1932

Abstract

In this review, we highlight the main insights that have been gathered from recent developments using large-scale genomics of fungal saprotrophs and symbiotrophs (including ectomycorrhizal and orchid and ericoid mycorrhizal fungi) inhabiting forest ecosystems. After assessing the goals and motivations underlying our approach, we explore our current understanding of the limits and future potential of using genomics to understand the ecological roles of these forest fungi. Comparative genomics unraveled the molecular machineries involved in lignocellulose decomposition in wood decayers, soil and litter saprotrophs, and mycorrhizal symbionts. They also showed that transitions from saprotrophy to mutualism entailed widespread losses of lignocellulose-degrading enzymes; diversification of novel, lineage-specific symbiosis-induced genes; and convergent evolution of genetic innovations that facilitate the accommodationof mutualistic symbionts within their plant hosts. We also identify the major questions that remain unanswered and propose new avenues of genome-based research to understand the role of soil fungi in sustainable forest ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-114902
2021-11-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-114902.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-114902&mimeType=html&fmt=ahah

Literature Cited

  1. Algora Gallardo C, Baldrian P, López-Mondéjar R 2021. Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass. Biol. Fert. Soils 57:77–88
    [Google Scholar]
  2. Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–58
    [Google Scholar]
  3. Baldrian P, Valášková V. 2008. Degradation of cellulose by basidiomycete fungi. FEMS Microbiol. Rev. 32:501–21
    [Google Scholar]
  4. Bhatnagar JM, Peay KG, Treseder KK. 2018. Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol. Monogr. 88:429–44
    [Google Scholar]
  5. Bödeker ITM, Clemmensen KE, De Boer W, Martin F, Olson Å, Lindahl B. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–56
    [Google Scholar]
  6. Bödeker ITM, Lindahl BD, Olson Å, Clemmensen KE, Treseder K. 2016. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct. Ecol. 30:1967–78
    [Google Scholar]
  7. Brabcová V, Nováková M, Davidová A, Baldrian P. 2016. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210:1369–81
    [Google Scholar]
  8. Brundrett MC, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–15
    [Google Scholar]
  9. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A et al. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–18
    [Google Scholar]
  10. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–36
    [Google Scholar]
  11. Dungait JA, Hopkins DW, Gregory AS, Whitmore AP 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18:1781–96
    [Google Scholar]
  12. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P et al. 2011. The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–65
    [Google Scholar]
  13. Fernandez CW, Kennedy PG. 2016. Revisiting the ‘Gadgil effect’: Do interguild fungal interactions control carbon cycling in forest soils?. New Phytol 209:1382–94
    [Google Scholar]
  14. Floudas D, Bentzer J, Ahrén D, Johansson T, Persson P, Tunlid A 2020. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J 14:2046–59
    [Google Scholar]
  15. Floudas D, Binder M, Riley R, Barry K, Blanchette RA et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–19
    [Google Scholar]
  16. Frey SD. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Sys. 50:237–59
    [Google Scholar]
  17. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA et al. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77:5934–44
    [Google Scholar]
  18. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R et al. 2014. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–704
    [Google Scholar]
  19. Hacquard S, Schadt CW. 2015. Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol 205:1424–30
    [Google Scholar]
  20. Hage H, Miyauchi S, Virágh M, Drula E, Min B et al. 2021. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15423
    [Crossref] [Google Scholar]
  21. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A et al. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–92
    [Google Scholar]
  22. Hori C, Gaskell J, Igarashi I, Samejima M, Hibbett D et al. 2013. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia 105:1412–27
    [Google Scholar]
  23. Kang H, Chen X, Kempannien M, Pardo AG, Veneault-Fourrey C et al. 2020. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ. Microbiol. 22:1435–46
    [Google Scholar]
  24. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47:410–15
    [Google Scholar]
  25. Koide RT, Sharda JN, Herr JR, Malcolm GM. 2008. Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol 178:230–33
    [Google Scholar]
  26. Kües U, Martin F. 2011. On the road to understanding truffles in the underground. Fungal Gen. Biol. 48:555–60
    [Google Scholar]
  27. Kusuda M, Ueda M, Miyatake K, Terashita T 2008. Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience 49:291–97
    [Google Scholar]
  28. Labourel A, Frandsen KEH, Zhang F, Brouilly N, Grisel S et al. 2020. A fungal family of lytic polysaccharide monooxygenase-like copper proteins. Nat. Chem. Biol. 16:345–50
    [Google Scholar]
  29. Liao HL, Chen Y, Vilgalys R 2018. Metatranscriptomic study of common and host-specific patterns of gene expression between pines and their symbiotic ectomycorrhizal fungi in the genus Suillus. PLOS Genet 14:e1007742
    [Google Scholar]
  30. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P et al. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–20
    [Google Scholar]
  31. Lindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–47
    [Google Scholar]
  32. Looney B, Miyauchi S, Morin E, Drula E, Courty PE et al. 2021. Evolutionary priming and transition to the ectomycorrhizal habit in an iconic lineage of mushroom-forming fungi: is preadaptation a requirement?. bioRxiv 2021.02.23.432530. https://doi.org/10.1101/2021.02.23.432530
    [Crossref]
  33. Mäkipää R, Rajala T, Schigel D, Rinne KT, Pennanen T et al. 2017. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J 11:1964–74
    [Google Scholar]
  34. Marqués-Gálvez JE, Miyauchi S, Paolocci F, Navarro-Ródenas A, Arenas F et al. 2021. Desert truffle genomes reveal their reproductive modes and new insights into plant–fungal interaction and ectendomycorrhizal lifestyle. New Phytol 229:2917–32
    [Google Scholar]
  35. Martin F, Aerts A, Ahrén D, Brun A, Danchin EGJ et al. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92
    [Google Scholar]
  36. Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora JW et al. 2011. Sequencing the fungal tree of life. New Phytol 190:818–21
    [Google Scholar]
  37. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM et al. 2010. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–38
    [Google Scholar]
  38. Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. 2016. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 14:760–73
    [Google Scholar]
  39. Martin F, Selosse MA 2008. The Laccaria genome: a symbiont blueprint decoded. New Phytol 180:296–310
    [Google Scholar]
  40. Martin F, Uroz S, Barker D 2017. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356:eaad4501
    [Google Scholar]
  41. Martino E, Morin E, Grelet GA, Kuo A, Kohler A et al. 2018. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol 217:1213–29
    [Google Scholar]
  42. Matheny PB, Hibbett DS. 2009. The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7:13
    [Google Scholar]
  43. Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A et al. 2020. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11:5125
    [Google Scholar]
  44. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V et al. 2012. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. PNAS 109:17501–6
    [Google Scholar]
  45. Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A et al. 2019. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol 222:1584–98
    [Google Scholar]
  46. Murat C, Payen T, Noel B, Kuo A, Morin E et al. 2018. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nat. Ecol. Evol. 2:1956–65
    [Google Scholar]
  47. Nagy LG, Riley R, Tritt A, Adam C, Daum C et al. 2016. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol. Biol. Evol. 33:959–70
    [Google Scholar]
  48. Nehls U, Plassard C. 2018. Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol 220:1047–58
    [Google Scholar]
  49. Nicolás C, Martin-Bertelsen T, Foudas D, Bentzer J, Smits M et al. 2019. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J 13:977–88
    [Google Scholar]
  50. Op De Beeck M, Troein C, Peterson C, Persson P, Tunlid A 2018. Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus. New Phytol 218:335–43
    [Google Scholar]
  51. Peay KG, Kennedy PG, Talbot JM 2016. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14:434–47
    [Google Scholar]
  52. Pellegrin C, Morin E, Martin F, Veneault-Fourrey C 2015. Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front. Microbiol. 6:e1278
    [Google Scholar]
  53. Pellitier PT, Zak DR. 2018. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytol 217:68–73
    [Google Scholar]
  54. Peter M, Kohler A, Ohm RA, Kuo A, Krützmann J et al. 2016. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat. Commun. 7:12662
    [Google Scholar]
  55. Plett JM, Daguerre Y, Wittulsky S, Vayssieres A, Deveau A et al. 2014. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. PNAS 111:8299–304
    [Google Scholar]
  56. Plett JM, Kemppainen M, Kale SD, Kohler A, Legué V et al. 2011. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr. Biol. 21:1197–203
    [Google Scholar]
  57. Plett JM, Martin F. 2011. Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet. 27:14–22
    [Google Scholar]
  58. Reinhardt D, Roux C, Corradi N, Di Pietro A. 2021. Lineage-specific genes and cryptic sex: parallels and differences between arbuscular mycorrhizal fungi and fungal pathogens. Trends Plant Sci. 26:111–23
    [Google Scholar]
  59. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D et al. 2014. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. PNAS 111:9923–28
    [Google Scholar]
  60. Ruiz-Dueñas FJ, Barrasa JM, Sánchez-García M, Camarero S, Miyauchi S et al. 2020. Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 38:1428–46
    [Google Scholar]
  61. Sánchez-García M, Ryberg M, Kalsoom Khan F, Varga T et al. 2020. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. PNAS 117:32528–34
    [Google Scholar]
  62. Schwery O, Onstein RE, Bouchenak-Khelladi Y, Xing Y, Carter RJ, Linder HP. 2015. As old as the mountains: the radiations of the Ericaceae. New Phytol 207:355–67
    [Google Scholar]
  63. Sipos G, Prasanna AN, Walter MC, O'Connor E, Bálint B, Krizsán K et al. 2017. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat. Ecol. Evol. 1:1931–41
    [Google Scholar]
  64. Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GDA et al. 2019. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569:404–8
    [Google Scholar]
  65. Strullu-Derrien C, Selosse M-A, Kenrick P, Martin FM 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 220:1012–30
    [Google Scholar]
  66. Tedersoo L, May TW, Smith ME 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–63
    [Google Scholar]
  67. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PNAS 110:20117–22
    [Google Scholar]
  68. Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol 18:607–21
    [Google Scholar]
  69. van der Heijden MGA, Martin F, Selosse MA, Sanders IR 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–23
    [Google Scholar]
  70. Wolfe BE, Tulloss RR, Pringle A. 2012. The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLOS ONE 7:e39597
    [Google Scholar]
  71. Wullschleger SD, Weston DJ, DiFazio SP, Tuskan GA. 2012. Revisiting the sequencing of the first tree genome: Populus trichocarpa. Tree Physiol 33:357–64
    [Google Scholar]
  72. Zak DR, Pellitier PT, Argiroff WA, Castillo B, James TY et al. 2019. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol 223:33–39
    [Google Scholar]
  73. Zhang F, Anasontzis GE, Labourel A, Champion C, Haon M et al. 2018. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol 220:1309–21
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-114902
Loading
/content/journals/10.1146/annurev-ecolsys-012021-114902
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error