. 234:18–27
    [Google Scholar]
  126. Talbot LM, Talbot MH. 1963. The wildebeest in western Masailand, East Africa. Wildlife Monogr. 1963:3–88
    [Google Scholar]
  127. Teitelbaum CS, Fagan WF, Fleming CH, Dressler G, Calabrese JM et al. 2015. How far to go? Determinants of migration distance in land mammals. Ecol. Lett. 18:545–52
    [Google Scholar]
  128. Teitelbaum CS, Huang S, Hall RJ, Altizer S. 2018. Migratory behaviour predicts greater parasite diversity in ungulates. Proc. R. Soc. B 285:20180089
    [Google Scholar]
  129. Teitelbaum CS, Mueller T 2019. Beyond migration: causes and consequences of nomadic animal movements. Trends Ecol. Evol 4:56981
    [Google Scholar]
  130. Thirgood S, Mosser A, Tham S, Hopcraft G, Mwangomo E et al. 2004. Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Anim. Conserv. 7:113–20
    [Google Scholar]
  131. Trouwborst A. 2012. Transboundary wildlife conservation in a changing climate: adaptation of the Bonn Convention on Migratory Species and its daughter instruments to climate change. Diversity 4:258–300
    [Google Scholar]
  132. Veldhuis M, Kihwele E, Cromsigt J, Ogutu J, Hopcraft J et al. 2019. Large herbivore assemblages in a changing climate: incorporating water dependence and thermoregulation. Ecol. Lett. 22:1536–46
    [Google Scholar]
  133. Vors LS, Boyce MS. 2009. Global declines of caribou and reindeer. Glob. Change Biol. 15:2626–33
    [Google Scholar]
  134. Whittington J, Low P, Hunt B. 2019. Temporal road closures improve habitat quality for wildlife. Sci. Rep. 9:3772
    [Google Scholar]
  135. Williamson D, Williamson J, Ngwamotsoko K. 1988. Wildebeest migration in the Kalahari. Afr. J. Ecol. 26:269–80
    [Google Scholar]
  136. Wilmshurst JF, Fryxell JM, Bergman CM. 2000. The allometry of patch selection in ruminants. Proc. R. Soc. B 267:345–49
    [Google Scholar]
  137. Wilson DE, Mittermeier RA 2011. Handbook of the Mammals of the World. Vol. 2. Hoofed Mammals Barcelona, Spain: Lynx Edicions
    [Google Scholar]
  138. Xu F, Si Y. 2019. The frost wave hypothesis: how the environment drives autumn departure of migratory waterfowl. Ecol. Indicators 101:1018–25
    [Google Scholar]
  139. Xu W, Barker K, Shawler A, Van Scoyoc A, Smith JA et al. 2021a. The plasticity of ungulate migration in a changing world. Ecology 102:e03293
    [Google Scholar]
  140. Xu W, Dejid N, Herrmann V, Sawyer H, Middleton AD. 2021b. Barrier Behaviour Analysis (BaBA) reveals extensive effects of fencing on wide-ranging ungulates. J. Appl. Ecol. 58:690–98
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-011516
Loading
/content/journals/10.1146/annurev-ecolsys-012021-011516
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error