1932

Abstract

Divergent selection across the landscape can favor the evolution of local adaptation in populations experiencing contrasting conditions. Local adaptation is widely observed in a diversity of taxa, yet we have a surprisingly limited understanding of the mechanisms that give rise to it. For instance, few have experimentally confirmed the biotic and abiotic variables that promote local adaptation, and fewer yet have identified the phenotypic targets of selection that mediate local adaptation. Here, we highlight critical gaps in our understanding of the process of local adaptation and discuss insights emerging from in-depth investigations of the agents of selection that drive local adaptation, the phenotypes they target, and the genetic basis of these phenotypes. We review historical and contemporary methods for assessing local adaptation, explore whether local adaptation manifests differently across life history, and evaluate constraints on local adaptation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012722-035231
2022-11-02
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-012722-035231.html?itemId=/content/journals/10.1146/annurev-ecolsys-012722-035231&mimeType=html&fmt=ahah

Literature Cited

  1. Åbjörnsson K, Dahl J, Nyström P, Brönmark C. 2000. Influence of predator and dietary chemical cues on the behaviour and shredding efficiency of Gammarus pulex. Aquat. Ecol. 34:379–87
    [Google Scholar]
  2. Åbjörnsson K, Hansson L-A, Brönmark C. 2004. Responses of prey from habitats with different predator regimes: local adaptation and heritability. Ecology 85:71859–66
    [Google Scholar]
  3. Afkhami ME, McIntyre PJ, Strauss SY. 2014. Mutualist-mediated effects on species’ range limits across large geographic scales. Ecol. Lett. 17:101265–73
    [Google Scholar]
  4. Aitken SN, Whitlock MC. 2013. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44:367–88
    [Google Scholar]
  5. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1:195–111
    [Google Scholar]
  6. Anderson JT, Jameel MI, Geber MA. 2021. Selection favors adaptive plasticity in a long-term reciprocal transplant experiment. Evolution 75:71711–26
    [Google Scholar]
  7. Anderson JT, Lee C-R, Mitchell-Olds T. 2014. Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection. Evolution 68:116–31
    [Google Scholar]
  8. Anderson JT, Wadgymar SM. 2020. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23:1181–92
    [Google Scholar]
  9. Anstett DN, Branch HA, Angert AL. 2021. Regional differences in rapid evolution during severe drought. Evol. Lett. 5:2130–42
    [Google Scholar]
  10. Austen EJ, Rowe L, Stinchcombe JR, Forrest JRK. 2017. Explaining the apparent paradox of persistent selection for early flowering. New Phytol 215:3929–34
    [Google Scholar]
  11. Austen EJ, Weis AE. 2015. What drives selection on flowering time? An experimental manipulation of the inherent correlation between genotype and environment. Evolution 69:82018–33
    [Google Scholar]
  12. Bachmann JC, Van Buskirk J. 2021. Adaptation to elevation but limited local adaptation in an amphibian. Evolution 75:4956–69
    [Google Scholar]
  13. Barnes AC, Rodríguez-Zapata F, Juárez-Núñez KA, Gates DJ, Janzen GM et al. 2022. An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. PNAS 119:27e2100036119
    [Google Scholar]
  14. Barrett RDH, Laurent S, Mallarino R, Pfeifer SP, Xu CCY et al. 2019. Linking a mutation to survival in wild mice. Science 363:6426499–504
    [Google Scholar]
  15. Bassar RD, Marshall MC, López-Sepulcre A, Zandonà E, Auer SK et al. 2010. Local adaptation in Trinidadian guppies alters ecosystem processes. PNAS 107:83616–21
    [Google Scholar]
  16. Baythavong BS. 2011. Linking the spatial scale of environmental variation and the evolution of phenotypic plasticity: Selection favors adaptive plasticity in fine-grained environments. Am. Nat. 178:75–87
    [Google Scholar]
  17. Belotte D, Curien JB, Maclean RC, Bell G. 2003. An experimental test of local adaptation in soil bacteria. Evolution 57:127–36
    [Google Scholar]
  18. Bemmels JB, Anderson JT. 2019. Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains. Evolution 73:112247–62
    [Google Scholar]
  19. Benning JW, Moeller DA. 2021. Microbes, mutualism, and range margins: testing the fitness consequences of soil microbial communities across and beyond a native plant's range. New Phytol 229:52886–900
    [Google Scholar]
  20. Bennington C, Fetcher N, Vavrek M, Shaver G, Cummings K, McGraw J. 2012. Home site advantage in two long-lived arctic plant species: results from two 30-year reciprocal transplant studies. J. Ecol. 100:841–51
    [Google Scholar]
  21. Bennington C, McGraw J. 1995. Natural selection and ecotypic differentiation in Impatiens pallida. Ecol. Monogr. 65:303–24
    [Google Scholar]
  22. Berg JJ, Coop G. 2014. A population genetic signal of polygenic adaptation. PLOS Genet 10:8e1004412
    [Google Scholar]
  23. Berhe AA, Barnes RT, Hastings MG, Mattheis A, Schneider B et al. 2021. Scientists from historically excluded groups face a hostile obstacle course. Nat. Geosci. 15:2–4
    [Google Scholar]
  24. Blair WF. 1950. Ecological factors in speciation of Peromyscus. Evolution 4:3253–75
    [Google Scholar]
  25. Bocher TW. 1949. Racial divergences in Prunella vulgaris in relation to habitat and climate. New Phytol 48:3285–314
    [Google Scholar]
  26. Bolnick DI, Nosil P. 2007. Natural selection in populations subject to a migration load. Evolution 61:92229–43
    [Google Scholar]
  27. Bontrager M, Angert AL. 2019. Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3:155–68
    [Google Scholar]
  28. Bradshaw AD. 1960. Population differentiation in Agrostis tenuis sibth. III. Populations in varied environments. New Phytol. 59:192–103
    [Google Scholar]
  29. Brady SP, Bolnick DI, Barrett RDH, Chapman L, Crispo E et al. 2019. Understanding maladaptation by uniting ecological and evolutionary perspectives. Am. Nat. 194:4495–515
    [Google Scholar]
  30. Briscoe Runquist RD, Gorton AJ, Yoder JB, Deacon NJ, Grossman JJ et al. 2020. Context dependence of local adaptation to abiotic and biotic environments: a quantitative and qualitative synthesis. Am. Nat. 195:3412–31
    [Google Scholar]
  31. Brodie E. 1992. Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46:51284–98
    [Google Scholar]
  32. Campbell-Staton SC, Cheviron ZA, Rochette N, Catchen J, Losos JB, Edwards SV 2017. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357:6350495–98
    [Google Scholar]
  33. Carlson SM, Cunningham CJ, Westley PAH. 2014. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29:9521–30
    [Google Scholar]
  34. Charmantier A, Doutrelant C, Dubuc-Messier G, Fargevieille A, Szulkin M. 2016. Mediterranean blue tits as a case study of local adaptation. Evol. Appl. 9:1135–52
    [Google Scholar]
  35. Clausen J, Hiesey W. 1958. Experimental Studies on the Nature of Species. IV: Genetic Structure of Ecological Races Washington, DC: Carnegie Inst. Wash.
  36. Clausen J, Keck DD, Hiesey WM. 1941. Regional differentiation in plant species. Am. Nat. 75:231–50
    [Google Scholar]
  37. Clausen J, Keck DD, Hiesey WM. 1948. Experimental Studies on the Nature of Species. III. Environmental Responses of Climatic Races of Achillea Washington, DC: Carnegie Inst. Wash.
  38. Colautti RI, Barrett SCH. 2013. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342:6156364–66
    [Google Scholar]
  39. Cotto O, Ronce O. 2014. Maladaptation as a source of senescence in habitats variable in space and time. Evolution 68:92481–93
    [Google Scholar]
  40. Cotto O, Sandell L, Chevin L-M, Ronce O. 2019. Maladaptive shifts in life history in a changing environment. Am. Nat. 194:4558–73
    [Google Scholar]
  41. Crone EE. 2001. Is survivorship a better fitness surrogate than fecundity?. Evolution 55:122611–14
    [Google Scholar]
  42. David AS, Quintana-Ascencio PF, Menges ES, Thapa-Magar KB, Afkhami ME, Searcy CA. 2019. Soil microbiomes underlie population persistence of an endangered plant species. Am. Nat. 194:4488–94
    [Google Scholar]
  43. De-la-Cruz IM, Merilä J, Valverde PL, Flores-Ortiz CM, Núñez-Farfán J. 2020. Genomic and chemical evidence for local adaptation in resistance to different herbivores in Datura stramonium. Evolution 74:122629–43
    [Google Scholar]
  44. DeMarche ML, Angert AL, Kay KM. 2020. Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol. Evol. 10:2612–25
    [Google Scholar]
  45. DeMarche ML, Kay KM, Angert AL. 2016. The scale of local adaptation in Mimulus guttatus: comparing life history races, ecotypes, and populations. New Phytol 211:1345–56
    [Google Scholar]
  46. Diamond SE, Chick L, Perez A, Strickler SA, Martin RA. 2017. Rapid evolution of ant thermal tolerance across an urban–rural temperature cline. Biol. J. Linn. Soc. 121:2248–57
    [Google Scholar]
  47. Dias PC, Blondel J. 1996. Local specialization and maladaptation in the Mediterranean blue tit (Parus caeruleus). Oecologia 107:79–86
    [Google Scholar]
  48. Dice LR. 1949. The selection index and its test of significance. Evolution 3:3262–65
    [Google Scholar]
  49. DiVittorio CT, Singhal S, Roddy AB, Zapata F, Ackerly DD et al. 2020. Natural selection maintains species despite frequent hybridization in the desert shrub Encelia. PNAS 117:5233373–83
    [Google Scholar]
  50. Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. 2010. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41:293–319
    [Google Scholar]
  51. Ellis TJ, Postma FM, Oakley CG, Ågren J. 2021. Life-history trade-offs and the genetic basis of fitness in Arabidopsis thaliana. Mol. Ecol. 30:122846–58
    [Google Scholar]
  52. Etterson J. 2004. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the great plains. Evolution 58:71446–58
    [Google Scholar]
  53. Fitzpatrick MC, Chhatre VE, Soolanayakanahally RY, Keller SR. 2021. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Mol. Ecol. Resour. 21:82749–65
    [Google Scholar]
  54. Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18:11–16
    [Google Scholar]
  55. Fitzpatrick SW, Gerberich JC, Kronenberger JA, Angeloni LM, Funk WC. 2015. Locally adapted traits maintained in the face of high gene flow. Ecol. Lett. 18:137–47
    [Google Scholar]
  56. Forester BR, Lasky JR, Wagner HH, Urban DL. 2018. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27:92215–33
    [Google Scholar]
  57. Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB. 2011. Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:3404–20
    [Google Scholar]
  58. Gauthier N, Anchukaitis KJ, Coulthard B. 2021. Pattern-based downscaling of snowpack variability in the western United States. Clim. Dyn. https://doi.org/10.1007/s00382-021-06094-z
    [Crossref] [Google Scholar]
  59. Germino MJ, Moser AM, Sands AR. 2019. Adaptive variation, including local adaptation, requires decades to become evident in common gardens. Ecol. Appl. 29:2e01842
    [Google Scholar]
  60. Gomulkiewicz R, Holt RD. 1995. When does evolution by natural selection prevent extinction. Evolution 49:1201–7
    [Google Scholar]
  61. Hagen JB. 1993. Clementsian ecologists: the internal dynamics of a research school. Osiris 8:178–95
    [Google Scholar]
  62. Haldane JBS. 1941. New Paths in Genetics London: George Allen & Unwin
  63. Hall MC, Lowry DB, Willis JH. 2010. Is local adaptation in Mimulus guttatus caused by trade-offs at individual loci?. Mol. Ecol. 19:132739–53
    [Google Scholar]
  64. Hämälä T, Mattila TM, Savolainen O. 2018. Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrata. Evolution 72:71373–86
    [Google Scholar]
  65. Hargreaves AL, Germain RM, Bontrager M, Persi J, Angert AL. 2020. Local adaptation to biotic interactions: a meta-analysis across latitudes. Am. Nat. 195:3395–411
    [Google Scholar]
  66. Hendry AP, Taylor EB. 2004. How much of the variation in adaptive divergence can be explained by gene flow? An evaluation using lake-stream stickleback pairs. Evolution 58:102319–31
    [Google Scholar]
  67. Hereford J. 2009. A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 173:579–88
    [Google Scholar]
  68. Holt RD, Gaines MS. 1992. Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol. Ecol. 6:433–47
    [Google Scholar]
  69. Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:7513194–97
    [Google Scholar]
  70. Hufford KM, Mazer SJ. 2012. Local adaptation and the effects of grazing on the performance of Nassella pulchra: implications for seed sourcing in restoration. Restor. Ecol. 20:6688–95
    [Google Scholar]
  71. Huxley J. 1938. Clines: an auxiliary taxonomic principle. Nature 142:3587219–20
    [Google Scholar]
  72. Johnson LC, Galliart MB, Alsdurf JD, Maricle BR, Baer SG et al. 2021. Reciprocal transplant gardens as gold standard to detect local adaptation in grassland species: new opportunities moving into the 21st century. J. Ecol. https://doi.org/10.1111/1365-2745.13695
    [Crossref] [Google Scholar]
  73. Josephs EB, Berg JJ, Ross-Ibarra J, Coop G. 2019. Detecting adaptive differentiation in structured populations with genomic data and common gardens. Genetics 211:3989–1004
    [Google Scholar]
  74. Karhunen M, Ovaskainen O, Herczeg G, Merilä J. 2014. Bringing habitat information into statistical tests of local adaptation in quantitative traits: a case study of nine-spined sticklebacks. Evolution 68:2559–68
    [Google Scholar]
  75. Kawakami T, Morgan TJ, Nippert JB, Ocheltree TW, Keith R et al. 2011. Natural selection drives clinal life history patterns in the perennial sunflower species, Helianthus maximiliani: local adaptation along a latitudinal gradient. Mol. Ecol. 20:112318–28
    [Google Scholar]
  76. Kawecki TJ. 2008. Adaptation to marginal habitats. Annu. Rev. Ecol. Evol. Syst. 39:321–42
    [Google Scholar]
  77. Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7:121225–41
    [Google Scholar]
  78. Kellermann V, Hoffmann AA, Kristensen TN, Moghadam NN, Loeschcke V. 2015. Experimental evolution under fluctuating thermal conditions does not reproduce patterns of adaptive clinal differentiation in Drosophila melanogaster. Am. Nat. 186:5582–93
    [Google Scholar]
  79. Kim E, Donohue K. 2013. Local adaptation and plasticity of Erysimum capitatum to altitude: its implications for responses to climate change. J. Ecol. 101:3796–805
    [Google Scholar]
  80. Kooyers NJ, Colicchio JM, Greenlee AB, Patterson E, Handloser NT, Blackman BK. 2019. Lagging adaptation to climate supersedes local adaptation to herbivory in an annual monkeyflower. Am. Nat. 194:4541–57
    [Google Scholar]
  81. Kraemer SA, Boynton PJ. 2017. Evidence for microbial local adaptation in nature. Mol. Ecol. 26:71860–76
    [Google Scholar]
  82. Kulbaba MW, Sheth SN, Pain RE, Eckhart VM, Shaw RG. 2019. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 73:91746–58
    [Google Scholar]
  83. Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution 37:61210–26
    [Google Scholar]
  84. Langlet O. 1971. Two hundred years genecology. Taxon 20:5–6653–721
    [Google Scholar]
  85. Leimu R, Fischer M. 2008. A meta-analysis of local adaptation in plants. PLOS ONE 3:12e4010
    [Google Scholar]
  86. Liancourt P, Spence LA, Song DS, Lkhagva A, Sharkhuu A et al. 2013. Plant response to climate change varies with topography, interactions with neighbors, and ecotype. Ecology 94:2444–53
    [Google Scholar]
  87. Liepe KJ, Hamann A, Smets P, Fitzpatrick CR, Aitken SN. 2016. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world. Evol. Appl. 9:2409–19
    [Google Scholar]
  88. Linnen CR, Poh Y-P, Peterson BK, Barrett RDH, Larson JG et al. 2013. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 339:61251312–16
    [Google Scholar]
  89. Lovell JT, Juenger TE, Michaels SD, Lasky JR, Platt A et al. 2013. Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation. Proc. R. Soc. B 280:176320131043
    [Google Scholar]
  90. Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J et al. 2021. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590:7846438–44
    [Google Scholar]
  91. Lowry DB. 2012. Ecotypes and the controversy over stages in the formation of new species: stages in speciation. Biol. J. Linn. Soc. 106:2241–57
    [Google Scholar]
  92. Lowry DB, Willis JH. 2010. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLOS Biol 8:9e1000500
    [Google Scholar]
  93. Lu P, Parker WC, Colombo SJ, Man R 2016. Restructuring tree provenance test data to conform to reciprocal transplant experiments for detecting local adaptation. J. Appl. Ecol. 53:41088–97
    [Google Scholar]
  94. Manzanedo RD, Fischer M, María Navarro-Cerrillo R, Allan E 2019. A new approach to study local adaptation in long-lived woody species: virtual transplant experiments. Methods Ecol. Evol. 10:101761–72
    [Google Scholar]
  95. Martin RA, Chick LD, Garvin ML, Diamond SE. 2021. In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorn-dwelling ant. Evolution 75:4876–87
    [Google Scholar]
  96. Massey MDB, Arif S, Albury C, Cluney VA. 2021. Ecology and evolutionary biology must elevate BIPOC scholars. Ecol. Lett. 24:5913–19
    [Google Scholar]
  97. Matthew P. 1831. On Naval Timber and Arboriculture; with Critical Notes on Authors Who Have Recently Treated the Subject of Planting London: Longman, Rees, Orme, Brown, & Green
  98. McGraw JB, Caswell H. 1996. Estimation of individual fitness from life-history data. Am. Nat. 147:147–64
    [Google Scholar]
  99. Miller SE, Roesti M, Schluter D. 2019. A single interacting species leads to widespread parallel evolution of the stickleback genome. Curr. Biol. 29:3530–37.e6
    [Google Scholar]
  100. Monroe JG, Powell T, Price N, Mullen JL, Howard A et al. 2018. Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function. eLife 7:e41038
    [Google Scholar]
  101. Nelson TC, Monnahan PJ, McIntosh MK, Anderson K, MacArthur-Waltz E et al. 2019. Extreme copy number variation at a tRNA ligase gene affecting phenology and fitness in yellow monkeyflowers. Mol. Ecol. 28:61460–75
    [Google Scholar]
  102. Newby JR, Mills LS, Ruth TK, Pletscher DH, Mitchell MS et al. 2013. Human-caused mortality influences spatial population dynamics: pumas in landscapes with varying mortality risks. Biol. Conserv. 159:230–39
    [Google Scholar]
  103. Niu X-M, Xu Y-C, Li Z-W, Bian Y-T, Hou X-H et al. 2019. Transposable elements drive rapid phenotypic variation in Capsella rubella. PNAS 116:146908–13
    [Google Scholar]
  104. Nosil P, Crespi BJ. 2004. Does gene flow constrain adaptive divergence or vice versa? A test using ecomorphology and sexual isolation in Timema cristinae walking-sticks. Evolution 58:1102–12
    [Google Scholar]
  105. Núñez-Farfán J, Schlichting CD. 2001. Evolution in changing environments: the “synthetic” work of Clausen, Keck, and Hiesey. Q. Rev. Biol. 76:4433–57
    [Google Scholar]
  106. Núñez-Farfán J, Schlichting C. 2005. Natural selection in Potentilla glandulosa revisited. Evol. Ecol. Res. 7:105–19
    [Google Scholar]
  107. Oakley CG, Ågren J, Atchison RA, Schemske DW. 2014. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol. Ecol. 23:174304–15
    [Google Scholar]
  108. Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54:113–20
    [Google Scholar]
  109. Palacio-López K, Beckage B, Scheiner S, Molofsky J. 2015. The ubiquity of phenotypic plasticity in plants: a synthesis. Ecol. Evol. 5:163389–400
    [Google Scholar]
  110. Peterson DA, Hilborn R, Hauser L. 2014. Local adaptation limits lifetime reproductive success of dispersers in a wild salmon metapopulation. Nat. Commun. 5:13696
    [Google Scholar]
  111. Pfeifer SP, Laurent S, Sousa VC, Linnen CR, Foll M et al. 2018. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol. 35:4792–806
    [Google Scholar]
  112. Pickles BJ, Twieg BD, O'Neill GA, Mohn WW, Simard SW 2015. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. New Phytol 207:3858–71
    [Google Scholar]
  113. Postma E, Ågren J. 2016. Early life stages contribute strongly to local adaptation in Arabidopsis thaliana. PNAS 113:277590–95
    [Google Scholar]
  114. Pulliam HR. 1988. Sources, sinks and population regulation. Am. Nat. 132:5652–61
    [Google Scholar]
  115. Radchuk V, Reed T, Teplitsky C, van de Pol M, Charmantier A et al. 2019. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10:13109
    [Google Scholar]
  116. Radersma R, Noble DWA, Uller T. 2020. Plasticity leaves a phenotypic signature during local adaptation. Evol. Lett. 4:4360–70
    [Google Scholar]
  117. Ramsey J. 2011. Polyploidy and ecological adaptation in wild yarrow. PNAS 108:177096–101
    [Google Scholar]
  118. Räsänen K, Laurila A, Merilä J. 2003. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation. Evolution 57:2352–62
    [Google Scholar]
  119. Rausher MD. 2008. Evolutionary transitions in floral color. Int. J. Plant Sci. 169:17–21
    [Google Scholar]
  120. Reznick DA, Bryga H, Endler JA. 1990. Experimentally induced life-history evolution in a natural population. Nature 346:6282357–59
    [Google Scholar]
  121. Reznick DN, Travis J. 2019. Experimental studies of evolution and eco-evo dynamics in guppies (Poecilia reticulata). Annu. Rev. Ecol. Evol. Syst. 50:335–54
    [Google Scholar]
  122. Rice KJ, Knapp EE. 2008. Effects of competition and life history stage on the expression of local adaptation in two native bunchgrasses. Restor. Ecol. 16:112–23
    [Google Scholar]
  123. Richardson JL, Urban MC, Bolnick DI, Skelly DK. 2014. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29:3165–76
    [Google Scholar]
  124. Risk C, McKenney DW, Pedlar J, Lu P. 2021. A compilation of North American tree provenance trials and relevant historical climate data for seven species. Sci. Data 8:129
    [Google Scholar]
  125. Rodd FH, Reznick DN. 1997. Variation in the demography of guppy populations: the importance of predation and life histories. Ecology 78:2405–18
    [Google Scholar]
  126. Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C et al. 2016. Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol. Biol. 16:1122
    [Google Scholar]
  127. Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM et al. 2020. Climate disruption of plant-microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51:561–86
    [Google Scholar]
  128. Ruibal R. 1955. A study of altitudinal races in Rana pipiens. Evolution 9:3322–38
    [Google Scholar]
  129. Rundle HD, Vamosi SM, Schluter D. 2003. Experimental test of predation's effect on divergent selection during character displacement in sticklebacks. PNAS 100:2514943–48
    [Google Scholar]
  130. Sanford E, Kelly MW. 2011. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3:509–35
    [Google Scholar]
  131. Sanford E, Worth DJ. 2010. Local adaptation along a continuous coastline: Prey recruitment drives differentiation in a predatory snail. Ecology 91:3891–901
    [Google Scholar]
  132. Sasaki M, Barley J, Gignoux-Wolfsohn S, Hays C, Kelly M et al. 2021. Greater local adaptation to temperature in the ocean than on land. Res. Square https://doi.org/10.21203/rs.3.rs-987225/v1
    [Crossref] [Google Scholar]
  133. Saul-Gershenz LS, Millar JG 2006. Phoretic nest parasites use sexual deception to obtain transport to their host's nest. PNAS 103:3814039–44
    [Google Scholar]
  134. Savolainen O, Pyhäjärvi T, Knürr T. 2007. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 38:595–619
    [Google Scholar]
  135. Schluter D. 1994. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266:5186798–801
    [Google Scholar]
  136. Segal E. 1956. Microgeographic variation as thermal acclimation in an intertidal mollusc. Biol. Bull. 111:1129–52
    [Google Scholar]
  137. Shaw RG, Geyer CJ, Wagenius S, Hangelbroek HH, Etterson JR. 2008. Unifying life-history analyses for inference of fitness and population growth. Am. Nat. 172:1E35–47
    [Google Scholar]
  138. Sheth SN, Angert AL. 2018. Demographic compensation does not rescue populations at a trailing range edge. PNAS 115:102413–18
    [Google Scholar]
  139. Sidik SM. 2022. Weaving Indigenous knowledge into the scientific method. Nature 601:7892285–87
    [Google Scholar]
  140. Slatkin M. 1987. Gene flow and the geographic structure of natural populations. Science 236:787–92
    [Google Scholar]
  141. Stalker HD, Carson HL. 1948. An altitudinal transect of Drosophila robusta Sturtevant. Evolution 2:4295–305
    [Google Scholar]
  142. Stanton ML, Galen C. 1997. Life on the edge: adaptation versus environmentally mediated gene flow in the snow buttercup, Ranunculus adoneus. Am. Nat. 150:2143–78
    [Google Scholar]
  143. Stearns SC. 1976. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51:13–47
    [Google Scholar]
  144. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43:111160–63
    [Google Scholar]
  145. Sumner FB. 1926. An analysis of geographic variation in mice of the Peromyscus polionotus group from Florida and Alabama. J. Mammal. 7:3149–84
    [Google Scholar]
  146. Sumner FB. 1929. The analysis of a concrete case of intergradation between two subspecies. II. Additional data and interpretations. PNAS 15:6481–93
    [Google Scholar]
  147. Turesson G. 1922. The species and the variety as ecological units. Hereditas 3:1100–13
    [Google Scholar]
  148. Turesson G. 1925. The plant species in relation to habitat and climate. Hereditas 6:2147–236
    [Google Scholar]
  149. Vaartaja O. 1959. Evidence of photoperiodic ecotypes in trees. Ecol. Monogr. 29:292–111
    [Google Scholar]
  150. VanWallendael A, Lowry DB, Hamilton JA. 2022. One hundred years into the study of ecotypes, new advances are being made through large-scale field experiments in perennial plant systems. Curr. Opin. Plant Biol. 66:102152
    [Google Scholar]
  151. Vignieri SN, Larson JG, Hoekstra HE. 2010. The selective advantage of crypsis in mice. Evolution 64:72153–58
    [Google Scholar]
  152. Wadgymar SM, Daws SC, Anderson JT. 2017a. Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines. Evol. Lett. 1:126–39
    [Google Scholar]
  153. Wadgymar SM, Lowry DB, Gould BA, Byron CN, Mactavish RM, Anderson JT. 2017b. Identifying targets and agents of selection: innovative methods to evaluate the processes that contribute to local adaptation. Methods Ecol. Evol. 8:6738–49
    [Google Scholar]
  154. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. 2014. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol. Lett. 17:6717–26
    [Google Scholar]
  155. Wang T, O'Neill GA, Aitken SN 2010. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20:1153–63
    [Google Scholar]
  156. Waser NM, Price MV. 1985. Reciprocal transplants experiments with Delphinium nelsonii (Ranunculaceae): evidence for local adaptation. Am. J. Bot. 72:111726–32
    [Google Scholar]
  157. Westram AM, Rafajlović M, Chaube P, Faria R, Larsson T et al. 2018. Clines on the seashore: the genomic architecture underlying rapid divergence in the face of gene flow. Evol. Lett. 2:4297–309
    [Google Scholar]
  158. Wilczek AM, Cooper MD, Korves TM, Schmitt J. 2014. Lagging adaptation to warming climate in Arabidopsis thaliana. PNAS 111:227906–13
    [Google Scholar]
  159. Wooliver R, Tittes SB, Sheth SN. 2020. A resurrection study reveals limited evolution of thermal performance in response to recent climate change across the geographic range of the scarlet monkeyflower. Evolution 74:1699–1710
    [Google Scholar]
  160. Wright SJ, Goad DM, Gross BL, Muñoz PR, Olsen KM. 2021. Genetic trade-offs underlie divergent life history strategies for local adaptation in white clover. Mol. Ecol 3114374260
  161. Yeaman S. 2022. Evolution of polygenic traits under global versus local adaptation. Genetics 220:1iyab134
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012722-035231
Loading
/content/journals/10.1146/annurev-ecolsys-012722-035231
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error