1932

Abstract

Freshwater fish have been widely introduced worldwide, and freshwater ecosystems are among those most affected by biological invasions. Consequently, freshwater fish invasions are one of the most documented invasions among animal taxa, with much information available about invasive species, their characteristics, invaded regions, invasion pathways, impacts, and management. While existing reviews address specific aspects of freshwater fish invasions, there is still a gaping lack of comprehensive assessments of freshwater fish invasions that simultaneously address pivotal and connected elements of the invasion process. Here, we provide a holistic review, together with quantitative assessments, divided into four major parts: () introduction pathways, () characteristics of nonnative species andinvaded ecosystems that explain successful invasion processes, () invasion impacts and their mechanisms, and () management. We highlight data gaps and biases in the current databases and highlight a basic lack of understanding of several aspects of freshwater fish invasions. In addition, we provide recommendations for future studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-032522-015551
2022-11-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-032522-015551.html?itemId=/content/journals/10.1146/annurev-ecolsys-032522-015551&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahams MV, Bassett DK, Montgomery JC. 2017. Sensory biology as a risk factor for invasion success and native fish decline. Trans. Am. Fish. Soc. 146:61238–44
    [Google Scholar]
  2. Ahmed DA, Hudgins E, Cuthbert R, Kourantidou M, Diagne C et al. 2022. Managing biological invasions: the cost of inaction. Biol. Invasions https://doi.org/10.1007/s10530-022-02755-0
    [Crossref] [Google Scholar]
  3. Aloo PA, Njiru J, Balirwa JS, Nyamweya CS. 2017. Impacts of Nile Perch, Lates niloticus, introduction on the ecology, economy and conservation of Lake Victoria, East Africa. Lakes Reserv. Res. Manag. 22:4320–33
    [Google Scholar]
  4. Arlinghaus R, Cooke S, Johnson BM, van Anrooy R. 2012. Recreational Fisheries Rome: Food Agric. Organ. U. N.
  5. Arthington AH, McKenzie F. 1997. Review of impacts of displaced/introduced fauna associated with inland waters State Environ. Tech. Pap. Ser. (Inland Waters), Dep. Environ. Canberra, Aust:.
  6. Azevedo-Santos VM, Vitule JRS, Pelicice FM, García-Berthou E, Simberloff D. 2017. Nonnative fish to control Aedes mosquitoes: a controversial, harmful tool. BioScience 67:184–90
    [Google Scholar]
  7. Bacher S, Blackburn TM, Essl F, Genovesi P, Heikkilä J et al. 2018. Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol. Evol. 9:1159–68
    [Google Scholar]
  8. Bailey SA. 2015. An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. Aquat. Ecosyst. Health Manag. 18:3261–68
    [Google Scholar]
  9. Balon EK. 1995. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129:13–48
    [Google Scholar]
  10. Beisel J-N, Lévêque C. 2010. Introduction d'espèces dans les milieux aquatiques: Faut-il avoir peur des invasions biologiques? Paris: Editions Quae
  11. Bellard C, Genovesi P, Jeschke JM. 2016. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B 283:182320152454
    [Google Scholar]
  12. Bellard C, Jeschke JM. 2016. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30:1230–32
    [Google Scholar]
  13. Bergstrom MA, Mensinger AF. 2009. Interspecific resource competition between the invasive round goby and three native species: logperch, slimy sculpin, and spoonhead sculpin. Trans. Am. Fish. Soc. 138:51009–17
    [Google Scholar]
  14. Bezerra LAV, Freitas MO, Daga VS, Occhi TVT, Faria L et al. 2019. A network meta-analysis of threats to South American fish biodiversity. Fish Fish 20:4620–39
    [Google Scholar]
  15. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP et al. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:7333–39
    [Google Scholar]
  16. Blackwell T, Ford AGP, Ciezarek AG, Bradbeer SJ, Juarez CAG et al. 2020. Newly discovered cichlid fish biodiversity threatened by hybridization with non-native species. Mol. Ecol. 30:4895–911
    [Google Scholar]
  17. Blanchet S, Leprieur F, Beauchard O, Staes J, Oberdorff T, Brosse S. 2009. Broad-scale determinants of non-native fish species richness are context-dependent. Proc. R. Soc. B 276:16662385–94
    [Google Scholar]
  18. Bosch J, Bielby J, Martin-Beyer B, Rincón P, Correa-Araneda F, Boyero L. 2019. Eradication of introduced fish allows successful recovery of a stream-dwelling amphibian. PLOS ONE 14:4e0216204
    [Google Scholar]
  19. Bouska WW, Glover DC, Trushenski JT, Secchi S, Garvey JE et al. 2020. Geographic-scale harvest program to promote invasivorism of bigheaded carps. Fishes 5:329
    [Google Scholar]
  20. Bravener G, Twohey M. 2016. Evaluation of a sterile-male release technique: a case study of invasive sea lamprey control in a tributary of the Laurentian Great Lakes. North Am. . J. Fish. Manag. 36:51125–38
    [Google Scholar]
  21. Bremner A, Park K. 2007. Public attitudes to the management of invasive non-native species in Scotland. Biol. Conserv. 139:3306–14
    [Google Scholar]
  22. Britton JR, Gozlan RE. 2013. Geo-politics and freshwater fish introductions: how the Cold War shaped Europe's fish allodiversity. Glob. Environ. Change 23:61566–74
    [Google Scholar]
  23. Britton JR, Gozlan RE, Copp GH. 2011. Managing non-native fish in the environment. Fish Fish 12:3256–74
    [Google Scholar]
  24. Britton JR, Orsi ML. 2012. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Rev. Fish Biol. Fish. 22:3555–65
    [Google Scholar]
  25. Brondizio ES, Settele J, Díaz S, Ngo HT, eds. 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Rep. Intergov. Sci. Policy Platf. Biodivers. Ecosyst. Serv. Bonn, Ger: https://doi.org/10.5281/zenodo.3831673
    [Crossref]
  26. Brosse S, Baglan A, Covain R, Lalagüe H, Le Bail P-Y et al. 2021. Aquarium trade and fish farms as a source of non-native freshwater fish introductions in French Guiana. Ann. Limnol. - Int. J. Limnol. 57:4
    [Google Scholar]
  27. Buckwalter JD, Frimpong EA, Angermeier PL, Barney JN. 2020. Species traits predict stream-fish invaders in an Appalachian (U.S.A.) river basin. Freshw. Biol. 65:3552–64
    [Google Scholar]
  28. Campbell SE, Mandrak NE. 2020. Functional differentiation accompanies taxonomic homogenization in freshwater fish communities. Ecology 101:12e03188
    [Google Scholar]
  29. Carpenter SR, Stanley EH, Vander Zanden MJ. 2011. State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36:75–99
    [Google Scholar]
  30. Cent. Food Saf 2012. Reported escapes from fish farms, 1996–2012 Rep. Cent. Food Saf. Washington, DC: www.centerforfoodsafety.org/files/fish-escapes-chart_14767.pdf
  31. Chilcott S, Freeman R, Davies PE, Crook DA, Fulton W et al. 2013. Extinct habitat, extant species: lessons learned from conservation recovery actions for the Pedder galaxias (Galaxias pedderensis) in south-west Tasmania, Australia. Mar. Freshw. Res. 64:9864–73
    [Google Scholar]
  32. Clavero M, Hermoso V, Aparicio E, Godinho FN. 2013. Biodiversity in heavily modified waterbodies: native and introduced fish in Iberian reservoirs. Freshw. Biol. 58:61190–201
    [Google Scholar]
  33. Copp GH, Bianco PG, Bogutskaya NG, Erős T, Falka I et al. 2005. To be, or not to be, a non-native freshwater fish?. J. Appl. Ichthyol. 21:4242–62
    [Google Scholar]
  34. Copp GH, Vilizzi L, Mumford JD, Fenwick G, Godard M, Gozlan R 2008. Calibration of FISK, an invasiveness screening tool for nonnative freshwater fishes. Risk Anal 29:457–67
    [Google Scholar]
  35. Cucherousset J, Olden JD. 2011. Ecological impacts of nonnative freshwater fishes. Fisheries 36:5215–30
    [Google Scholar]
  36. Daume S, Galaz V. 2016.. “ Anyone know what species this is?” – Twitter conversations as embryonic citizen science communities. PLOS ONE 11:3e0151387
    [Google Scholar]
  37. Dey V. 2016. The global trade in ornamental fish. INFOFISH Int. Apr. 52–55
    [Google Scholar]
  38. Diagne C, Leroy B, Gozlan RE, Vaissière A-C, Assailly C et al. 2020. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7:1277
    [Google Scholar]
  39. Drake A, Casas-Monroy O, Koops M, Bailey S. 2015. Propagule pressure in the presence of uncertainty: extending the utility of proxy variables with hierarchical models. Methods Ecol. Evol. 6:1363–71
    [Google Scholar]
  40. Drake DAR, Mandrak NE. 2014. Ecological risk of live bait fisheries: a new angle on selective fishing. Fisheries 39:5201–11
    [Google Scholar]
  41. Duggan IC, Rixon CAM, MacIsaac HJ. 2006. Popularity and propagule pressure: determinants of introduction and establishment of aquarium fish. Biol. Invasions 8:2377–82
    [Google Scholar]
  42. Eby L, Roach W, Crowder L, Stanford J. 2006. Effects of stocking-up freshwater food webs. Trends Ecol. Evol. 21:10576–84
    [Google Scholar]
  43. Elbakidze M, Hahn T, Zimmermann NE, Cudlín P, Friberg N et al. 2018. Direct and indirect drivers of change in biodiversity and nature's contributions to people. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia M Rounsevell, M Fischer, A Torre-Marin Rando, A Mader 385–568 Bonn, Ger.: Intergov. Sci. Policy Platf. Biodivers. Ecosyst. Serv https://ipbes.net/resource-file/20548
    [Google Scholar]
  44. Ellender B, Weyl OL. 2014. A review of current knowledge, risk and ecological impacts associated with non-native freshwater fish introductions in South Africa. Aquat. Invasions 9:117–32
    [Google Scholar]
  45. Elton CS. 2020 (1958). The Ecology of Invasions by Animals and Plants Cham, Switz.: Springer Nature
  46. Elvira B, Almodóvar A. 2001. Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. J. Fish Biol. 59:323–31
    [Google Scholar]
  47. Emery-Butcher HE, Beatty SJ, Robson BJ. 2020. The impacts of invasive ecosystem engineers in freshwaters: a review. Freshw. Biol. 65:5999–1015
    [Google Scholar]
  48. Enders M, Havemann F, Ruland F, Bernard-Verdier M, Catford JA et al. 2020. A conceptual map of invasion biology: integrating hypotheses into a consensus network. Glob. Ecol. Biogeogr. 29:6978–91
    [Google Scholar]
  49. Epanchin PN, Knapp RA, Lawler SP. 2010. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies. Ecology 91:82406–15
    [Google Scholar]
  50. Ercan D, Andreou D, Sana S, Öntaş C, Baba E et al. 2015. Evidence of threat to European economy and biodiversity following the introduction of an alien pathogen on the fungal–animal boundary. Emerg. Microbes Infect. 4:11–6
    [Google Scholar]
  51. Escobar LE, Mallez S, McCartney M, Lee C, Zielinski DP et al. 2018. Aquatic invasive species in the Great Lakes Region: an overview. Rev. Fish. Sci. Aquac. 26:1121–38
    [Google Scholar]
  52. Everard M, Pinder AC, Raghavan R, Kataria G. 2019. Are well-intended Buddhist practices an under-appreciated threat to global aquatic biodiversity?. Aquat. Conserv. Mar. Freshw. Ecosyst. 29:1136–41
    [Google Scholar]
  53. Evers H-G, Pinnegar JK, Taylor MI. 2019. Where are they all from? – Sources and sustainability in the ornamental freshwater fish trade. J. Fish Biol. 94:6909–16
    [Google Scholar]
  54. Food Agric. Org. UN 2016. The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all Rep. Food Agric. Org. UN Rome: . https://www.fao.org/3/i5555e/i5555e.pdf
    [Google Scholar]
  55. Fernández S, Arboleya E, Dopico E, Ardura A, Garcia-Vazquez E. 2019. Non-indigenous fish in protected spaces: trends in species distribution mediated by illegal stocking. Aquat. Conserv. Mar. Freshw. Ecosyst. 29:122240–52
    [Google Scholar]
  56. Fitzgerald DB, Tobler M, Winemiller KO. 2016. From richer to poorer: Successful invasion by freshwater fishes depends on species richness of donor and recipient basins. Glob. Change Biol. 22:72440–50
    [Google Scholar]
  57. Fletcher DH, Gillingham PK, Britton JR, Blanchet S, Gozlan RE. 2016. Predicting global invasion risks: a management tool to prevent future introductions. Sci. Rep. 6:126316
    [Google Scholar]
  58. Francis MP, Walsh C, Morrison MA, Middleton C. 2003. Invasion of the Asian goby, Acentrogobius pflaumii, into New Zealand, with new locality records of the introduced bridled goby, Arenigobius bifrenatus. N. Z. J. Mar. Freshw. Res. 37:1105–12
    [Google Scholar]
  59. Freire KMF, Machado ML, Crepaldi D. 2012. Overview of inland recreational fisheries in Brazil. Fisheries 37:11484–94
    [Google Scholar]
  60. Froese R, Pauly D, eds. 2022. FishBase Online database. updated Feb., accessed Apr. 2019. www.fishbase.org
    [Google Scholar]
  61. Fuller PL. 2015. Vectors of invasions in freshwater invertebrates and fishes. Biological Invasions in Changing Ecosystems J Canning-Clode 88–115 Warsaw, Poland: De Gruyter Open
    [Google Scholar]
  62. Galil BS, Nehring S, Panov V. 2007. Waterways as invasion highways – impact of climate change and globalization. Biological Invasions W Nentwig 59–74 Berlin, Heidelberg: Springer
    [Google Scholar]
  63. García-Berthou E. 2007. The characteristics of invasive fishes: What has been learned so far?. J. Fish Biol. 71:33–55
    [Google Scholar]
  64. García-Díaz P, Kerezsy A, Unmack PJ, Lintermans M, Beatty SJ et al. 2018. Transport pathways shape the biogeography of alien freshwater fishes in Australia. Divers. Distrib. 24:101405–15
    [Google Scholar]
  65. Gascho Landis AM, Lapointe NWR, Angermeier PL 2011. Individual growth and reproductive behavior in a newly established population of northern snakehead (Channaargus), Potomac River, USA. Hydrobiologia 661:1123–31
    [Google Scholar]
  66. Gertzen E, Familiar O, Leung B. 2008. Quantifying invasion pathways: fish introductions from the aquarium trade. Can. J. Fish. Aquat. Sci. 65:71265–73
    [Google Scholar]
  67. Gherardi F, Gollasch S, Minchin D, Olenin S, Panov VE. 2009. Alien invertebrates and fish in European inland waters. Handbook of Alien Species in Europe DAISIE (Delivering Alien Invasive Species Inventories for Europe) , Vol. 381–92 Dordrecht, Neth.: Springer Netherlands
    [Google Scholar]
  68. Gozlan RE. 2008. Introduction of non-native freshwater fish: Is it all bad?. Fish Fish 9:1106–15
    [Google Scholar]
  69. Gozlan RE 2017. Interference of non-native species with fisheries and aquaculture. Impact of Biological Invasions on Ecosystem Services M Vilà, PE Hulme 119–37 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  70. Gozlan RE, Andreou D, Asaeda T, Beyer K, Bouhadad R et al. 2010a. Pan-continental invasion of Pseudorasbora parva: towards a better understanding of freshwater fish invasions. Fish Fish 11:4315–40
    [Google Scholar]
  71. Gozlan RE, Britton JR, Cowx I, Copp GH. 2010b. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 76:4751–86
    [Google Scholar]
  72. Grabowska J, Kotusz J, Witkowski A. 2010. Alien invasive fish species in Polish waters: an overview. Folia Zool 59:173–85
    [Google Scholar]
  73. Gratwicke B, Marshall BE. 2001. The relationship between the exotic predators Micropterus salmoides and Serranochromis robustus and native stream fishes in Zimbabwe. J. Fish Biol. 58:168–75
    [Google Scholar]
  74. Gupta N, Bower SD, Raghavan R, Danylchuk AJ, Cooke SJ. 2015. Status of recreational fisheries in India: development, issues, and opportunities. Rev. Fish. Sci. Aquac. 23:3291–301
    [Google Scholar]
  75. Habit E, Gonzalez J, Ruzzante DE, Walde SJ. 2012. Native and introduced fish species richness in Chilean Patagonian lakes: inferences on invasion mechanisms using salmonid-free lakes. Divers. Distrib. 18:121153–65
    [Google Scholar]
  76. Hänfling B, Bolton P, Harley M, Carvalho GR. 2005. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw. Biol. 50:3403–17
    [Google Scholar]
  77. Harrison RG, Larson EL. 2014. Hybridization, introgression, and the nature of species boundaries. J. Hered. 105:S1795–809
    [Google Scholar]
  78. Haubrock PJ, Bernery C, Cuthbert RN, Liu C, Kourantidou M et al. 2022. Knowledge gaps in economic costs of invasive alien fish worldwide. Sci. Total Environ. 803:149875
    [Google Scholar]
  79. Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB. 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750:1147–70
    [Google Scholar]
  80. Havel JE, Lee CE, Vander Zanden JM. 2005. Do reservoirs facilitate invasions into landscapes?. BioScience 55:6518–25
    [Google Scholar]
  81. Hawkins CL, Bacher S, Essl F, Hulme PE, Jeschke JM et al. 2015. Framework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT). Divers. Distrib. 21:111360–63
    [Google Scholar]
  82. Herborg L-M, Mandrak NE, Cudmore BC, MacIsaac HJ. 2007. Comparative distribution and invasion risk of snakehead (Channidae) and Asian carp (Cyprinidae) species in North America. Can. J. Fish. Aquat. Sci. 64:121723–35
    [Google Scholar]
  83. Howeth JG, Gantz CA, Angermeier PL, Frimpong EA, Hoff MH et al. 2016. Predicting invasiveness of species in trade: Climate match, trophic guild and fecundity influence establishment and impact of non-native freshwater fishes. Divers. Distrib. 22:2148–60
    [Google Scholar]
  84. Hudon C. 1997. Impact of water level fluctuations on St. Lawrence River aquatic vegetation. Can. J. Fish. Aquat. Sci. 54:122853–65
    [Google Scholar]
  85. Hulme PE. 2015. Rough waters for native Chinese fish. Science 347:6221484
    [Google Scholar]
  86. ISSG (Invasive Species Specialist Group) 2015. The Global Invasive Species Database. Version 2015 1 http://www.iucngisd.org/gisd/
  87. Jackson MC, Woodford DJ, Bellingan TA, Weyl OLF, Potgieter MJ et al. 2016. Trophic overlap between fish and riparian spiders: potential impacts of an invasive fish on terrestrial consumers. Ecol. Evol. 6:61745–52
    [Google Scholar]
  88. Jarić I, Heger T, Castro Monzon F, Jeschke JM, Kowarik I et al. 2019. Crypticity in biological invasions. Trends Ecol. Evol. 34:4291–302
    [Google Scholar]
  89. Jerde CL, Mahon AR, Chadderton WL, Lodge DM. 2011.. “ Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4:2150–57
    [Google Scholar]
  90. Jeschke JM, Enders M, Bagni M, Jeschke P, Zimmermann M, Heger T. 2018. Hi-Knowledge – Invasion Biology: Hypothesis Network Book. Accessed October 2021. https://www.hi-knowledge.org/invasion-biology
  91. Johnson BM, Arlinghaus R, Martinez PJ. 2009. Are we doing all we can to stem the tide of illegal fish stocking?. Fisheries 34:8389–94
    [Google Scholar]
  92. Johnson PT, Olden JD, Vander Zanden MJ. 2008. Dam invaders: Impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ. 6:7357–63
    [Google Scholar]
  93. Júnior J, Tós CD, Agostinho ÂA, Pavanelli CS, Ferreira H. 2009. A massive invasion of fish species after eliminating a natural barrier in the upper Rio Paraná basin. Neotropical Ichthyol 7:4709–18
    [Google Scholar]
  94. Kalous L, Nechanská D, Petrtýl M. 2018. Survey of angler's internet posts confirmed the occurrence of freshwater fishes of the genus Ictiobus (Rafinesque, 1819) in natural waters of Czechia. Knowl. Manag. Aquat. Ecosyst. 419:29
    [Google Scholar]
  95. Kanda N, Leary RF, Allendorf FW. 2002. Evidence of introgressive hybridization between bull trout and brook trout. Trans. Am. Fish. Soc. 131:4772–82
    [Google Scholar]
  96. Kaufman L. 1992. Catastrophic change in species-rich freshwater ecosystems. BioScience 42:11846–58
    [Google Scholar]
  97. Kerr SJ, Brousseau CS, Muschett M. 2005. Invasive aquatic species in Ontario. Fisheries 30:721–30
    [Google Scholar]
  98. Kilian JV, Klauda RJ, Widman S, Kashiwagi M, Bourquin R et al. 2012. An assessment of a bait industry and angler behavior as a vector of invasive species. Biol. Invasions 14:71469–81
    [Google Scholar]
  99. Kirk RS. 2003. The impact of Anguillicola crassus on European eels. Fish. Manag. Ecol. 10:6385–94
    [Google Scholar]
  100. Knapp RA, Matthews KR. 1998. Eradication of nonnative fish by gill netting from a small mountain lake in California. Restor. Ecol. 6:2207–13
    [Google Scholar]
  101. Kolar CS, Lodge DM. 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298:55961233–36
    [Google Scholar]
  102. Kottege N, Jurdak R, Kroon F, Jones D. 2015. Automated detection of broadband clicks of freshwater fish using spectro-temporal features. J. Acoust. Soc. Am. 137:52502–11
    [Google Scholar]
  103. Kottege N, Kroon F, Jurdak R, Jones D. 2012. Classification of underwater broadband bio-acoustics using spectro-temporal features. Proceedings of the Seventh ACM International Conference on Underwater Networks and Systems1–8 New York: Assoc. Comput. Mach.
    [Google Scholar]
  104. Kuchta R, Choudhury A, Scholz T. 2018. Asian fish tapeworm: the most successful invasive parasite in freshwaters. Trends Parasitol 34:6511–23
    [Google Scholar]
  105. Lacerda ACF, Takemoto RM, Poulin R, Pavanelli GC. 2013. Parasites of the fish Cichla piquiti (Cichlidae) in native and invaded Brazilian basins: release not from the enemy, but from its effects. Parasitol. Res. 112:1279–88
    [Google Scholar]
  106. Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S. 2008. Fish invasions in the world's river systems: when natural processes are blurred by human activities. PLOS Biol. 6:2e28
    [Google Scholar]
  107. Leprieur F, Brosse S, García-Berthou E, Oberdorff T, Olden JD, Townsend CR. 2009. Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes. Fish Fish 10:188–97
    [Google Scholar]
  108. Leroy B, Dias MS, Giraud E, Hugueny B, Jézéquel C et al. 2019. Global biogeographical regions of freshwater fish species. J. Biogeogr. 46:112407–19
    [Google Scholar]
  109. Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G. 2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc. R. Soc. B 269:15082407–13
    [Google Scholar]
  110. Leuven RSEW, van der Velde G, Baijens I, Snijders J, van der Zwart C et al. 2009. The river Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invasions 11:91989
    [Google Scholar]
  111. Levine JM, Vilà M, Antonio CMD, Dukes JS, Grigulis K, Lavorel S. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. B 270:1517775–81
    [Google Scholar]
  112. Lewis MA, Petrovskii SV, Potts JR 2016. Dynamics of biological invasions. The Mathematics Behind Biological Invasions, ed. MA Lewis, SV Petrovskii, JR Potts 19–68 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  113. Lintermans M. 2004. Human-assisted dispersal of alien freshwater fish in Australia. N. Z. J. Mar. Freshw. Res. 38:3481–501
    [Google Scholar]
  114. Liu X, McGarrity ME, Li Y. 2012. The influence of traditional Buddhist wildlife release on biological invasions. Conserv. Lett. 5:2107–14
    [Google Scholar]
  115. Ludwig A. 2006. A sturgeon view on conservation genetics. Eur. J. Wildl. Res. 52:13–8
    [Google Scholar]
  116. Ludwig A, Lippold S, Debus L, Reinartz R. 2009. First evidence of hybridization between endangered sterlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol. Invasions 11:3753–60
    [Google Scholar]
  117. Lyach R, Čech M. 2018. A new trend in Central European recreational fishing: more fishing visits but lower yield and catch. Fish. Res. 201:131–37
    [Google Scholar]
  118. Lymbery AJ, Morine M, Kanani HG, Beatty SJ, Morgan DL. 2014. Co-invaders: the effects of alien parasites on native hosts. Int. J. Parasitol. Parasites Wildl. 3:2171–77
    [Google Scholar]
  119. Magalhães ALB, Daga VS, Bezerra LAV, Vitule JRS, Jacobi CM, Silva LGM. 2020. All the colors of the world: biotic homogenization-differentiation dynamics of freshwater fish communities on demand of the Brazilian aquarium trade. Hydrobiologia 847:183897–915
    [Google Scholar]
  120. Magalhães ALB, Jacobi CM. 2013. Invasion risks posed by ornamental freshwater fish trade to southeastern Brazilian rivers. Neotropical Ichthyol 11:2433–41
    [Google Scholar]
  121. Mandrak NE, Cudmore B. 2010. The fall of native fishes and the rise of non-native fishes in the Great Lakes Basin. Aquat. Ecosyst. Health Manag. 13:3255–68
    [Google Scholar]
  122. Marchetti MP, Light T, Moyle PB, Viers JH. 2004a. Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecol. Appl. 14:51507–25
    [Google Scholar]
  123. Marchetti MP, Moyle PB, Levine R. 2004b. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshw. Biol. 49:5646–61
    [Google Scholar]
  124. Matsuzaki SS, Usio N, Takamura N, Washitani I. 2009. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158:4673–86
    [Google Scholar]
  125. McColl KA, Cooke BD, Sunarto A. 2014. Viral biocontrol of invasive vertebrates: lessons from the past applied to cyprinid herpesvirus-3 and carp (Cyprinus carpio) control in Australia. Biol. Control 72:109–17
    [Google Scholar]
  126. McColl KA, Sunarto A, Holmes EC. 2016. Cyprinid herpesvirus 3 and its evolutionary future as a biological control agent for carp in Australia. Virol. J. 13:1206
    [Google Scholar]
  127. McDowall RM. 1994. Gamekeepers for the Nation: The Story of New Zealand's Acclimatisation Societies1861–1990 Christchurch, NZ: Canterbury Univ. Press
  128. McKnight E, García-Berthou E, Srean P, Rius M. 2017. Global meta-analysis of native and nonindigenous trophic traits in aquatic ecosystems. Glob. Change Biol. 23:51861–70
    [Google Scholar]
  129. Minder M, Arsenault ER, Erdenee B, Pyron M. 2020. Dietary specificity and overlap in endorheic river fishes: How do native and nonnative species compare?. J. Fish Biol. 97:2453–64
    [Google Scholar]
  130. Mitchell C. 2020. The Liberator: How one man's 15,000 pest fish changed New Zealand's waterways. Stuff Jan. 26. https://www.stuff.co.nz/national/118845051/the-liberator-how-one-mans-15000-pest-fish-changed-new-zealands-waterways .
    [Google Scholar]
  131. Moyle PB, Light T. 1996a. Biological invasions of fresh water: empirical rules and assembly theory. Biol. Conserv. 78:1–2149–61
    [Google Scholar]
  132. Moyle PB, Light T. 1996b. Fish invasions in California: Do abiotic factors determine success?. Ecology 77:61666–70
    [Google Scholar]
  133. Moyle PB, Marchetti MP. 2006. Predicting invasion success: freshwater fishes in California as a model. BioScience 56:6515–24
    [Google Scholar]
  134. Muhlfeld CC, Kalinowski ST, McMahon TE, Taper ML, Painter S et al. 2009. Hybridization rapidly reduces fitness of a native trout in the wild. Biol Lett 5:3328–31
    [Google Scholar]
  135. Muhlfeld CC, Kovach RP, Al-Chokhachy R, Amish SJ, Kershner JL et al. 2017. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Glob. Change Biol. 23:114663–74
    [Google Scholar]
  136. Nekola JC, White PS. 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26:867–78
    [Google Scholar]
  137. Noatch MR, Suski CD. 2012. Non-physical barriers to deter fish movements. Environ. Rev. 20:171–82
    [Google Scholar]
  138. Novoa A, Richardson DM, Pyšek P, Meyerson LA, Bacher S et al. 2020. Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22:51801–20
    [Google Scholar]
  139. Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19:118–24
    [Google Scholar]
  140. Olden JD, Whattam E, Wood SA. 2020. Online auction marketplaces as a global pathway for aquatic invasive species. Hydrobiologia 848:91967–79
    [Google Scholar]
  141. Pawson SM, Sullivan JJ, Grant A. 2020. Expanding general surveillance of invasive species by integrating citizens as both observers and identifiers. J. Pest Sci. 93:41155–66
    [Google Scholar]
  142. Pelletier MC, Ebersole J, Mulvaney K, Rashleigh B, Gutierrez MN et al. 2020. Resilience of aquatic systems: review and management implications. Aquat. Sci. 82:244
    [Google Scholar]
  143. Pont D, Rocle M, Valentini A, Civade R, Jean P et al. 2018. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8:110361
    [Google Scholar]
  144. Pool TK, Olden JD. 2012. Taxonomic and functional homogenization of an endemic desert fish fauna. Divers. Distrib. 18:4366–76
    [Google Scholar]
  145. Pyke GH. 2008. Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia Species. Annu. Rev. Ecol. Evol. Syst. 39:171–91
    [Google Scholar]
  146. Pyšek P, Bacher S, Kühn I, Novoa A, Catford JA et al. 2020. Macroecological framework for invasive aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota 62:407–61
    [Google Scholar]
  147. Pyšek P, Richardson DM. 2010. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Res. 35:25–55
    [Google Scholar]
  148. Rabitsch W, Milasowszky N, Nehring S, Wiesner C, Wolter C, Essl F. 2013. The times are changing: temporal shifts in patterns of fish invasions in central European fresh waters. J. Fish Biol. 82:17–33
    [Google Scholar]
  149. Rahel FJ. 2000. Homogenization of fish faunas across the United States. Science 288:5467854–56
    [Google Scholar]
  150. Rahel FJ, Olden JD. 2008. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22:3521–33
    [Google Scholar]
  151. Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC. 2014. The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51:51450–59
    [Google Scholar]
  152. Reshetnikov AN, Sokolov SG, Protasova EN. 2011. The host-specific parasite Nippotaenia mogurndae confirms introduction vectors of the fish Perccottus glenii in the Volga river basin. J. Appl. Ichthyol. 27:51226–31
    [Google Scholar]
  153. Reshetnikov AN, Sokolov SG, Protasova EN. 2017. Detection of a neglected introduction event of the invasive fish Perccottus glenii using parasitological analysis. Hydrobiologia 788:165–73
    [Google Scholar]
  154. Ribeiro F, Elvira B, Collares-Pereira MJ, Moyle PB 2008. Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biol. Invasions 10:189–102
    [Google Scholar]
  155. Ricciardi A, MacIsaac HJ 2010. Impacts of biological invasions on freshwater ecosystems. Fifty Years of Invasion Ecology DM Richardson 211–24 Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  156. Rixon CAM, Duggan IC, Bergeron NMN, Ricciardi A, MacIsaac HJ. 2005. Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodivers. Conserv. 14:61365–81
    [Google Scholar]
  157. Robertson PA, Mill A, Novoa A, Jeschke JM, Essl F et al. 2020. A proposed unified framework to describe the management of biological invasions. Biol. Invasions 22:92633–45
    [Google Scholar]
  158. Roche DG, Leung B, Mendoza Franco EF, Torchin ME 2010. Higher parasite richness, abundance and impact in native versus introduced cichlid fishes. Int. J. Parasitol. 40:131525–30
    [Google Scholar]
  159. Rosenfield JA, Nolasco S, Lindauer S, Sandoval C, Kodric-Brown A. 2004. The role of hybrid vigor in the replacement of Pecos pupfish by its hybrids with sheepshead minnow. Conserv. Biol. 18:61589–98
    [Google Scholar]
  160. Roth C, Kennedy P, Besson J. 2020. Wild trout evaluations: MYY Brook Trout field evaluations 2019. Rep. 20–03 Idaho Dep. Fish Game Boise, ID: https://collaboration.idfg.idaho.gov/FisheriesTechnicalReports/Res20-03Roth2019%20Wild%20Trout%20Report.pdf
  161. Ruesink JL. 2005. Global analysis of factors affecting the outcome of freshwater fish introductions: outcome of fish introductions. Conserv. Biol. 19:61883–93
    [Google Scholar]
  162. Rytwinski T, Taylor JJ, Donaldson LA, Britton JR, Browne DR et al. 2019. The effectiveness of non-native fish removal techniques in freshwater ecosystems: a systematic review. Environ. Rev. 27:171–94
    [Google Scholar]
  163. Sampson SJ, Chick JH, Pegg MA. 2009. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biol. Invasions 11:3483–96
    [Google Scholar]
  164. Schill DJ, Heindel JA, Campbell MR, Meyer KA, Mamer ERJM. 2016. Production of a YY male brook trout broodstock for potential eradication of undesired brook trout populations. N. Am. J. Aquac. 78:172–83
    [Google Scholar]
  165. Schleuter D. 2007. Competition for food between perch (Perca fluviatilis L.) and invasive ruffe (Gymnocephalus cernuus (L.)) in re-oligotrophic Lake Constance PhD thesis Univ. Konstanz Konstanz, Ger:.
    [Google Scholar]
  166. Seaman AN, Franzidis A, Samuelson H, Ivy S. 2022. Eating invasives: chefs as an avenue to control through consumption. Food Cult. Soc. 25:1108–25
    [Google Scholar]
  167. Seebens H, Bacher S, Blackburn TM, Capinha C, Dawson W et al. 2021. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27:5970–82
    [Google Scholar]
  168. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE et al. 2017. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8:114435
    [Google Scholar]
  169. Sharpe DMT, León LFD, González R, Torchin ME. 2017. Tropical fish community does not recover 45 years after predator introduction. Ecology 98:2412–24
    [Google Scholar]
  170. Sheath DJ, Williams CF, Reading AJ, Britton JR. 2015. Parasites of non-native freshwater fishes introduced into England and Wales suggest enemy release and parasite acquisition. Biol. Invasions 17:82235–46
    [Google Scholar]
  171. Siefkes MJ. 2017. Use of physiological knowledge to control the invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes. Conserv. Physiol. 5:1cox031
    [Google Scholar]
  172. Simberloff D. 2006. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both?. Ecol. Lett. 9:8912–19
    [Google Scholar]
  173. Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40:181–102
    [Google Scholar]
  174. Simberloff D. 2021. Maintenance management and eradication of established aquatic invaders. Hydrobiologia 848:92399–420
    [Google Scholar]
  175. Smith JW, Swink WD. 2003. Boll weevil eradication: a model for sea lamprey control?. J. Gt. Lakes Res. 29:445–55
    [Google Scholar]
  176. Smith SA, Bell G, Bermingham E. 2004. Cross–Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages. Proc. R. Soc. B 271:15511889–96
    [Google Scholar]
  177. Snyder RJ, Burlakova LE, Karatayev AY, MacNeill DB. 2014. Updated invasion risk assessment for Ponto-Caspian fishes to the Great Lakes. J. Gt. Lakes Res. 40:2360–69
    [Google Scholar]
  178. Sorensen PW, Johnson NS. 2016. Theory and application of semiochemicals in nuisance fish control. J Chem Ecol 42:7698–715
    [Google Scholar]
  179. Spikmans F, Lemmers P, op den Camp HJM, van Haren E, Kappen F et al. 2020. Impact of the invasive alien topmouth gudgeon (Pseudorasbora parva) and its associated parasite Sphaerothecum destruens on native fish species. Biol. Invasions 22:2587–601
    [Google Scholar]
  180. Strecker AL, Campbell PM, Olden JD. 2011. The aquarium trade as an invasion pathway in the Pacific Northwest. Fisheries 36:274–85
    [Google Scholar]
  181. Su G, Logez M, Xu J, Tao S, Villéger S, Brosse S. 2021. Human impacts on global freshwater fish biodiversity. Science 371:6531835–38
    [Google Scholar]
  182. Su G, Villéger S, Brosse S. 2020. Morphological sorting of introduced freshwater fish species within and between donor realms. Glob. Ecol. Biogeogr. 29:5803–13
    [Google Scholar]
  183. Taabu-Munyaho A, Marshall B, Tomasson T, Marteinsdottir G. 2016. Nile perch and the transformation of Lake Victoria. Afr. J. Aquat. Sci. 41:2127–42
    [Google Scholar]
  184. Tedesco PA, Beauchard O, Bigorne R, Blanchet S, Buisson L et al. 2017. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4:1170141
    [Google Scholar]
  185. Teem JL, Gutierrez JB. 2014. Combining the Trojan Y chromosome and daughterless carp eradication strategies. Biol. Invasions 16:61231–40
    [Google Scholar]
  186. Teletchea F. 2019. Fish domestication in aquaculture: reassessment and emerging questions. Cybium 43:17–15
    [Google Scholar]
  187. Tempero GW, Hicks BJ, Ling N, Morgan D, Daniel AJ et al. 2019. Fish community responses to invasive fish removal and installation of an exclusion barrier at Lake Ohinewai, Waikato. N. Z. J. Mar. Freshw. Res. 53:3397–415
    [Google Scholar]
  188. Thomas CD. 2011. Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol. Evol. 26:5216–21
    [Google Scholar]
  189. Tonella LH, Fugi R, Vitorino OB, Suzuki HI, Gomes LC, Agostinho AA. 2018. Importance of feeding strategies on the long-term success of fish invasions. Hydrobiologia 817:1239–52
    [Google Scholar]
  190. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM. 2003. Introduced species and their missing parasites. Nature 421:6923628–30
    [Google Scholar]
  191. Toussaint A, Beauchard O, Oberdorff T, Brosse S, Villéger S. 2016. Worldwide freshwater fish homogenization is driven by a few widespread non-native species. Biol. Invasions 18:51295–304
    [Google Scholar]
  192. Toussaint A, Charpin N, Beauchard O, Grenouillet G, Oberdorff T et al. 2018. Non-native species led to marked shifts in functional diversity of the world freshwater fish faunas. Ecol. Lett. 21:111649–59
    [Google Scholar]
  193. Turbelin AJ, Malamud BD, Francis RA. 2017. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26:178–92
    [Google Scholar]
  194. Vargas PV, Arismendi I, Gomez-Uchida D. 2015. Evaluating taxonomic homogenization of freshwater fish assemblages in Chile. Rev. Chil. Hist. Nat. 88:116
    [Google Scholar]
  195. Verna DE, Harris BP. 2016. Review of ballast water management policy and associated implications for Alaska. Mar. Policy. 70:13–21
    [Google Scholar]
  196. Vila-Gispert A, Alcaraz C, García-Berthou E. 2005. Life-history traits of invasive fish in small Mediterranean streams. Biol. Invasions 7:1107–16
    [Google Scholar]
  197. Vilizzi L, Copp GH, Hill JE, Adamovich B, Aislabie L et al. 2021. A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions. Sci. Total Environ. 788:147868
    [Google Scholar]
  198. Villéger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S. 2011. Homogenization patterns of the world's freshwater fish faunas. PNAS 108:4418003–8
    [Google Scholar]
  199. Villéger S, Grenouillet G, Brosse S. 2014. Functional homogenization exceeds taxonomic homogenization among European fish assemblages: change in functional β-diversity. Glob. Ecol. Biogeogr. 23:121450–60
    [Google Scholar]
  200. Vimercati G, Kumschick S, Probert AF, Volery L, Bacher S. 2020. The importance of assessing positive and beneficial impacts of alien species. NeoBiota 62:525–45
    [Google Scholar]
  201. Vitule JRS, Freire CA, Simberloff D. 2009. Introduction of non-native freshwater fish can certainly be bad. Fish Fish. 10:198–108
    [Google Scholar]
  202. Vitule JRS, Occhi TVT, Kang B, Matsuzaki S-I, Bezerra LA et al. 2019. Intra-country introductions unraveling global hotspots of alien fish species. Biodivers. Conserv. 28:113037–43
    [Google Scholar]
  203. Werschkun B, Banerji S, Basurko OC, David M, Fuhr F et al. 2014. Emerging risks from ballast water treatment: the run-up to the International Ballast Water Management Convention. Chemosphere 112:256–66
    [Google Scholar]
  204. Wilson JRU, Richardson DM, Rouget M, Procheş Ş, Amis MA et al. 2007. Residence time and potential range: crucial considerations in modelling plant invasions. Divers. Distrib. 13:111–22
    [Google Scholar]
  205. Witkowski A, Goryczko K, Kowalewski M. 2013. The history of huchen, Hucho hucho (L.), in Poland – distribution, restoration and conservation. Arch. Pol. Fish. 21:3161–68
    [Google Scholar]
  206. Wong E, Chi LK, Tsui S, Tiejun W. 2017. One Belt, One Road: China's strategy for a new global financial order. Mon. Rev. 68:836–45
    [Google Scholar]
  207. Wonham MJ, Carlton JT, Ruiz GM, Smith LD. 2000. Fish and ships: relating dispersal frequency to success in biological invasions. Mar. Biol. 136:61111–21
    [Google Scholar]
  208. Woodford DJ, Hui C, Richardson DM, Weyl OLF. 2013. Propagule pressure drives establishment of introduced freshwater fish: quantitative evidence from an irrigation network. Ecol. Appl. 23:81926–37
    [Google Scholar]
  209. Yongo E, Agembe S, Outa N, Owili M. 2018. Growth, mortality and recruitment of Nile perch (Lates niloticus) in Lake Victoria, Kenya. Lakes Reserv. Res. Manag. 23:117–23
    [Google Scholar]
  210. Zhang Z, Xie Y, Wu Y. 2006. Human disturbance, climate and biodiversity determine biological invasion at a regional scale. Integr. Zool. 1:3130–38
    [Google Scholar]
  211. Zhao Y, Gozlan RE, Zhang C 2015. Current state of freshwater fisheries in China. Freshwater Fisheries Ecology JF Craig 221–30 Chichester, UK: John Wiley & Sons, Ltd.
    [Google Scholar]
  212. Zoric K, Simonovic P, Djikanovic V, Markovic V, Nikolic V et al. 2014. Checklist of non-indigenous fish species of the River Danube. Arch. Biol. Sci. 66:2629–39
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-032522-015551
Loading
/content/journals/10.1146/annurev-ecolsys-032522-015551
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error