1932

Abstract

Stable isotope analysis (SIA) has proven to be a useful tool in reconstructing diets, characterizing trophic relationships, elucidating patterns of resource allocation, and constructing food webs. Consequently, the number of studies using SIA in trophic ecology has increased exponentially over the past decade. Several subdisciplines have developed, including isotope mixing models, incorporation dynamics models, lipid-extraction and correction methods, isotopic routing models, and compound-specific isotopic analysis. As with all tools, there are limitations to SIA. Chief among these are multiple sources of variation in isotopic signatures, unequal taxonomic and ecosystem coverage, over-reliance on literature values for key parameters, lack of canonical models, untested or unrealistic assumptions, low predictive power, and a paucity of experimental studies. We anticipate progress in SIA resulting from standardization of methods and models, calibration of model parameters through experimentation, and continued development of several recent approaches such as isotopic routing models and compound-specific isotopic analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102209-144726
2011-12-01
2024-04-23
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-ecolsys-102209-144726
Loading
/content/journals/10.1146/annurev-ecolsys-102209-144726
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error