1932

Abstract

We examine the evidence linking species’ traits to contemporary range shifts and find they are poor predictors of range shifts that have occurred over decades to a century. We then discuss reasons for the poor performance of traits for describing interspecific variation in range shifts from two perspectives: () factors associated with species’ traits that degrade range-shift signals stemming from the measures used for species’ traits, traits that are typically not analyzed, and the influence of phylogeny on range-shift potential and () issues in quantifying range shifts and relating them to species’ traits due to imperfect detection of species, differences in the responses of altitudinal and latitudinal ranges, and emphasis on testing linear relationships between traits and range shifts instead of nonlinear responses. Improving trait-based approaches requires a recognition that traits within individuals interact in unexpected ways and that different combinations of traits may be functionally equivalent.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-092849
2021-11-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-092849.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-092849&mimeType=html&fmt=ahah

Literature Cited

  1. Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J et al. 2014. Functional traits explain variation in plant life history strategies. PNAS 111:740–45
    [Google Scholar]
  2. Angert AL, Bontrager MG, Ågren J. 2020. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51:341–61
    [Google Scholar]
  3. Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ. 2011. Do species' traits predict recent shifts at expanding range edges?. Ecol. Lett. 14:677–89
    [Google Scholar]
  4. Bates AE, Bird TJ, Stuart-Smith RD, Wernberg T, Sunday JM et al. 2015. Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Divers. Distrib. 21:13–22
    [Google Scholar]
  5. Berg MP, Kiers ET, Driessen G, Van Der Heijden M, Kooi BW et al. 2010. Adapt or disperse: understanding species persistence in a changing world. Glob. Change Biol. 16:587–98
    [Google Scholar]
  6. Blackman CJ, Li X, Choat B, Rymer PD, De Kauwe MG et al. 2019. Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates. New Phytol 224:632–43
    [Google Scholar]
  7. Bohner T, Diez J. 2020. Extensive mismatches between species distributions and performance and their relationship to functional traits. Ecol. Lett. 23:33–44
    [Google Scholar]
  8. Boyle WA, Shogren EH, Brawn JD. 2020. Hygric niches for tropical endotherms. Trends Ecol. Evol. 35:938–52
    [Google Scholar]
  9. Buckley LB, Kingsolver JG. 2012. Functional and phylogenetic approaches to forecasting species' responses to climate change. Annu. Rev. Ecol. Evol. Syst. 43:205–26
    [Google Scholar]
  10. Butt N, Gallagher R. 2018. Using species traits to guide conservation actions under climate change. Clim. Change 151:317–32
    [Google Scholar]
  11. Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ et al. 2014. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41:429–42
    [Google Scholar]
  12. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C et al. 2012. Biodiversity loss and its impact on humanity. Nature 486:59–67
    [Google Scholar]
  13. Casper BB, Jackson RB. 1997. Plant competition underground. Annu. Rev. Ecol. Syst. 28:545–70
    [Google Scholar]
  14. Chen G, Kery M, Plattner M, Ma K, Gardner B 2013. Imperfect detection is the rule rather than the exception in plant distribution studies. J. Ecol. 101:183–91
    [Google Scholar]
  15. Chen IC, Hill JK, Ohlemueller R, Roy DB, Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–26
    [Google Scholar]
  16. Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018. Triggers of tree mortality under drought. Nature 558:531–39
    [Google Scholar]
  17. Chuang A, Peterson CR. 2016. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22:494–512
    [Google Scholar]
  18. Clare JDJ, Townsend PA, Zuckerberg B. 2021. Generalized model-based solutions to false positive error in species detection/non-detection data. Ecology 102:e03241
    [Google Scholar]
  19. Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12:197–209
    [Google Scholar]
  20. Comte L, Grenouillet G, Bertrand R, Murienne J, Bourgeaud L et al. 2020. BioShifts: A global geodatabase of climate-induced species redistribution over land and sea, updated Dec. 5 https://doi.org/10.6084/m9.figshare.7413365.v1
    [Crossref]
  21. Comte L, Murienne J, Grenouillet G. 2014. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5:5053
    [Google Scholar]
  22. Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA. 2012. High temperature exposure increases plant cooling capacity. Curr. Biol. 22:R396–97
    [Google Scholar]
  23. Dénes FV, Silveira LF, Beissinger SR. 2015. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol. Evol. 6:543–56
    [Google Scholar]
  24. Diamond SE. 2018. Contemporary climate-driven range shifts: putting evolution back on the table. Funct. Ecol. 32:1652–65
    [Google Scholar]
  25. Eckert CG, Samis KE, Lougheed SC. 2008. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 17:1170–88
    [Google Scholar]
  26. Estrada A, Morales-Castilla I, Caplat P, Early R. 2016. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31:190–203
    [Google Scholar]
  27. Ettinger A, HilleRisLambers J. 2017. Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Glob. Change Biol. 23:3921–33
    [Google Scholar]
  28. Fei S, Desprez JM, Potter KM, Jo I, Knott JA, Oswalt CM 2017. Divergence of species responses to climate change. Sci. Adv. 3:e1603055
    [Google Scholar]
  29. Felsenstein J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15
    [Google Scholar]
  30. Fischer EK, Ghalambor CK, Hoke KL. 2016. Plasticity and evolution in correlated suites of traits. J. Evol. Biol. 29:991–1002
    [Google Scholar]
  31. Fletcher RJ, Hefley TJ, Robertson EP, Zuckerberg B, McCleery RA, Dorazio RM. 2019. A practical guide for combining data to model species distributions. Ecology 100:e02710
    [Google Scholar]
  32. Foden WB, Butchart SHM, Stuart SN, Vié J-C, Akçakaya HR et al. 2013. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLOS ONE 8:e65427
    [Google Scholar]
  33. Gallagher RV, Falster DS, Maitner BS, Salguero-Gómez R, Vandvik V et al. 2020. Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol. 4:294–303
    [Google Scholar]
  34. Guillera-Arroita G. 2017. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40:281–95
    [Google Scholar]
  35. Gunderson AR, Stillman JH. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282:20150401
    [Google Scholar]
  36. Gunnarsson TG, Sutherland WJ, Alves JA, Potts PM, Gill JA. 2012. Rapid changes in phenotype distribution during range expansion in a migratory bird. Proc. R. Soc. B 279:411–16
    [Google Scholar]
  37. Halbritter AH, Alexander JM, Edwards PJ, Billeter R. 2013. How comparable are species distributions along elevational and latitudinal climate gradients?. Glob. Ecol. Biogeogr. 22:1228–37
    [Google Scholar]
  38. Hampe A, Jump AS. 2011. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. Syst. 42:313–33
    [Google Scholar]
  39. Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8:461–67
    [Google Scholar]
  40. Hill JK, Thomas CD, Blakeley DS. 1999. Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121:165–70
    [Google Scholar]
  41. Hortal S, Lozano YM, Bastida F, Armas C, Moreno JL et al. 2017. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community. Sci. Rep. 7:17756
    [Google Scholar]
  42. Houlahan JE, McKinney ST, Anderson TM, McGill BJ. 2017. The priority of prediction in ecological understanding. Oikos 126:1–7
    [Google Scholar]
  43. Huang F, Peng S, Chen B, Liao H, Huang Q et al. 2015. Rapid evolution of dispersal-related traits during range expansion of an invasive vine Mikania micrantha. Oikos 124:1023–30
    [Google Scholar]
  44. Hubbell SP. 2001. The Neutral Theory of Biodiversity and Biogeography Princeton, NJ: Princeton Univ. Press
  45. Iknayan KJ, Tingley MW, Furnas BJ, Beissinger SR. 2014. Detecting diversity: emerging methods to estimate species diversity. Trends Ecol. Evol. 29:97–106
    [Google Scholar]
  46. Jarzyna MA, Jetz W. 2016. Detecting the multiple facets of biodiversity. Trends Ecol. Evol. 31:527–38
    [Google Scholar]
  47. Jump AS, Mátyás C, Peñuelas J. 2009. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24:694–701
    [Google Scholar]
  48. Kearney MR, Porter WP. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12:334–50
    [Google Scholar]
  49. Kearney MR, Porter WP, Murphy SA. 2016. An estimate of the water budget for the endangered night parrot of Australia under recent and future climates. Clim. Chang. Responses 3:14
    [Google Scholar]
  50. Kearney MR, Porter WP, Williams C, Ritchie S, Hoffmann AA 2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23:528–38
    [Google Scholar]
  51. Kellner KF, Swihart RK. 2014. Accounting for imperfect detection in ecology: a quantitative review. PLOS ONE 9:e111436
    [Google Scholar]
  52. Kery M, Gardner B, Monnerat C. 2010. Predicting species distributions from checklist data using site-occupancy models. J. Biogeogr. 37:1851–62
    [Google Scholar]
  53. Kimball S, Funk JL, Spasojevic MJ, Suding KN, Parker S, Goulden ML 2016. Can functional traits predict plant community response to global change?. Ecosphere 7:e01602
    [Google Scholar]
  54. Kingsolver JG, Buckley LB. 2017. Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philos. Trans. R. Soc. B 372:20160147
    [Google Scholar]
  55. Kingsolver JG, Huey RB. 1998. Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Integr. Comp. Biol. 38:545–60
    [Google Scholar]
  56. Kohli BA, Rowe RJ. 2019. Beyond guilds: the promise of continuous traits for mammalian functional diversity. J. Mammal. 100:285–98
    [Google Scholar]
  57. Koricheva J, Gurevitch J, Mengersen K 2013. Handbook of Meta-analysis in Ecology and Evolution Princeton, NJ: Princeton Univ. Press
  58. Körner C. 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22:569–74
    [Google Scholar]
  59. Kosmala M, Wiggins A, Swanson A, Simmons B. 2016. Assessing data quality in citizen science. Front. Ecol. Environ. 14:551–60
    [Google Scholar]
  60. Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM et al. 2016. Plant functional traits have globally consistent effects on competition. Nature 529:204–7
    [Google Scholar]
  61. Laparie M, Renault D, Lebouvier M, Delattre T. 2013. Is dispersal promoted at the invasion front? Morphological analysis of a ground beetle invading the Kerguelen Islands, Merizodus soledadinus (Coleoptera, Carabidae). Biol. Invasions 15:1641–48
    [Google Scholar]
  62. Lawton JH. 1993. Range, population abundance and conservation. Trends Ecol. Evol. 8:409–13
    [Google Scholar]
  63. Leibold MA, Chase JM. 2018. Metacommunity Ecology Princeton, NJ: Princeton Univ. Press
  64. Lopez DP, Jungman AA, Rehage JS. 2012. Nonnative African jewelfish are more fit but not bolder at the invasion front: a trait comparison across an Everglades range expansion. Biol. Invasions 14:2159–74
    [Google Scholar]
  65. MacLean SA, Beissinger SR. 2017. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23:4094–105
    [Google Scholar]
  66. McCain CM, King SRB. 2014. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20:1760–69
    [Google Scholar]
  67. McKechnie AE, Wolf BO. 2019. The physiology of heat tolerance in small endotherms. Physiology 34:302–13
    [Google Scholar]
  68. Medina I, Newton E, Kearney MR, Mulder RA, Porter WP, Stuart-Fox D. 2018. Reflection of near-infrared light confers thermal protection in birds. Nat. Commun. 9:3610
    [Google Scholar]
  69. Mengersen K, Gurevitch J, Schmid CH 2013a. Meta-analysis of primary data. Handbook of Meta-analysis in Ecology and Evolution J Koricheva, J Gurevitch, K Mengersen 300–12 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  70. Mengersen K, Schmid CH, Jennions MD 2013b. Statistical models and approaches to inference. Handbook of Meta-analysis in Ecology and Evolution J Koricheva, J Gurevitch, K Mengersen 89–107 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  71. Messina FJ. 2004. Predictable modification of body size and competitive ability following a host shift by a seed beetle. Evolution 58:2788–97
    [Google Scholar]
  72. Miller DAW, Nichols JD, McClintock BT, Grant EHC, Bailey LL, Weir LA. 2011. Improving occupancy estimation when two types of observational error occur: non-detection and species misidentification. Ecology 92:1422–28
    [Google Scholar]
  73. Miller DAW, Weir LA, McClintock BT, Grant EHC, Bailey LL, Simons TR. 2012. Experimental investigation of false positive errors in auditory species occurrence surveys. Ecol. Appl. 22:1665–74
    [Google Scholar]
  74. Monk J. 2014. How long should we ignore imperfect detection of species in the marine environment when modelling their distribution?. Fish Fish 15:352–58
    [Google Scholar]
  75. Moretti M, Dias ATC, de Bello F, Altermatt F, Chown SL et al. 2017. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31:558–67
    [Google Scholar]
  76. Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR. 2008. Impact of a century of climate change on small mammal communities in Yosemite National Park. Science 322:261–64
    [Google Scholar]
  77. Pacifici M, Rondinini C, Rhodes JR, Burbidge AA, Cristiano A et al. 2020. Global correlates of range contractions and expansions in terrestrial mammals. Nat. Commun. 11:2840
    [Google Scholar]
  78. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. 2014. Mechanisms of reef coral resistance to future climate change. Science 344:895–98
    [Google Scholar]
  79. Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42
    [Google Scholar]
  80. Pauls SU, Nowak C, Bálint M, Pfenninger M. 2013. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22:925–46
    [Google Scholar]
  81. Perry AL, Low PJ, Ellis JR, Reynolds JD. 2005. Climate change and distribution shifts in marine fishes. Science 308:1912–15
    [Google Scholar]
  82. Phillips BL, Brown GP, Travis JMJ, Shine R. 2008. Reid's paradox revisited: the evolution of dispersal kernels during range expansion. Am. Nat. 172:S34–48
    [Google Scholar]
  83. Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM. 2019. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569:108–11
    [Google Scholar]
  84. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:1239–42
    [Google Scholar]
  85. Radchuk V, Reed T, Teplitsky C, van de Pol M, Charmantier A et al. 2019. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10:3109
    [Google Scholar]
  86. Rapacciuolo G, Maher SP, Schneider AC, Hammond TT, Jabis MD et al. 2014. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Glob. Change Biol. 20:2841–55
    [Google Scholar]
  87. Riddell EA, Apanovitch EK, Odom JP, Sears MW. 2017. Physical calculations of resistance to water loss improve predictions of species range models. Ecol. Monogr. 87:21–33
    [Google Scholar]
  88. Riddell EA, Iknayan KJ, Hargrove L, Tremor S, Patton JL et al. 2021. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371:633–36
    [Google Scholar]
  89. Riddell EA, Iknayan KJ, Wolf BO, Sinervo B, Beissinger SR 2019a. Cooling requirements fueled the collapse of a desert bird community from climate change. PNAS 116:21609–15
    [Google Scholar]
  90. Riddell EA, Odom JP, Damm JD, Sears MW. 2018. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 4:eaar5471
    [Google Scholar]
  91. Riddell EA, Roback EY, Wells CE, Zamudio KR, Sears MW. 2019b. Thermal cues drive plasticity of desiccation resistance in montane salamanders with implications for climate change. Nat. Commun. 10:4091
    [Google Scholar]
  92. Rowe KC, Rowe KMC, Tingley MW, Koo MS, Patton JL et al. 2014. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. B 282:20141857
    [Google Scholar]
  93. Royle JA, Link WA. 2006. Generalized site occupancy models allowing for false positive and false negative errors. Ecology 87:835–41
    [Google Scholar]
  94. Sandel B, Goldstein LJ, Kraft NJB, Okie JG, Shuldman MI et al. 2010. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytol 188:565–75
    [Google Scholar]
  95. Schmidt BR, Kéry M, Ursenbacher S, Hyman OJ, Collins JP. 2013. Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4:646–53
    [Google Scholar]
  96. Schuetz JG, Mills KE, Allyn AJ, Stamieszkin K, Bris AL, Pershing AJ. 2019. Complex patterns of temperature sensitivity, not ecological traits, dictate diverse species responses to climate change. Ecography 42:111–24
    [Google Scholar]
  97. Sexton JP, McIntyre PJ, Angert AL, Rice KJ. 2009. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40:415–36
    [Google Scholar]
  98. Sexton JP, Strauss SY, Rice KJ 2011. Gene flow increases fitness at the warm edge of a species’ range. PNAS 108:11704–9
    [Google Scholar]
  99. Shefferson RP, Sandercock BK, Proper J, Beissinger SR. 2001. Estimating dormancy and survival of a rare herbaceous perennial using mark-recapture models. Ecology 82:145–56
    [Google Scholar]
  100. Siefert A, Lesser MR, Fridley JD. 2015. How do climate and dispersal traits limit ranges of tree species along latitudinal and elevational gradients?. Glob. Ecol. Biogeogr. 24:581–93
    [Google Scholar]
  101. Simmons AD, Thomas CD. 2004. Changes in dispersal during species’ range expansions. Am. Nat. 164:378–95
    [Google Scholar]
  102. Smith AB, Santos MJ, Koo M, Rowe KMC, Rowe KC et al. 2013. Evaluation of species distribution models by resampling sites surveyed a century ago by Joseph Grinnell. Ecography 36:1017–31
    [Google Scholar]
  103. Socolar JB, Epanchin PN, Beissinger SR, Tingley MW 2017. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. PNAS 114:12976–81
    [Google Scholar]
  104. Song S, Beissinger SR. 2020. Environmental determinants of total evaporative water loss in birds at multiple temperatures. Auk 137:ukz069
    [Google Scholar]
  105. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M et al. 2010. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol. Ecol. 19:3806–23
    [Google Scholar]
  106. Spence AR, Tingley MW. 2020. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43:1571–90
    [Google Scholar]
  107. Strebel N, Kery M, Schaub M, Schmid H. 2014. Studying phenology by flexible modelling of seasonal detectability peaks. Methods Ecol. Evol. 5:483–90
    [Google Scholar]
  108. Sunday JM, Bates AE, Dulvy NK. 2012. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2:686–90
    [Google Scholar]
  109. Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N et al. 2015. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18:944–53
    [Google Scholar]
  110. Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T et al. 2013. Identification of 100 fundamental ecological questions. J. Ecol. 101:58–67
    [Google Scholar]
  111. Tingley MW, Beissinger SR. 2009. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol. Evol. 24:625–33
    [Google Scholar]
  112. Tingley MW, Beissinger SR. 2013. Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology 94:598–609
    [Google Scholar]
  113. Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR. 2012. The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob. Change Biol. 18:3279–90
    [Google Scholar]
  114. Titon BJ, Gomes FR. 2015. Relation between water balance and climatic variables associated with the geographical distribution of anurans. PLOS ONE 10:e0140761
    [Google Scholar]
  115. Urban MC. 2015. Accelerating extinction risk from climate change. Science 348:571–73
    [Google Scholar]
  116. van Bodegom PM, Douma JC, Verheijen LM 2014. A fully traits-based approach to modeling global vegetation distribution. PNAS 111:13733–38
    [Google Scholar]
  117. Violle C, Reich PB, Pacala SW, Enquist BJ, Kattge J 2014. The emergence and promise of functional biogeography. PNAS 111:13690–96
    [Google Scholar]
  118. Walsberg GE, Wolf BO. 1995. Effects of solar radiation and wind speed on metabolic heat production by two mammals with contrasting coat colours. J. Exp. Biol. 198:1499–507
    [Google Scholar]
  119. Wheatley CJ, Beale CM, Bradbury RB, Pearce-Higgins JW, Critchlow R, Thomas CD. 2017. Climate change vulnerability for species—assessing the assessments. Glob. Change Biol. 23:3704–15
    [Google Scholar]
  120. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13:1310–24
    [Google Scholar]
  121. Williams SE, Shoo LP, Isaac JL, Hoffman AA, Langham G. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLOS Biol 6:e325
    [Google Scholar]
  122. Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K et al. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368:772–77
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-092849
Loading
/content/journals/10.1146/annurev-ecolsys-012021-092849
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error