1932

Abstract

Long-term studies of individuals enable incisive investigations of questions across ecology and evolution. Here, we illustrate this claim by reference to our long-term study of red deer on the Isle of Rum, Scotland. This project has established many of the characteristics of social organization, selection, and population ecology typical of large, polygynous, seasonally breeding mammals, with wider implications for our understanding of sexual selection and the evolution of sex differences, as well as for their population dynamics and population management. As molecular genetic techniques have developed, the project has pivoted to investigate evolutionary genetic questions, also breaking new ground in this field. With ongoing advances in genomics and statistical approaches and the development of increasingly sophisticated ways to assay new phenotypic traits, the questions that long-term studies such as the red deer study can answer become both broader and ever more sophisticated. They also offer powerful means of understanding the effects of ongoing climate change on wild populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012722-024041
2022-11-02
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-012722-024041.html?itemId=/content/journals/10.1146/annurev-ecolsys-012722-024041&mimeType=html&fmt=ahah

Literature Cited

  1. Albery GF, Becker DJ, Kenyon F, Nussey DH, Pemberton JM. 2019. The fine-scale landscape of immunity and parasitism in a wild ungulate population. Integr. Comp. Biol. 59:1165–75
    [Google Scholar]
  2. Albery GF, Clutton-Brock TH, Morris A, Morris S, Pemberton JM et al. 2022. Ageing red deer alter their spatial behaviour and become less social. Nat. Ecol. Evol 6123138
  3. Albery GF, Kenyon F, Morris A, Morris S, Nussey DH, Pemberton JM. 2018. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa. Parasitology 145:1410–20
    [Google Scholar]
  4. Albery GF, Morris A, Morris S, Kenyon F, Nussey DH, Pemberton JM. 2021a. Fitness costs of parasites explain multiple life-history trade-offs in a wild mammal. Am. Nat. 197:324–35
    [Google Scholar]
  5. Albery GF, Morris A, Morris S, Pemberton JM, Clutton-Brock TH et al. 2021b. Multiple spatial behaviours govern social network positions in a wild ungulate. Ecol. Lett. 24:676–86
    [Google Scholar]
  6. Albery GF, Watt KA, Keith R, Morris S, Morris A et al. 2020. Reproduction has different costs for immunity and parasitism in a wild mammal. Funct. Ecol. 34:229–39
    [Google Scholar]
  7. Albon SD, Clutton-Brock TH. 1988. Climate and population dynamics of red deer in Scotland. Ecological Change in the Uplands MB Usher, DBA Thompson 93–107 Oxford, UK: Blackwell Sci. Publ.
    [Google Scholar]
  8. Albon SD, Clutton-Brock TH, Guinness FE. 1987. Early development and population dynamics in red deer. 2. Density-independent effects and cohort variation. J. Anim. Ecol. 56:69–81
    [Google Scholar]
  9. Albon SD, Coulson TN, Brown D, Guinness FE, Pemberton JM, Clutton-Brock TH. 2000. Temporal changes in key factors and key age groups influencing the population dynamics of female red deer. J. Anim. Ecol. 69:1099–110
    [Google Scholar]
  10. Albon SD, Guinness FE, Clutton-Brock TH. 1983. The influence of climatic variation on the birth weights of red deer (Cervus elaphus). J. Zool. 200:295–98
    [Google Scholar]
  11. Albon SD, Staines HJ, Guinness FE, Clutton-Brock TH. 1992. Density-dependent changes in the spacing behaviour of female kin in red deer. J. Anim. Ecol. 61:131–37
    [Google Scholar]
  12. Andres D, Clutton-Brock TH, Kruuk LEB, Pemberton JM, Stopher KV, Ruckstuhl KE. 2013. Sex differences in the consequences of maternal loss in a long-lived mammal, the red deer (Cervus elaphus). Behav. Ecol. Sociobiol. 67:1249–58
    [Google Scholar]
  13. Appleby MC. 1980. Social rank and food access in red deer stags. Behaviour 74:294–309
    [Google Scholar]
  14. Appleby MC. 1982. The consequences and causes of high social rank in red deer stags. Behaviour 80:259–73
    [Google Scholar]
  15. Ashraf B, Hunter DC, Bérénos C, Ellis PA, Johnston SE et al. 2021. Genomic prediction in the wild: a case study in Soay sheep. Mol. Ecol https://doi.org/10.1111/mec.16262
    [Crossref] [Google Scholar]
  16. Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. 2014. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol. Ecol. 23:3434–51
    [Google Scholar]
  17. Bonnet T, Morrissey MB, de Villemereuil P, Alberts SC, Arcese P et al. 2022. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild birds and mammals. Science 376:65961012–16
    [Google Scholar]
  18. Bonnet T, Morrissey MB, Morris A, Morris S, Clutton-Brock TH et al. 2019. The role of selection and evolution in changing parturition date in a red deer population. PLOS Biol. 17:23
    [Google Scholar]
  19. Bosse M, Spurgin LG, Laine VN, Cole EF, Firth JA et al. 2017. Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 358:365–68
    [Google Scholar]
  20. Brookfield JFY. 2016. Why are estimates of the strength and direction of natural selection from wild populations not congruent with observed rates of phenotypic change?. BioEssays 38:927–34
    [Google Scholar]
  21. Charles WN, McCowan D, East K. 1977. Selection of upland swards by red deer (Cervus elaphus L.) on Rhum. J. . Appl. Ecol 14:55–64
    [Google Scholar]
  22. Charmantier A, Garant D, Kruuk LEB, eds. 2014. Quantitative Genetics in the Wild Oxford, UK: Oxford Univ. Press
  23. Charmantier A, Gienapp P. 2014. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol. Appl. 7:15–28
    [Google Scholar]
  24. Chippindale AK, Gibson JR, Rice WR. 2001. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. PNAS 98:1671–75
    [Google Scholar]
  25. Clements MN, Clutton-Brock TH, Albon SD, Pemberton JM, Kruuk LEB. 2010. Getting the timing right: antler growth phenology and sexual selection in a wild red deer population. Oecologia 164:357–68
    [Google Scholar]
  26. Clements MN, Clutton-Brock TH, Albon SD, Pemberton JM, Kruuk LEB. 2011a. Gestation length variation in a wild ungulate. Funct. Ecol. 25:691–703
    [Google Scholar]
  27. Clements MN, Clutton-Brock TH, Guinness FE, Pemberton JM, Kruuk LEB. 2011b. Variances and covariances of phenological traits in a wild mammal population. Evolution 65:788–801
    [Google Scholar]
  28. Clutton-Brock T, Sheldon BC 2010. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25:562–73
    [Google Scholar]
  29. Clutton-Brock TH. 1983. Selection in relation to sex. Evolution: From Molecules to Men BJ Bendall 457–81 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  30. Clutton-Brock TH. 1991a. The Evolution of Parental Care Princeton, NJ: Princeton Univ. Press
  31. Clutton-Brock TH. 1991b. The evolution of sex differences and the consequences of polygyny in mammals. The Development and Integration of Behaviour: Essays in Honour of Robert Hinde PPG Bateson 229–53 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  32. Clutton-Brock TH. 2021. Social evolution in mammals. Science 373:eabc9699
    [Google Scholar]
  33. Clutton-Brock TH, Albon SD 1979. Roaring of red deer and the evolution of honest advertisement. Behaviour 69:145–70
    [Google Scholar]
  34. Clutton-Brock TH, Albon SD 1989. Red Deer in the Highlands Oxford, UK: Blackwell
  35. Clutton-Brock TH, Albon SD, Gibson RM, Guinness FE. 1979. The logical stag: adaptive aspects of fighting in red deer (Cervus elaphus L.). Anim. Behav. 27:211–25
    [Google Scholar]
  36. Clutton-Brock TH, Albon SD, Guinness FE. 1981. Parental investment in male and female offspring in polygynous mammals. Nature 289:487–89
    [Google Scholar]
  37. Clutton-Brock TH, Albon SD, Guinness FE. 1982a. Competition between female relatives in a matrilocal mammal. Nature 300:178–80
    [Google Scholar]
  38. Clutton-Brock TH, Albon SD, Guinness FE. 1984. Maternal dominance, breeding success and birth sex-ratios in red deer. Nature 308:358–60
    [Google Scholar]
  39. Clutton-Brock TH, Albon SD, Guinness FE. 1985a. Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313:131–33
    [Google Scholar]
  40. Clutton-Brock TH, Albon SD, Guinness FE. 1986. Great expectations: dominance, breeding success and offspring sex ratios in red deer. Anim. Behav. 34:460–71
    [Google Scholar]
  41. Clutton-Brock TH, Albon SD, Guinness FE. 1987a. Interactions between population-density and maternal characteristics affecting fecundity and juvenile survival in red deer. J. Anim. Ecol. 56:857–71
    [Google Scholar]
  42. Clutton-Brock TH, Albon SD, Guinness FE 1988. Reproductive success in male and female red deer. Reproductive Success TH Clutton-Brock 325–43 Chicago: Univ. Chicago Press
    [Google Scholar]
  43. Clutton-Brock TH, Albon SD, Guinness FE. 1989. Fitness costs of gestation and lactation in wild mammals. Nature 337:260–62
    [Google Scholar]
  44. Clutton-Brock TH, Coulson TN, Milner-Gulland EJ, Thomson D, Armstrong HM. 2002. Sex differences in emigration and mortality affect optimal management of deer populations. Nature 415:633–37
    [Google Scholar]
  45. Clutton-Brock TH, Guinness FE, Albon SD. 1982b. Red Deer: Behavior and Ecology of Two Sexes Chicago: Univ. Chicago Press
  46. Clutton-Brock TH, Guinness FE, Albon SD. 1983. The costs of reproduction to red deer hinds. J. Anim. Ecol. 52:367–83
    [Google Scholar]
  47. Clutton-Brock TH, Iason GR 1986. Sex ratio variation in mammals. Q. Rev. Biol. 61:339–74
    [Google Scholar]
  48. Clutton-Brock TH, Isvaran K 2007. Sex differences in ageing in natural populations of vertebrates. Proc. R. Soc. B 274:3097–104
    [Google Scholar]
  49. Clutton-Brock TH, Lonergan ME 1994. Culling regimes and sex-ratio biases in Highland red deer. J. Appl. Ecol. 31:521–27
    [Google Scholar]
  50. Clutton-Brock TH, Major M, Albon SD, Guinness FE. 1987b. Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J. Anim. Ecol. 56:53–67
    [Google Scholar]
  51. Clutton-Brock TH, Major M, Guinness FE. 1985b. Population regulation in male and female red deer. J. Anim. Ecol. 54:831–46
    [Google Scholar]
  52. Clutton-Brock TH, Rose KE, Guinness FE. 1997. Density-related changes in sexual selection in red deer. Proc. R. Soc. B 264:1509–16
    [Google Scholar]
  53. Conradt L, Clutton-Brock TH, Thomson D. 1999. Habitat segregation in ungulates: Are males forced into suboptimal foraging habitats through indirect competition by females?. Oecologia 119:367–77
    [Google Scholar]
  54. Conradt L, Roper TJ. 2000. Activity synchrony and social cohesion: a fission-fusion model. Proc. R. Soc. B 267:2213–18
    [Google Scholar]
  55. Coulson T, Albon S, Pilkington J, Clutton-Brock T. 1999. Small-scale spatial dynamics in a fluctuating ungulate population. J. Anim. Ecol. 68:658–71
    [Google Scholar]
  56. Coulson T, Benton TG, Lundberg P, Dall SRX, Kendall BE, Gaillard JM. 2006. Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proc. R. Soc. B 273:547–55
    [Google Scholar]
  57. Coulson T, Kruuk LEB, Tavecchia G, Pemberton JM, Clutton-Brock TH. 2003. Estimating selection on neonatal traits in red deer using elasticity path analysis. Evolution 57:2879–92
    [Google Scholar]
  58. Coulson TN, Pemberton JM, Albon SD, Beaumont M, Marshall TC et al. 1998. Microsatellites reveal heterosis in red deer. Proc. R. Soc. B 265:489–95
    [Google Scholar]
  59. Darling FF. 1937. A Herd of Red Deer Oxford, UK: Oxford Univ. Press
  60. de Villemereuil P, Charmantier A, Arlt D, Bize P, Brekke P et al. 2020. Fluctuating optimum and temporally variable selection on breeding date in birds and mammals. PNAS 117:31969–78
    [Google Scholar]
  61. Eggeling JW. 1964. A nature reserve management plan for the Island of Rhum, Inner Hebrides. J. Appl. Ecol. 1:405–19
    [Google Scholar]
  62. Festa-Bianchet M, Douhard M, Gaillard J-M, Pelletier F. 2017. Successes and challenges of long-term field studies of marked ungulates. J. Mammal. 98:612–20
    [Google Scholar]
  63. Fisher DN, McAdam AG. 2019. Indirect genetic effects clarify how traits can evolve even when fitness does not. Evol. Lett. 3:4–14
    [Google Scholar]
  64. Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Oxford Univ. Press
  65. Flint APF, Albon SD, Jafar SI. 1997. Blastocyst development and conceptus sex selection in red deer Cervus elaphus: studies of a free-living population on the Isle of Rum. Gen. Comp. Endocrinol. 106:374–83
    [Google Scholar]
  66. Foerster K, Coulson T, Sheldon BC, Pemberton JM, Clutton-Brock TH, Kruuk LEB. 2007. Sexually antagonistic genetic variation for fitness in red deer. Nature 447:1107–10
    [Google Scholar]
  67. Froy H, Borger L, Regan CE, Morris A, Morris S et al. 2018. Declining home range area predicts reduced late-life survival in two wild ungulate populations. Ecol. Lett. 21:1001–9
    [Google Scholar]
  68. Froy H, Martin J, Stopher KV, Morris A, Morris S et al. 2019. Consistent within-individual plasticity is sufficient to explain temperature responses in red deer reproductive traits. J. Evol. Biol. 32:1194–206
    [Google Scholar]
  69. Froy H, Walling CA, Pemberton JM, Clutton-Brock TH, Kruuk LEB. 2016. Relative costs of offspring sex and offspring survival in a polygynous mammal. Biol. Lett. 12:20160417
    [Google Scholar]
  70. Gauzere J, Pemberton JM, Kruuk LEB, Morris A, Morris S, Walling CA 2022. Maternal effects do not resolve the paradox of stasis in birth weight in a wild mammal. Evolution In press
    [Google Scholar]
  71. Gauzere J, Pemberton JM, Morris S, Morris A, Kruuk LEB, Walling CA. 2020. The genetic architecture of maternal effects across ontogeny in the red deer. Evolution 74:1378–91
    [Google Scholar]
  72. Gibson RM. 1978. Behavioural factors affecting reproductive success in red deer stags PhD Thesis, Univ. Sussex Brighton, UK:
  73. Gienapp P, Fior S, Guillaume F, Lasky JR, Sork VL, Csillery K. 2017. Genomic quantitative genetics to study evolution in the wild. Trends Ecol. Evol. 32:897–908
    [Google Scholar]
  74. Gomendio M, Clutton-Brock TH, Albon SD, Guinness FE, Simpson MJ. 1990. Mammalian sex ratios and variation in costs of rearing sons and daughters. Nature 343:261–63
    [Google Scholar]
  75. Guinness F, Lincoln GA, Short RV. 1971. Reproductive cycle of female red deer, Cervus elaphus L. J. Reprod. Fertil. 27:427–38
    [Google Scholar]
  76. Guinness FE, Albon SD, Clutton-Brock TH. 1978. Factors affecting reproduction in red deer (Cervus elaphus) hinds on Rhum. J. Reprod. Fertil. 54:325–34
    [Google Scholar]
  77. Hadfield JD, Wilson AJ, Kruuk LEB. 2011. Cryptic evolution: Does environmental deterioration have a genetic basis?. Genetics 187:1099–113
    [Google Scholar]
  78. Hall MJ. 1978. Mother-offspring relationships in red deer (Cervus elaphus L.) and the social organisation of an enclosed group PhD Thesis, Univ. Sussex Brighton, UK:
    [Google Scholar]
  79. Hamel S, Gaillard JM, Yoccoz NG, Albon S, Cote SD et al. 2016. Cohort variation in individual body mass dissipates with age in large herbivores. Ecol. Monographs 86:517–43
    [Google Scholar]
  80. Hayes LD, Schradin CS. 2017. Long-term field studies of mammals: what the short-term study cannot tell us. J. Mammal. 98:600–2
    [Google Scholar]
  81. Hayward AD, Pemberton JM, Bérénos C, Wilson AJ, Pilkington JG, Kruuk LEB. 2018. Evidence for selection-by-environment but not genotype-by-environment interactions for fitness-related traits in a wild mammal population. Genetics 208:349–64
    [Google Scholar]
  82. Huisman J. 2017. Pedigree reconstruction from SNP data: parentage assignment, sibship reconstruction and beyond. Mol. Ecol. Resour. 17:1009–24
    [Google Scholar]
  83. Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM. 2016. Inbreeding depression across the lifespan in a wild mammal population. PNAS 113:3585–90
    [Google Scholar]
  84. Hunter D, Ashraf B, Bérénos C, Ellis P, Johnston S et al. 2022. Using genomic prediction to detect microevolutionary change of a quantitative trait. Proc. R. Soc. B 289:20220330
    [Google Scholar]
  85. Iason GR, Duck CD, Clutton-Brock TH. 1986. Grazing and reproductive success of red deer: the effect of local enrichment by gull colonies. J. Anim. Ecol. 55:507–15
    [Google Scholar]
  86. Johnston SE, Gratten J, Bérénos C, Pilkington JG, Clutton-Brock TH et al. 2013. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502:93–95
    [Google Scholar]
  87. Johnston SE, Huisman J, Ellis PA, Pemberton JM. 2017. A high-density linkage map reveals sexual dimorphism in recombination landscapes in red deer (Cervus elaphus). G3 Genes Genomes Genet 7:2859–70
    [Google Scholar]
  88. Johnston SE, Huisman J, Pemberton JM. 2018. A genomic region containing REC8 and RNF212B is associated with individual recombination rate variation in a wild population of red deer (Cervus elaphus). G3 Genes Genomes Genet 8:2265–76
    [Google Scholar]
  89. Jones OR, Gaillard JM, Tuljapurkar S, Alho JS, Armitage KB et al. 2008. Senescence rates are determined by ranking on the fast–slow life-history continuum. Ecol. Lett. 11:664–73
    [Google Scholar]
  90. Jones OR, Scheuerlein A, Salguero-Gomez R, Camarda CG, Schaible R et al. 2014. Diversity of ageing across the tree of life. Nature 505:169–73
    [Google Scholar]
  91. Kokko H, Ots I 2006. When not to avoid inbreeding. Evolution 60:467–75
    [Google Scholar]
  92. Kruuk LEB, Clutton-Brock T, Pemberton JM 2014. Quantitative genetics and sexual selection of weaponry in a wild ungulate. Quantitative Genetics in the Wild A Charmantier, D Garant, LEB Kruuk 160–76 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  93. Kruuk LEB, Clutton-Brock TH, Albon SD, Pemberton JM, Guinness FE. 1999a. Population density affects sex ratio variation in red deer. Nature 399:459–61
    [Google Scholar]
  94. Kruuk LEB, Clutton-Brock TH, Rose KE, Guinness FE. 1999b. Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc. R. Soc. B 266:1655–61
    [Google Scholar]
  95. Kruuk LEB, Clutton-Brock TH, Slate J, Pemberton JM, Brotherstone S, Guinness FE. 2000. Heritability of fitness in a wild mammal population. PNAS 97:698–703
    [Google Scholar]
  96. Kruuk LEB, Hadfield JD. 2007. How to separate genetic and environmental causes of similarity between relatives. J. Evol. Biol. 20:1890–903
    [Google Scholar]
  97. Kruuk LEB, Slate J, Pemberton JM, Brotherstone S, Guinness F, Clutton-Brock T. 2002. Antler size in red deer: heritability and selection but no evolution. Evolution 56:1683–95
    [Google Scholar]
  98. Landete-Castillejos T, Garcia A, Lopez-Serrano FR, Gallego L 2005. Maternal quality and differences in milk production and composition for male and female Iberian red deer calves (Cervus elaphus hispanicus). Behav. Ecol. Sociobiol. 57:267–74
    [Google Scholar]
  99. Le Boeuf BJ, Reiter J 1988. Lifetime reproductive success in Northern elephant seals. Reproductive Success TH Clutton-Brock 344–62 Chicago: Univ. Chicago Press
    [Google Scholar]
  100. Lemaitre J-F, Gaillard J-M, Pemberton JM, Clutton-Brock TH, Nussey DH. 2014. Early life expenditure in sexual competition is associated with increased reproductive senescence in male red deer. Proc. R. Soc. B 281:20140792
    [Google Scholar]
  101. Lincoln GA, Guinness F, Short RV. 1972. The way in which testosterone controls social and sexual behavior in red deer stags (Cervus elaphus). Horm. Behav. 3:375–96
    [Google Scholar]
  102. Lowe VPW. 1969. Population dynamics of red deer (Cervus elaphus L.) on Rhum. J. Anim. Ecol. 38:425–57
    [Google Scholar]
  103. Lukas D, Clutton-Brock T. 2014. Costs of mating competition limit male lifetime breeding success in polygynous mammals. Proc. R. Soc. B 281:20140418
    [Google Scholar]
  104. Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7:639–55
    [Google Scholar]
  105. McComb K. 1987. Roaring by red deer stags advances the date of oestrus in hinds. Nature 330:648–49
    [Google Scholar]
  106. McComb KE. 1991. Female choice for high roaring rates in red deer Cervus elaphus. Anim. Behav. 41:79–88
    [Google Scholar]
  107. Merila J, Sheldon BC, Kruuk LEB. 2001. Explaining stasis: microevolutionary studies in natural populations. Genetica 112:199–222
    [Google Scholar]
  108. Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–29
    [Google Scholar]
  109. Milner JM, Brotherstone S, Pemberton JM, Albon SD. 2000. Variance components and heritabilities of morphometric traits in a wild ungulate population. J. Evol. Biol. 13:804–13
    [Google Scholar]
  110. Mitchell B, McCowan D, Nicholson IA. 1976. Annual cycles of body weight and condition in Scottish red deer, Cervus elaphus. J. Zool. 180:107–27
    [Google Scholar]
  111. Moore EK, Britton AJ, Iason G, Pemberton J, Pakeman RJ. 2015. Landscape-scale vegetation patterns influence small-scale grazing impacts. Biol. Conserv. 192:218–25
    [Google Scholar]
  112. Moore EK, Iason GR, Pemberton JM, Bryce J, Dayton N et al. 2018. Habitat impact assessment detects spatially driven patterns of grazing impacts in habitat mosaics but overestimates damage. J. Nat. Conserv. 45:20–29
    [Google Scholar]
  113. Morrissey MB, Kruuk LEB, Wilson AJ. 2010. The danger of applying the breeder's equation in observational studies of natural populations. J. Evol. Biol. 23:2277–88
    [Google Scholar]
  114. Morrissey MB, Walling CA, Wilson AJ, Pemberton JM, Clutton-Brock TH, Kruuk LEB. 2012. Genetic analysis of life-history constraint and evolution in a wild ungulate population. Am. Nat. 179:E97–114
    [Google Scholar]
  115. Moyes K, Coulson T, Morgan BJT, Donald A, Morris SJ, Clutton-Brock TH. 2006. Cumulative reproduction and survival costs in female red deer. Oikos 115:241–52
    [Google Scholar]
  116. Moyes K, Nussey DH, Clements MN, Guinness FE, Morris A et al. 2011. Advancing breeding phenology in response to environmental change in a wild red deer population. Global Change Biol. 17:2455–69
    [Google Scholar]
  117. Nussey DH, Clutton-Brock TH, Albon SD, Pemberton J, Kruuk LEB. 2005. Constraints on plastic responses to climate variation in red deer. Biol. Lett. 1:457–60
    [Google Scholar]
  118. Nussey DH, Kruuk LEB, Donald A, Fowlie M, Clutton-Brock TH. 2006. The rate of senescence in maternal performance increases with early-life fecundity in red deer. Ecol. Lett. 9:1342–50
    [Google Scholar]
  119. Nussey DH, Kruuk LEB, Morris A, Clements MN, Pemberton JM, Clutton-Brock TH. 2009. Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am. Nat. 174:342–57
    [Google Scholar]
  120. Nussey DH, Kruuk LEB, Morris A, Clutton-Brock TH. 2007. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17:R1000–1
    [Google Scholar]
  121. Nussey DH, Wilson AJ, Morris A, Pemberton J, Clutton-Brock T, Kruuk LEB 2008. Testing for genetic trade-offs between early- and late-life reproduction in a wild red deer population. Proc. R. Soc. B 275:745–50
    [Google Scholar]
  122. Pavitt AT, Pemberton JM, Kruuk LEB, Walling CA. 2016. Testosterone and cortisol concentrations vary with reproductive status in wild female red deer. Ecol. Evol. 6:1163–72
    [Google Scholar]
  123. Pavitt AT, Walling CA, Moestl E, Pemberton JM, Kruuk LEB. 2015. Cortisol but not testosterone is repeatable and varies with reproductive effort in wild red deer stags. Gen. Comp. Endocrinol. 222:62–68
    [Google Scholar]
  124. Pemberton J, Kruuk L. 2015. Red deer research on the Isle of Rum NNR: management implications Rep., Scott. Nat. Herit Inverness, UK: https://www.nature.scot/sites/default/files/Publication%202015%20-%20Red%20deer%20research%20on%20the%20Isle%20of%20Rum%20NNR%20management%20implications.pdf
  125. Pemberton JM, Albon SD, Guinness FE, Clutton-Brock TH, Berry RJ. 1988. Genetic variation and juvenile survival in red deer. Evolution 42:921–34
    [Google Scholar]
  126. Pemberton JM, Albon SD, Guinness FE, Clutton-Brock TH, Dover GA. 1992. Behavioral estimates of male mating success tested by DNA fingerprinting in a polygynous mammal. Behav. Ecol. 3:66–75
    [Google Scholar]
  127. Pemberton JM, Johnston SE, Fletcher TJ. 2021. The genome sequence of the red deer, Cervus elaphus Linnaeus 1758. Wellcome Open Res 6:336
    [Google Scholar]
  128. Peters L, Huisman J, Kruuk LEB, Pemberton JM, Johnston SE. 2022. Genomic analysis reveals a polygenic architecture of antler morphology in wild red deer (Cervus elaphus). Mol. Ecol. 31:1281–98
    [Google Scholar]
  129. Reale D, Festa-Bianchet M, Jorgenson JT. 1999. Heritability of body mass varies with age and season in wild bighorn sheep. Heredity 83:526–32
    [Google Scholar]
  130. Reby D, McComb K, Cargnelutti B, Darwin C, Fitch WT, Clutton-Brock T. 2005. Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proc. R. Soc. B 272:941–47
    [Google Scholar]
  131. Reid JM, Arcese P, Bocedi G, Duthie AB, Wolak ME, Keller LF. 2015. Resolving the conundrum of inbreeding depression but no inbreeding avoidance: estimating sex-specific selection on inbreeding by song sparrows (Melospiza melodia). Evolution 69:2846–61
    [Google Scholar]
  132. Rose KE, Clutton-Brock TH, Guinness FE. 1998. Cohort variation in male survival and lifetime breeding success in red deer. J. Anim. Ecol. 67:979–86
    [Google Scholar]
  133. Schmidt KT, Stien A, Albon SD, Guinness FE. 2001. Antler length of yearling red deer is determined by population density, weather and early life-history. Oecologia 127:191–97
    [Google Scholar]
  134. Sheldon BC, West SA. 2004. Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am. Nat. 163:40–54
    [Google Scholar]
  135. Slate J, Kruuk LEB, Marshall TC, Pemberton JM, Clutton-Brock TH. 2000. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc. R. Soc. B 267:1657–62
    [Google Scholar]
  136. Slate J, Van Stijn TC, Anderson RM, McEwan KM, Maqbool NJ et al. 2002a. A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160:1587–97
    [Google Scholar]
  137. Slate J, Visscher PM, MacGregor S, Stevens D, Tate ML, Pemberton JM. 2002b. A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics 162:1863–73
    [Google Scholar]
  138. Stocks JJ, Metheringham CL, Plumb WJ, Lee SJ, Kelly LJ et al. 2019. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 3:1686–96
    [Google Scholar]
  139. Stopher KV, Bento AI, Clutton-Brock TH, Pemberton JM, Kruuk LEB. 2014. Multiple pathways mediate the effects of climate change on maternal reproductive traits in a red deer population. Ecology 95:3124–38
    [Google Scholar]
  140. Stopher KV, Nussey DH, Clutton-Brock TH, Guinness F, Morris A, Pemberton JM 2011. The red deer rut revisited: female excursions but no evidence females move to mate with preferred males. Behav. Ecol. 22:808–18
    [Google Scholar]
  141. Stopher KV, Nussey DH, Clutton-Brock TH, Guinness F, Morris A, Pemberton JM. 2012a. Re-mating across years and intralineage polygyny are associated with greater than expected levels of inbreeding in wild red deer. J. Evol. Biol. 25:2457–69
    [Google Scholar]
  142. Stopher KV, Walling CA, Morris A, Guinness FE, Clutton-Brock TH et al. 2012b. Shared spatial effects on quantitative genetic parameters: Accounting for spatial autocorrelation and home range overlap reduces estimates of heritability in red deer. Evolution 66:2411–26
    [Google Scholar]
  143. Szulkin M, Stopher KV, Pemberton JM, Reid JM. 2013. Inbreeding avoidance, tolerance, or preference in animals?. Trends Ecol. Evol. 28:205–11
    [Google Scholar]
  144. Teplitsky C, Robinson MR, Merilä J 2014. Evolutionary potential and constraints in wild populations. Quantitative Genetics in the Wild A Charmantier, D Garant, LEB Kruuk 190–208 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  145. Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS et al. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535:241–45
    [Google Scholar]
  146. Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ et al. 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol 16:3304–13
    [Google Scholar]
  147. Thouless CR. 1990. Feeding competition between grazing red deer hinds. Anim. Behav. 40:105–11
    [Google Scholar]
  148. Thouless CR, Guinness FE. 1986. Conflict between red deer hinds: The winner always wins. Anim. Behav. 34:1166–71
    [Google Scholar]
  149. Trillmich F. 1986. Maternal investment and sex allocation in the Galapagos fur seal, Arctocephalus galapoensis. Behav. Ecol. Sociobiol. 19:157–64
    [Google Scholar]
  150. Trivers RL, Willard DE. 1973. Natural selection of parental ability to vary sex ratio of offspring. Science 179:90–92
    [Google Scholar]
  151. Troianou E, Huisman J, Pemberton JM, Walling CA. 2018. Estimating selection on the act of inbreeding in a population with strong inbreeding depression. J. Evol. Biol. 31:1815–27
    [Google Scholar]
  152. Walling CA, Morrissey MB, Foerster K, Clutton-Brock TH, Pemberton JM, Kruuk LEB. 2014. A multivariate analysis of genetic constraints to life history evolution in a wild population of red deer. Genetics 198:1735–49
    [Google Scholar]
  153. Walling CA, Nussey DH, Morris A, Clutton-Brock TH, Kruuk LEB, Pemberton JM. 2011. Inbreeding depression in red deer calves. BMC Evol. Biol. 11:318
    [Google Scholar]
  154. Walsh B, Lynch M. 2018. Evolution and Selection of Quantitative Traits Oxford. UK: Oxford Univ. Press
  155. Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J et al. 2021. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3:274–86
    [Google Scholar]
  156. Wilson AJ, Charmantier A, Hadfield JD. 2008. Evolutionary genetics of ageing in the wild: empirical patterns and future perspectives. Funct. Ecol. 22:431–42
    [Google Scholar]
  157. Wilson AJ, Reale D, Clements MN, Morrissey MM, Postma E et al. 2010. An ecologist's guide to the animal model. J. Anim. Ecol. 79:13–26
    [Google Scholar]
  158. Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:76–82
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012722-024041
Loading
/content/journals/10.1146/annurev-ecolsys-012722-024041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error