1932

Abstract

Fungi play key roles in ecosystems and human societies as decomposers, nutrient cyclers, mutualists, and pathogens. Estimates suggest that roughly 3–13 million fungal species exist worldwide, yet considerable knowledge gaps exist regarding the mechanisms and consequences, both ecological and social, of fungal dispersal from local to global scales. In this review, we summarize concepts underlying fungal dispersal, review recent research, and explore how fungi possess unique characteristics that can broaden our understanding of general dispersal ecology. We highlight emerging frontiers in fungal dispersal research that integrate technological advances with trait-based ecology, movement ecology, social–ecological systems, and work in unexplored environments. Outstanding research questions across these themes are presented to stimulate theoretical and empirical research in fungal dispersal ecology. Advances in fungal dispersal will improve our understanding of fungal community assembly and biogeography across a range of spatial scales, with implications for ecosystem functioning, global food security, and human health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012622-021604
2022-11-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-012622-021604.html?itemId=/content/journals/10.1146/annurev-ecolsys-012622-021604&mimeType=html&fmt=ahah

Literature Cited

  1. Abrego N, Norberg A, Ovaskainen O. 2017. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. 105:1070–81
    [Google Scholar]
  2. Abrego N, Norros V, Halme P, Somervuo P, Ali-Kovero H, Ovaskainen O 2018. Give me a sample of air and I will tell which species are found from your region: molecular identification of fungi from airborne spore samples. Mol. Ecol. Resour. 18:511–24
    [Google Scholar]
  3. Aguayo J, Husson C, Chancerel E, Fabreguettes O, Chandelier A et al. 2021. Combining permanent aerobiological networks and molecular analyses for large-scale surveillance of forest fungal pathogens: a proof-of-concept. Plant Pathol. 70:181–94
    [Google Scholar]
  4. Aleklett K, Boddy L. 2021. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol. Evol. 36:787–96
    [Google Scholar]
  5. Aleklett K, Kiers ET, Ohlsson P, Shimizu TS, Caldas VEA, Hammer EC. 2018. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12:312–19
    [Google Scholar]
  6. Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. 2021. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. 15:1782–93
    [Google Scholar]
  7. Allen MF, Hipps LE, Wooldridge GL. 1989. Wind dispersal and subsequent establishment of VA mycorrhizal fungi across a successional arid landscape. Landscape Ecol. 2:165–71
    [Google Scholar]
  8. Allgayer RL, Scarpa A, Fernandes PG, Wright PJ, Lancaster L et al. 2021. Dispersal evolution in currents: spatial sorting promotes philopatry in upstream patches. Ecography 44:231–41
    [Google Scholar]
  9. Almeida F, Rodrigues ML, Coelho C. 2019. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 10:214
    [Google Scholar]
  10. Amor DR, Ratzke C, Gore J. 2020. Transient invaders can induce shifts between alternative stable states of microbial communities. Sci. Adv. 6:eaay8676
    [Google Scholar]
  11. Anslan S, Bahram M, Tedersoo L. 2018. Seasonal and annual variation in fungal communities associated with epigeic springtails (Collembola spp.) in boreal forests. Soil Biol. Biochem. 116:245–52
    [Google Scholar]
  12. Aria M, Cuccurullo C. 2017. bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetrics 11:959–75
    [Google Scholar]
  13. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA. 2000. Are tropical fungal endophytes hyperdiverse?. Ecol. Lett. 3:267–74
    [Google Scholar]
  14. Bärlocher F. 2009. Reproduction and dispersal in aquatic hyphomycetes. Mycoscience 50:3–8
    [Google Scholar]
  15. Bebber DP, Field E, Gui H, Mortimer P, Holmes T, Gurr SJ. 2019. Many unreported crop pests and pathogens are probably already present. Glob. Chang. Biol. 25:2703–13
    [Google Scholar]
  16. Bell-Dereske LP, Evans SE 2021. Contributions of environmental and maternal transmission to the assembly of leaf fungal endophyte communities. Proc. R. Soc. B 288:20210621
    [Google Scholar]
  17. Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. 2019. The role of active movement in fungal ecology and community assembly. Mov. Ecol. 7:36
    [Google Scholar]
  18. Boddy L, Hynes J, Bebber DP, Fricker MD. 2009. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50:9–19
    [Google Scholar]
  19. Bower DS, Lips KR, Schwarzkopf L, Georges A, Clulow S. 2017. Amphibians on the brink. Science 357:454–55
    [Google Scholar]
  20. Brunk M, Sputh S, Doose S, van de Linde S, Terpitz U. 2018. HyphaTracker: an ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi. Sci. Rep. 8:605
    [Google Scholar]
  21. Buller AHR. 1909. Researches on Fungi London, UK: Longmans, Green & Co.
  22. Caiafa MV, Jusino MA, Wilkie AC, Díaz IA, Sieving KE, Smith ME. 2021. Discovering the role of Patagonian birds in the dispersal of truffles and other mycorrhizal fungi. Curr. Biol. 31:5558–70.e3
    [Google Scholar]
  23. Camacho I, Góis A, Camacho R, Nóbrega V, Fernandez 2018. The impact of urban and forest fires on the airborne fungal spore aerobiology. Aerobiologia 34:585–92
    [Google Scholar]
  24. Carlquist S. 1966. The biota of long-distance dispersal. I. Principles of dispersal and evolution. Q. Rev. Biol. 41:247–70
    [Google Scholar]
  25. Castledine M, Sierocinski P, Padfield D, Buckling A. 2020. Community coalescence: an eco-evolutionary perspective. Philos. Trans. R. Soc. B 375:20190252
    [Google Scholar]
  26. Cat LA, Gorris ME, Randerson JT, Riquelme M, Treseder KK. 2017. Crossing the line: human disease and climate change across borders. Work. Pap., UC Off. Pres., UC-Mexico Initiat. Oakland, CA: https://escholarship.org/uc/item/38t7d87v
  27. Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske Let al 2022. What are mycorrhizal traits?. Trends Ecol. Evol 3757381
  28. Chaudhary VB, Nolimal S, Sosa-Hernández MA, Egan C, Kastens J. 2020. Trait-based aerial dispersal of arbuscular mycorrhizal fungi. New Phytol. 228:238–52
    [Google Scholar]
  29. Chen J, Wang P, Wang C, Wang X, Miao L et al. 2020. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environ. Microbiol. 22:832–49
    [Google Scholar]
  30. Correia M, Heleno R, da Silva LP, Costa JM, Rodríguez-Echeverría S. 2019. First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytol. 222:1054–60
    [Google Scholar]
  31. De Melo CA, Lopes JG, Andrade AO, Trindade RM, Magalhaes RS. 2019. Semi-automated counting model for arbuscular mycorrhizal fungi spores using the Circle Hough Transform and an artificial neural network. An. Acad. Bras. Ciênc. 91:e20180165
    [Google Scholar]
  32. Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. 2021. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20:109–21
    [Google Scholar]
  33. Deveautour C, Chieppa J, Nielsen UN, Boer MM, Mitchell C et al. 2020. Biogeography of arbuscular mycorrhizal fungal spore traits along an aridity gradient, and responses to experimental rainfall manipulation. Fungal Ecol. 46:100899
    [Google Scholar]
  34. DeWoody J, Rowe CA, Hipkins VD, Mock KE. 2008.. “ Pando” lives: molecular genetic evidence of a giant aspen clone in central Utah. West. North Am. Nat. 68:493–97
    [Google Scholar]
  35. Dickie IA, Nuñez MA, Pringle A, Lebel T, Tourtellot SG, Johnston PR. 2016. Towards management of invasive ectomycorrhizal fungi. Biol. Invasions 18:3383–95
    [Google Scholar]
  36. Dressaire E, Yamada L, Song B, Roper M. 2016. Mushrooms use convectively created airflows to disperse their spores. PNAS 113:2833–38
    [Google Scholar]
  37. Driscoll DA, Banks SC, Barton PS, Ikin K, Lentini P et al. 2014. The trajectory of dispersal research in conservation biology. Systematic review. PLOS ONE 9:e95053
    [Google Scholar]
  38. Dutech C, Barrès B, Bridier J, Robin C, Milgroom MG, Ravigné V. 2012. The chestnut blight fungus world tour: successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol. Ecol. 21:3931–46
    [Google Scholar]
  39. Ferguson B, Dreisbach T, Parks C, Filip G, Schmitt C 2003. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can. J. For. Res. 33:612–23
    [Google Scholar]
  40. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94
    [Google Scholar]
  41. Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. 2020. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1:332–42
    [Google Scholar]
  42. Frelich LE, Blossey B, Cameron EK, Dávalos A, Eisenhauer N et al. 2019. Side-swiped: ecological cascades emanating from earthworm invasions. Front. Ecol. Environ. 17:502–10
    [Google Scholar]
  43. Fukuda S, Yamamoto R, Yanagisawa N, Takaya N, Sato Y et al. 2021. Trade-off between plasticity and velocity in mycelial growth. mBio 12:e03196–20
    [Google Scholar]
  44. Gareth Jones EB 2006. Form and function of fungal spore appendages. Mycoscience 47:167–83
    [Google Scholar]
  45. Gehring CA, Wolf JE, Theimer TC. 2002. Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil. Ecol. Lett. 5:540–48
    [Google Scholar]
  46. Giovannetti M 2000. Spore germination and pre-symbiotic mycelial growth. Arbuscular Mycorrhizas: Physiology and Function Y Kapulnik, DD Douds 47–68 Dordrecht, Neth: Springer
    [Google Scholar]
  47. Golan JJ, Pringle A 2017. Long-distance dispersal of fungi. The Fungal Kingdom J Heitman, BJ Howlett, PW Crous, EH Stukenbrock, TY James, NAR Gow 309–33 Washington, DC: ASM Press
    [Google Scholar]
  48. Goldsborough LG. 2004. Reginald Buller: the poet-scientist of mushroom city. Manitoba Hist. 47: http://www.mhs.mb.ca/docs/mb_history/47/poetscientist.shtml
    [Google Scholar]
  49. Gorris ME, Treseder KK, Zender CS, Randerson JT. 2019. Expansion of Coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth 3:308–27
    [Google Scholar]
  50. Gregory PH. 1945. The dispersion of air-borne spores. Trans. Br. Mycological Soc. 28:26–72
    [Google Scholar]
  51. Gregory PH. 1961. The Microbiology of the Atmosphere London: Leonard Hill
  52. Hannula SE, Zhu F, Heinen R, Bezemer TM. 2019. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10:1254
    [Google Scholar]
  53. Hart MM, Antunes PM, Chaudhary VB, Abbott LK. 2018. Fungal inoculants in the field: Is the reward greater than the risk?. Funct. Ecol. 32:126–35
    [Google Scholar]
  54. Hawksworth DL, Lücking R 2017. Fungal diversity revisited: 2.2 to 3.8 million species. In The Fungal Kingdom J Heitman, BJ Howlett, PW Crous, EH Stukenbrock, TY James, NAR Gow 79–95 Washington, DC: ASM Press
    [Google Scholar]
  55. Hoyt JR, Kilpatrick AM, Langwig KE. 2021. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 19:196–210
    [Google Scholar]
  56. Juniper S, Abbott L 2006. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–79
    [Google Scholar]
  57. Kauserud H, Heegaard E, Halvorsen R, Boddy L, Høiland K, Stenseth NC. 2011. Mushroom's spore size and time of fruiting are strongly related: Is moisture important?. Biol. Lett. 7:273–76
    [Google Scholar]
  58. Kendrick B. 1992. The 5th Kingdom Sidney, Can: Mycologue Publ.
  59. Kobziar LN, Pingree MRA, Larson H, Dreaden TJ, Green S, Smith JA 2018. Pyroaerobiology: the aerosolization and transport of viable microbial life by wildland fire. Ecosphere 9:e02507
    [Google Scholar]
  60. Koide RT, Ricks KD, Davis ER. 2017. Climate and dispersal influence the structure of leaf fungal endophyte communities of Quercus gambelii in the eastern Great Basin, USA. Fungal Ecol. 30:19–28
    [Google Scholar]
  61. Korsnes R, Westrum K, Fløistad E, Klingen I. 2016. Computer-assisted image processing to detect spores from the fungus Pandora neoaphidis. MethodsX 3:231–41
    [Google Scholar]
  62. Lacey J. 1996. Spore dispersal—its role in ecology and disease: the British contribution to fungal aerobiology. Mycol. Res. 100:641–60
    [Google Scholar]
  63. LeBrun ES, Taylor DL, King RS, Back JA, Kang S. 2018. Rivers may constitute an overlooked avenue of dispersal for terrestrial fungi. Fungal Ecol. 32:72–79
    [Google Scholar]
  64. Li W, Wang M, Pan H, Burgaud G, Liang S et al. 2018. Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model. Mol. Ecol. 27:564–76
    [Google Scholar]
  65. Lomolino MV, Heaney LR 2004. Frontiers of biogeography: new directions in the geography of nature. Ecoscience 13:424–25
    [Google Scholar]
  66. Magyar D, Tischner Z, Páldy A, Kocsubé S, Dancsházy Z et al. 2021. Impact of global megatrends on the spread of microscopic fungi in the Pannonian Biogeographical Region. Fungal Biol. Rev. 37:71–88
    [Google Scholar]
  67. Mansour I, Heppell CM, Ryo M, Rillig MC. 2018. Application of the microbial community coalescence concept to riverine networks. Biol. Rev. 93:1832–45
    [Google Scholar]
  68. May TW, Cooper JA, Dahlberg A, Furci G, Minter DW et al. 2018. Recognition of the discipline of conservation mycology. Conserv. Biol. 33:733–36
    [Google Scholar]
  69. McCubbin W. 1918. Dispersal distance of urediniospores of Cronartium ribicola as indicated by their rate of fall in still air. Phytopathology 8:35–36
    [Google Scholar]
  70. McDonald BA, Stukenbrock EH. 2016. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B 371:20160026
    [Google Scholar]
  71. McIlveen W, Cole H Jr. 1976. Spore dispersal of Endogonaceae by worms, ants, wasps, and birds. Can. J. Bot. 54:1486–89
    [Google Scholar]
  72. Moeller HV, Dickie IA, Peltzer DA, Fukami T. 2016. Hierarchical neighbor effects on mycorrhizal community structure and function. Ecol. Evol. 6:5416–30
    [Google Scholar]
  73. Mora MA, Araya JE. 2018. Semi-automatic extraction of plants morphological characters from taxonomic descriptions written in Spanish. Biodivers. Data J. 6:e21282
    [Google Scholar]
  74. Mueller GM, Schmit JP. 2007. Fungal biodiversity: What do we know? What can we predict?. Biodivers. Conserv. 16:1–5
    [Google Scholar]
  75. Nakagawa S, Samarasinghe G, Haddaway NR, Westgate MJ, O'Dea RE et al. 2019. Research weaving: visualizing the future of research synthesis. Trends Ecol. Evol. 34:224–38
    [Google Scholar]
  76. Nathan R. 2001. The challenges of studying dispersal. Trends Ecol. Evol. 16:481–83
    [Google Scholar]
  77. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R et al. 2008. A movement ecology paradigm for unifying organismal movement research. PNAS 105:19052–59
    [Google Scholar]
  78. Newcombe G, Shipunov A, Eigenbrode SD, Raghavendra AKH, Ding H et al. 2009. Endophytes influence protection and growth of an invasive plant. Commun. Integr. Biol. 2:29–31
    [Google Scholar]
  79. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L et al. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20:241–48
    [Google Scholar]
  80. Nielsen KB, Kjøller R, Bruun HH, Schnoor TK, Rosendahl S. 2016. Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol. 20:22–29
    [Google Scholar]
  81. Norros V, Penttilä R, Suominen M, Ovaskainen O. 2012. Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos 121:961–74
    [Google Scholar]
  82. Norros V, Rannik Ü, Hussein T, Petäjä T, Vesala T, Ovaskainen O. 2014. Do small spores disperse further than large spores?. Ecology 95:1612–21
    [Google Scholar]
  83. Norros V, Karhu E, Nordén J, Vähätalo AV, Ovaskainen O. 2015. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi. Ecol. Evol. 5:3312–26
    [Google Scholar]
  84. Partelow S. 2018. A review of the social-ecological systems framework applications, methods, modifications, and challenges. Ecol. Soc. 23:36
    [Google Scholar]
  85. Peay KG, Bidartondo MI, Arnold AE. 2010. Not every fungus is everywhere: scaling to the biogeography of fungal–plant interactions across roots, shoots and ecosystems. New Phytol. 185:878–82
    [Google Scholar]
  86. Peay KG, Schubert MG, Nguyen NH, Bruns TD. 2012. Measuring ectomycorrhizal fungal dispersal: macro-ecological patterns driven by microscopic propagules. Mol. Ecol. 21:4122–36
    [Google Scholar]
  87. Policelli N, Bruns TD, Vilgalys R, Nuñez MA. 2019. Suilloid fungi as global drivers of pine invasions. New Phytol. 222:714–25
    [Google Scholar]
  88. Põlme S, Abarenkov K, Nilsson RH, Lindahl BD, Clemmensen KE et al. 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105:1–16
    [Google Scholar]
  89. Pringle A, Patek SN, Fischer M, Stolze J, Money NP. 2005. The captured launch of a ballistospore. Mycologia 97:866–71
    [Google Scholar]
  90. Rillig MC, Antonovics J, Caruso T, Lehmann A, Powell JR et al. 2015. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30:470–76
    [Google Scholar]
  91. Rillig MC, Lehmann A, Aguilar-Trigueros CA, Antonovics J, Caruso T et al. 2016. Soil microbes and community coalescence. Pedobiologia 59:37–40
    [Google Scholar]
  92. Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ et al. 2021. The persistent threat of emerging plant disease pandemics to global food security. PNAS 118:e2022239118
    [Google Scholar]
  93. Rodriguez RJ, White JF Jr., Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182:314–30
    [Google Scholar]
  94. Roper M, Pepper RE, Brenner MP, Pringle A. 2008. Explosively launched spores of ascomycete fungi have drag-minimizing shapes. PNAS 105:20583–88
    [Google Scholar]
  95. Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F et al. 2018. Genetics of dispersal. Biol. Rev. 93:574–99
    [Google Scholar]
  96. Santini A, Liebhold A, Migliorini D, Woodward S. 2018. Tracing the role of human civilization in the globalization of plant pathogens. ISME J. 12:647–52
    [Google Scholar]
  97. Smith DJ. 2013. Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology 13:981–90
    [Google Scholar]
  98. Smith ML, Bruhn JN, Anderson JB. 1992. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–31
    [Google Scholar]
  99. Stephens RB, Frey SD, D'Amato AW, Rowe RJ 2021. Functional, temporal and spatial complementarity in mammal-fungal spore networks enhances mycorrhizal dispersal following forest harvesting. Funct. Ecol. 35:2072–83
    [Google Scholar]
  100. Stolze-Rybczynski JL, Cui Y, Stevens MHH, Davis DJ, Fischer MWF, Money NP. 2009. Adaptation of the spore discharge mechanism in the Basidiomycota. PLOS ONE 4:e4163
    [Google Scholar]
  101. Tedersoo L, Mikryukov V, Anslan S, Bahram M, Khalid AN et al. 2021. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 111:573–88
    [Google Scholar]
  102. Tipton L, Zahn G, Datlof E, Kivlin SN, Sheridan P et al. 2019. Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory. PNAS 116:25728–33
    [Google Scholar]
  103. Tommerup I, Abbott L 1981. Prolonged survival and viability of VA mycorrhizal hyphae after root death. Soil Biol. Biochem. 13:431–33
    [Google Scholar]
  104. Vidal-Diez de Ulzurrun G, Huang T-Y, Chang C-W, Lin H-C, Hsueh Y-P. 2019. Fungal feature tracker (FFT): a tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLOS Comput. Biol. 15:e1007428
    [Google Scholar]
  105. Yafetto L, Carroll L, Cui Y, Davis DJ, Fischer MW et al. 2008. The fastest flights in nature: high-speed spore discharge mechanisms among fungi. PLOS ONE 3:e3237
    [Google Scholar]
  106. Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S et al. 2019. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95:409–33
    [Google Scholar]
  107. Zirbes L, Deneubourg J-L, Brostaux Y, Haubruge E. 2010. A new case of consensual decision: collective movement in earthworms. Ethology 116:546–53
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012622-021604
Loading
/content/journals/10.1146/annurev-ecolsys-012622-021604
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error