1932

Abstract

The interactions between ants and certain sap-feeding insects in the order Hemiptera are classic examples of food-for-protection mutualisms. In these associations, herbivorous hemipterans use a highly specialized, straw-like mouthpart to consume sap directly from plant phloem and xylem and, as a result, excrete a sugar-rich waste product called honeydew. Ant foragers use specialized adaptations to collect and share honeydew with nestmates and, in exchange, protect hemipterans against predators. The two key innovations underlying this interaction—hemipteran sap feeding and ant harvesting of honeydew—have driven the evolutionary success and ecological dominance of ants. These interactions also carry unique costs and benefits for each partner and are highly context dependent. Understanding the factors mediating this mutualism is critical, as these interactions have broader ecological consequences for the natural and agricultural ecosystems in which they are embedded.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102220-014840
2022-11-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102220-014840.html?itemId=/content/journals/10.1146/annurev-ecolsys-102220-014840&mimeType=html&fmt=ahah

Literature Cited

  1. Abdala-Roberts L, Agrawal AA, Mooney KA. 2012. Ant–aphid interactions on Asclepias syriaca are mediated by plant genotype and caterpillar damage. Oikos 121:111905–13
    [Google Scholar]
  2. Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE et al. 2012. Highly similar microbial communities are shared among related and trophically similar ant species. Mol. Ecol. 21:92282–96
    [Google Scholar]
  3. Ando Y, Utsumi S, Ohgushi T. 2017. Aphid as a network creator for the plant-associated arthropod community and its consequence for plant reproductive success. Funct. Ecol. 31:3632–41
    [Google Scholar]
  4. Banks CJ, Nixon HL. 1958. Effects of the ant, Lasiusniger L., on the feeding and excretion of the bean aphid, Aphis fabae Scop. J. Exp. Biol. 35:4703–11
    [Google Scholar]
  5. Barton BT, Ives AR. 2014. Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology 95:61479–84
    [Google Scholar]
  6. Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM et al. 2014. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51:41–51
    [Google Scholar]
  7. Billick I, Hammer S, Reithel JS, Abbot P 2007. Ant–aphid interactions: Are ants friends, enemies, or both?. Ann. Entomol. Soc. Am. 100:6887–92
    [Google Scholar]
  8. Billick I, Weidmann M, Reithel J. 2001. The relationship between ant-tending and maternal care in the treehopper Publilia modesta. Behav. Ecol. Sociobiol. 51:141–46
    [Google Scholar]
  9. Blüthgen N, Fiedler K. 2004a. Competition for composition: lessons from nectar-feeding ant communities. Ecology 85:61479–85
    [Google Scholar]
  10. Blüthgen N, Fiedler K. 2004b. Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J. Anim. Ecol. 73:1155–66
    [Google Scholar]
  11. Blüthgen N, Stork NE, Fiedler K. 2004. Bottom-up control and co-occurrence in complex communities: Honeydew and nectar determine a rainforest ant mosaic. Oikos 106:2344–58
    [Google Scholar]
  12. Blüthgen N, Verhaagh M, Goitía W, Jaffé K, Morawetz W, Barthlott W. 2000. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:2229–40
    [Google Scholar]
  13. Boivin G, Hance T, Brodeur J. 2012. Aphid parasitoids in biological control. Can. J. Plant Sci. 92:11–12
    [Google Scholar]
  14. Bourgoin T. 1997. Habitat and ant-attendance in Hemiptera: a phylogenetic test with emphasis on trophobiosis in Fulgoromorpha. Memoires Mus. Natl. Hist. Nat. 173:109–24
    [Google Scholar]
  15. Brightwell RJ, Silverman J. 2011. The Argentine ant persists through unfavorable winters via a mutualism facilitated by a native tree. Environ. Entomol. 40:51019–26
    [Google Scholar]
  16. Buckley RC. 1987. Interactions involving plants, Homoptera, and ants. Annu. Rev. Ecol. Syst. 18:1111–35
    [Google Scholar]
  17. Camacho LF, Avilés L. 2021. Resource exchange and partner recognition mediate mutualistic interactions between prey and their would-be predators. Biol. Lett. 17:820210316
    [Google Scholar]
  18. Chamberlain SA, Holland JN. 2009. Quantitative synthesis of context dependency in ant–plant protection mutualisms. Ecology 90:92384–92
    [Google Scholar]
  19. Colfer RG, Rosenheim JA. 2001. Predation on immature parasitoids and its impact on aphid suppression. Oecologia 126:2292–304
    [Google Scholar]
  20. Collins CM, Leather SR. 2002. Ant-mediated dispersal of the black willow aphid Pterocomma salicis L.; does the ant Lasiusniger L. judge aphid-host quality?. Ecol. Entomol. 27:2238–41
    [Google Scholar]
  21. Cox JM, Pearce MJ. 1983. Wax produced by dermal pores in three species of mealybug (Homoptera: Pseudococcidae). Int. J. Insect. Morphol. Embryol. 12:4235–48
    [Google Scholar]
  22. Cryan JR, Wiegmann BM, Deitz LL, Dietrich CH, Whiting MF. 2004. Treehopper trees: phylogeny of Membracidae (Hemiptera: Cicadomorpha: Membracoidea) based on molecules and morphology. Syst. Entomol 29:4441–54
    [Google Scholar]
  23. Cushman JH, Addicott JF. 1989. Intra- and interspecific competition for mutualists: ants as a limited and limiting resource for aphids. Oecologia 79:3315–21
    [Google Scholar]
  24. Cushman JH, Whitham TG. 1991. Competition mediating the outcome of a mutualism: protective services of ants as a limiting resource for membracids. Am. Nat. 138:4851–65
    [Google Scholar]
  25. Davidson DW. 1997. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol. J. Linn. Soc. 61:2153–81
    [Google Scholar]
  26. Davidson DW. 1998. Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecol. Entomol. 23:4484–90
    [Google Scholar]
  27. Davidson DW, Cook SC, Snelling RR. 2004. Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:2255–66 Erratum. 2005. Oecologia 143:335
    [Google Scholar]
  28. Davidson DW, Cook SC, Snelling RR, Chua TH. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:5621969–72
    [Google Scholar]
  29. Delabie JHC. 2001. Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotrop. Entomol. 30:4501–16
    [Google Scholar]
  30. Del-Claro K, Oliveira PS. 1993. Ant-Homoptera interaction: Do alternative sugar sources distract tending ants?. Oikos 68:2202–6
    [Google Scholar]
  31. Del-Claro K, Oliveira PS. 2000. Conditional outcomes in a neotropical treehopper-ant association: temporal and species-specific variation in ant protection and homopteran fecundity. Oecologia 124:2156–65
    [Google Scholar]
  32. Detrain C, Verheggen FJ, Diez L, Wathelet B, Haubruge E. 2010. Aphid–ant mutualism: how honeydew sugars influence the behaviour of ant scouts. Physiol. Entomol. 35:2168–74
    [Google Scholar]
  33. Doré M, Fontaine C, Thébault E. 2021. Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Glob. Change Biol. 27:61266–80
    [Google Scholar]
  34. Eisner T, Brown WL. 1958. The evolution and social significance of the ant proventriculus. Proc. Tenth Int. Congr. Entomol. 2:503–8
    [Google Scholar]
  35. Endo S, Itino T. 2012. The aphid-tending ant Lasiusfuji exhibits reduced aggression toward aphids marked with ant cuticular hydrocarbons. Popul. Ecol. 54:3405–10
    [Google Scholar]
  36. Eubanks MD, Styrsky JD, Denno RF. 2003. The evolution of omnivory in heteropteran insects. Ecology 84:102549–56
    [Google Scholar]
  37. Evans TA, Dawes TZ, Ward PR, Lo N. 2011. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2:1262
    [Google Scholar]
  38. Fischer CY, Lognay GC, Detrain C, Heil M, Grigorescu A et al. 2015. Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology 25:5223–32
    [Google Scholar]
  39. Fischer MK, Shingleton AW. 2001. Host plant and ants influence the honeydew sugar composition of aphids. Funct. Ecol. 15:4544–50
    [Google Scholar]
  40. Flatt T, Weisser WW. 2000. The effects of mutualistic ants on aphid life history traits. Ecology 81:123522–29
    [Google Scholar]
  41. Grimaldi D, Engel MS. 2005. Evolution of the Insects Cambridge, UK: Cambridge Univ. Press
  42. Grover CD, Kay AD, Monson JA, Marsh TC, Holway DA. 2007. Linking nutrition and behavioural dominance: Carbohydrate scarcity limits aggression and activity in Argentine ants. Proc. R. Soc. B 274: 1628.2951–57
    [Google Scholar]
  43. Gullan PJ, Cranston PS. 2014. The Insects: An Outline of Entomology Hoboken, NJ: John Wiley & Sons
  44. Gullan PJ, Kosztarab M. 1997. Adaptations in scale insects. Annu. Rev. Entomol. 42:123–50
    [Google Scholar]
  45. Harris KF, Maramorosch K. 2014. Aphids as Virus Vectors Amsterdam: Elsevier
  46. Hayashi M, Hojo MK, Nomura M, Tsuji K. 2017. Social transmission of information about a mutualist via trophallaxis in ant colonies. Proc. R. Soc. B 284: 1861.20171367
    [Google Scholar]
  47. Hayashi M, Nakamuta K, Nomura M. 2015. Ants learn aphid species as mutualistic partners: Is the learning behavior species-specific?. J. Chem. Ecol. 41:121148–54
    [Google Scholar]
  48. Helms KR, Hayden CP, Vinson SB. 2011. Plant-based food resources, trophic interactions among alien species, and the abundance of an invasive ant. Biol. Invasions 13:167–79
    [Google Scholar]
  49. Helms KR, Vinson S. 2008. Plant resources and colony growth in an invasive ant: the importance of honeydew-producing Hemiptera in carbohydrate transfer across trophic levels. Environ. Entomol. 37:2487–93
    [Google Scholar]
  50. Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ. 2015. Insect life history and the evolution of bacterial mutualism. Ecol. Lett. 18:6516–25
    [Google Scholar]
  51. Hertaeg C, Risse M, Vorburger C, De Moraes CM, Mescher MC. 2021. Aphids harbouring different endosymbionts exhibit differences in cuticular hydrocarbon profiles that can be recognized by ant mutualists. Sci. Rep. 11:119559
    [Google Scholar]
  52. Hölldobler B, Wilson EO. 1990. The Ants Cambridge, MA: Belknap Press
  53. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ. 2002. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33:1181–233
    [Google Scholar]
  54. Ivens ABF, Gadau A, Kiers ET, Kronauer DJC. 2018. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol. Ecol. 27:81898–914
    [Google Scholar]
  55. Ivens ABF, Kronauer DJ, Pen I, Weissing FJ, Boomsma JJ. 2012. Ants farm subterranean aphids mostly in single clone groups—an example of prudent husbandry for carbohydrates and proteins?. BMC Evol. Biol. 12:1106
    [Google Scholar]
  56. Ivens ABF, von Beeren C, Blüthgen N, Kronauer DJC. 2016. Studying the complex communities of ants and their symbionts using ecological network analysis. Annu. Rev. Entomol. 61:1353–71
    [Google Scholar]
  57. Jetter K, Hamilton J, Klotz J. 2002. Eradication costs calculated: Red imported fire ants threaten agriculture, wildlife and homes. Calif. Agric. 56:126–34
    [Google Scholar]
  58. Katayama N, Hembry DH, Hojo MK, Suzuki N. 2013. Why do ants shift their foraging from extrafloral nectar to aphid honeydew?. Ecol. Res. 28:5919–26
    [Google Scholar]
  59. Kenne M, DjiéJito-Lordon C, Orivel J, Mony R, Fabre A, Dejean A. 2003. Influence of insecticide treatments on ant–Hemiptera associations in tropical plantations. J. Econ. Entomol. 96:2251–58
    [Google Scholar]
  60. Kremer JMM, Nooten SS, Cook JM, Ryalls JMW, Barton CVM, Johnson SN. 2018. Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids. J. Anim. Ecol. 87:51475–83
    [Google Scholar]
  61. Kudo T, Aonuma H, Hasegawa E. 2021. A symbiotic aphid selfishly manipulates attending ants via dopamine in honeydew. Sci. Rep. 11:118569
    [Google Scholar]
  62. Lach L. 2003. Invasive ants: unwanted partners in ant-plant interactions?. Ann. Mo. Bot. Gard. 90:191–108
    [Google Scholar]
  63. Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G et al. 2011. Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat. Commun. 2:1348
    [Google Scholar]
  64. LeVan KE, Barney SK, Rankin EEW. 2018. Introduced ants reduce interaction diversity in a multi-species, ant–aphid mutualism. Oikos 127:81132–41
    [Google Scholar]
  65. Lucky A, Trautwein MD, Guénard BS, Weiser MD, Dunn RR. 2013. Tracing the rise of ants - out of the ground. PLOS ONE 8:12e84012
    [Google Scholar]
  66. Mailleux A-C, Deneubourg J-L, Detrain C. 2003. Regulation of ants’ foraging to resource productivity. Proc. R. Soc. B 270: 1524.1609–16
    [Google Scholar]
  67. Meurville M-P, LeBoeuf AC. 2021. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31:1–30
    [Google Scholar]
  68. Mooney E, Davidson B, Uyl JD, Mullins M, Medina E et al. 2019. Elevated temperatures alter an ant-aphid mutualism. Entomol. Exp. Appl. 167:10891–905
    [Google Scholar]
  69. Mooney EH, Phillips JS, Tillberg CV, Sandrow C, Nelson AS, Mooney KA. 2016. Abiotic mediation of a mutualism drives herbivore abundance. Ecol. Lett. 19:137–44
    [Google Scholar]
  70. Mooney KA, Agrawal AA. 2008. Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense. Am. Nat. 171:6E195–205
    [Google Scholar]
  71. Mooney KA, Mandal K. 2010. Competition hierarchies among ants and predation by birds jointly determine the strength of multi-species ant–aphid mutualisms. Oikos 119:5874–82
    [Google Scholar]
  72. Mooney KA, Tillberg CV. 2005. Temporal and spatial variation to ant omnivory in pine forests. Ecology 86:51225–35
    [Google Scholar]
  73. Morales MA. 2002. Ant-dependent oviposition in the membracid Publilia concava. Ecol. Entomol. 27:2247–50
    [Google Scholar]
  74. Moran NA. 1992. The evolution of aphid life cycles. Annu. Rev. Entomol. 37:321–48
    [Google Scholar]
  75. Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312:5770101–4
    [Google Scholar]
  76. Nelsen MP, Ree RH, Moreau CS. 2018. Ant–plant interactions evolved through increasing interdependence. PNAS 115:4812253–58
    [Google Scholar]
  77. Nelson AS, Mooney KA. 2021. Comparing the individual and combined effects of ant attendance and wing formation on aphid body size and reproduction. Ann. Entomol. Soc. Am. 114:170–78
    [Google Scholar]
  78. Nelson AS, Pratt RT, Pratt JD, Smith RA, Symanski CT et al. 2019a. Progressive sensitivity of trophic levels to warming underlies an elevational gradient in ant–aphid mutualism strength. Oikos 128:540–50
    [Google Scholar]
  79. Nelson AS, Symanski CT, Hecking MJ, Mooney KA. 2019b. Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity. J. Anim. Ecol. 88:91406–16
    [Google Scholar]
  80. Nelson AS, Zapata GD, Sentner KT, Mooney KA. 2020. Are ants botanists? Ant associative learning of plant chemicals mediates foraging for carbohydrates. Ecol. Entomol. 45:2251–58
    [Google Scholar]
  81. Ness J, Mooney KA, Lach L 2010. Ants as mutualists. Ant Ecology L Lach, CL Parr, KL Abbott 97–114 New York: Oxford Univ. Press
    [Google Scholar]
  82. Nielsen C, Agrawal AA, Hajek AE. 2010. Ants defend aphids against lethal disease. Biol. Lett. 6:2205–8
    [Google Scholar]
  83. Nonacs P, Dill LM. 1990. Mortality risk versus food quality trade-offs in a common currency: ant patch preferences. Ecology 71:51886–92
    [Google Scholar]
  84. Novgorodova TA. 2015. Organization of honeydew collection by foragers of different species of ants (Hymenoptera: Formicidae): effect of colony size and species specificity. Eur. J. Entomol. 112:4688–97
    [Google Scholar]
  85. O'Dowd DJ, Green PT, Lake PS. 2003. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6:9812–17
    [Google Scholar]
  86. Offenberg J. 2000. Correlated evolution of the association between aphids and ants and the association between aphids and plants with extrafloral nectaries. Oikos 91:1146–52
    [Google Scholar]
  87. Offenberg J. 2001. Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behav. Ecol. Sociobiol. 49:4304–10
    [Google Scholar]
  88. Oliver TH, Leather SR, Cook JM. 2008. Macroevolutionary patterns in the origin of mutualisms involving ants. J. Evol. Biol. 21:61597–608
    [Google Scholar]
  89. Oliver TH, Leather SR, Cook JM. 2012. Ant larval demand reduces aphid colony growth rates in an ant-aphid interaction. Insects 3:1120–30
    [Google Scholar]
  90. Parr CL, Bishop TR. 2022. The response of ants to climate change. Glob. Change Biol. 28:3188–205
    [Google Scholar]
  91. Pérez-Rodríguez J, Pekas A, Tena A, Wäckers FL. 2021. Sugar provisioning for ants enhances biological control of mealybugs in citrus. Biol. Control. 157:104573
    [Google Scholar]
  92. Petry WK, Perry KI, Mooney KA. 2012. Influence of macronutrient imbalance on native ant foraging and interspecific interactions in the field. Ecol. Entomol. 37:3175–83
    [Google Scholar]
  93. Pringle EG, Moreau CS. 2017. Community analysis of microbial sharing and specialization in a Costa Rican ant–plant–hemipteran symbiosis. Proc. R. Soc. B 284: 1850.20162770
    [Google Scholar]
  94. Pringle EG, Novo A, Ableson I, Barbehenn RV, Vannette RL. 2014. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants. Ecol. Evol. 4:214065–79
    [Google Scholar]
  95. Renoz F, Pons I, Vanderpoorten A, Bataille G, Noël C et al. 2019. Evidence for gut-associated Serratia symbiotica in wild aphids and ants provides new perspectives on the evolution of bacterial mutualism in insects. Microb. Ecol. 78:1159–69
    [Google Scholar]
  96. Rice KB, Eubanks MD. 2013. No enemies needed: cotton aphids (Hemiptera: Aphididae) directly benefit from red imported fire ant (Hymenoptera: Formicidae) tending. Fla. Entomol. 96:3929–32
    [Google Scholar]
  97. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. 2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. PNAS 106:5021236–41
    [Google Scholar]
  98. Sakata H. 1994. How an ant decides to prey on or to attend aphids. Res. Popul. Ecol. 36:145–51
    [Google Scholar]
  99. Salazar A, Fürstenau B, Quero C, Pérez-Hidalgo N, Carazo P et al. 2015. Aggressive mimicry coexists with mutualism in an aphid. PNAS 112:41101–6
    [Google Scholar]
  100. Sanders JG, Łukasik P, Frederickson ME, Russell JA, Koga R et al. 2017. Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants. Integr. Comp. Biol. 57:4705–22
    [Google Scholar]
  101. Schillewaert S, Parmentier T, Vantaux A, Van den Ende W, Vorburger C, Wenseleers T. 2017. The influence of facultative endosymbionts on honeydew carbohydrate and amino acid composition of the black bean aphid Aphis fabae. Physiol. Entomol. 42:2125–33
    [Google Scholar]
  102. Shingleton AW, Stern DL. 2003. Molecular phylogenetic evidence for multiple gains or losses of ant mutualism within the aphid genus Chaitophorus. Mol. Phylogenet. Evol. 26:126–35
    [Google Scholar]
  103. Shingleton AW, Stern DL, Foster WA. 2005. The origin of a mutualism: a morphological trait promoting the evolution of ant-aphid mutualisms. Evolution 59:4921–26
    [Google Scholar]
  104. Silva DP, Fernandes JAM. 2016. New evidences supporting trophobiosis between populations of Edessa rufomarginata (Heteroptera: Pentatomidae) and Camponotus (Hymenoptera: Formicidae) ants. Rev. Bras. Entomol. 60:2166–70
    [Google Scholar]
  105. Smith CR, Oettler J, Kay A, Deans C 2007. First recorded mating flight of the hypogeic ant, Acropyga epedana, with its obligate mutualist mealybug, Rhizoecus colombiensis. J. Insect Sci. 7:111
    [Google Scholar]
  106. Smith RA, Mooney KA, Agrawal AA. 2008. Coexistence of three specialist aphids on common milkweed, Asclepias syriaca. Ecology 89:82187–96
    [Google Scholar]
  107. Snyder WE, Snyder GB, Finke DL, Straub CS. 2006. Predator biodiversity strengthens herbivore suppression. Ecol. Lett. 9:7789–96
    [Google Scholar]
  108. Staab M, Blüthgen N, Klein A-M. 2015. Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos 124:7827–34
    [Google Scholar]
  109. Staab M, Fornoff F, Klein A-M, Blüthgen N. 2017. Ants at plant wounds: a little-known trophic interaction with evolutionary implications for ant-plant interactions. Am. Nat. 190:3442–50
    [Google Scholar]
  110. Stadler B, Dixon AFG. 1998. Costs of ant attendance for aphids. J. Anim. Ecol. 67:3454–59
    [Google Scholar]
  111. Stadler B, Dixon AFG. 2005. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36:1345–72
    [Google Scholar]
  112. Stadler B, Dixon AFG. 2008. Mutualism: Ants and Their Insect Partners New York: Cambridge Univ. Press
  113. Stadler B, Kindlmann P, Šmilauer P, Fiedler K. 2003. A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance. Oecologia 135:3422–30
    [Google Scholar]
  114. Stutz S, Entling MH. 2011. Effects of the landscape context on aphid-ant-predator interactions on cherry trees. Biol. Control. 57:137–43
    [Google Scholar]
  115. Styrsky JD, Eubanks MD. 2007. Ecological consequences of interactions between ants and honeydew-producing insects. Proc. R. Soc. B 274: 1607.151–64
    [Google Scholar]
  116. Tanner CJ. 2008. Resource characteristics and competition affect colony and individual foraging strategies of the wood ant Formica integroides. Ecol. Entomol. 33:1127–36
    [Google Scholar]
  117. Tena A, Hoddle CD, Hoddle MS. 2013. Competition between honeydew producers in an ant–hemipteran interaction may enhance biological control of an invasive pest. Bull. Entomol. Res. 103:6714–23
    [Google Scholar]
  118. Thaler JS, Humphrey PT, Whiteman NK. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:5260–70
    [Google Scholar]
  119. van Emden HF, Harrington R. 2007. Aphids as Crop Pests Wallingford, UK: CABI
  120. Vantaux A, Schillewaert S, Parmentier T, Van den Ende W, Billen J, Wenseleers T. 2015. The cost of ant attendance and melezitose secretion in the black bean aphid Aphis fabae. Ecol. Entomol. 40:5511–17
    [Google Scholar]
  121. Veena T, Ganeshaiah KN. 1991. Non-random search pattern of ants foraging on honeydew of aphids on cashew inflorescences. Anim. Behav. 41:17–15
    [Google Scholar]
  122. Völkl W. 1995. Behavioral and morphological adaptations of the coccinellid, Platynaspis luteorubra for exploiting ant-attended resources (Coleoptera: Coccinellidae). J. Insect Behav. 8:5653–70
    [Google Scholar]
  123. Völkl W 1997. Interactions between ants and aphid parasitoids: patterns and consequences for resource utilization. Vertical Food Web Interactions: Evolutionary Patterns and Driving Forces K Dettner, G Bauer, W Völkl 225–40 Berlin: Springer
    [Google Scholar]
  124. Völkl W, Liepert C, Birnbach R, Hübner G, Dettner K. 1996. Chemical and tactile communication between the root aphid parasitoid Paralipsis enervis and trophobiotic ants: consequences for parasitoid survival. Experientia 52:7731–38
    [Google Scholar]
  125. Way MJ. 1963. Mutualism between ants and honeydew-producing Homoptera. Annu. Rev. Entomol. 8:1307–44
    [Google Scholar]
  126. Wiens JJ, Lapoint RT, Whiteman NK. 2015. Herbivory increases diversification across insect clades. Nat. Commun. 6:18370
    [Google Scholar]
  127. Wilder SM, Holway DA, Suarez AV, Eubanks MD. 2011a. Macronutrient content of plant-based food affects growth of a carnivorous arthropod. Ecology 92:2325–32
    [Google Scholar]
  128. Wilder SM, Holway DA, Suarez AV, LeBrun EG, Eubanks MD. 2011b. Intercontinental differences in resource use reveal the importance of mutualisms in fire ant invasions. PNAS 108:5120639–44
    [Google Scholar]
  129. Wilson EO, Hölldobler B. 2005. The rise of the ants: a phylogenetic and ecological explanation. PNAS 102:217411–14
    [Google Scholar]
  130. Wimp GM, Whitham TG. 2001. Biodiversity consequences of predation and host plant hybridization on an aphid–ant mutualism. Ecology 82:2440–52
    [Google Scholar]
  131. Wood TK. 1993. Diversity in the New World Membracidae. Annu. Rev. Entomol. 38:1409–33
    [Google Scholar]
  132. Xu T, Xu M, Lu Y, Zhang W, Sun J et al. 2021. A trail pheromone mediates the mutualism between ants and aphids. Curr. Biol. 31:214738–47
    [Google Scholar]
  133. Yao I. 2010. Contrasting patterns of genetic structure and dispersal ability in ant-attended and non-attended Tuberculatus aphids. Biol. Lett. 6:2282–86
    [Google Scholar]
  134. Yao I, Akimoto S. 2001. Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128:136–43
    [Google Scholar]
  135. Yoshizawa K, Lienhard C. 2016. Bridging the gap between chewing and sucking in the hemipteroid insects: new insights from Cretaceous amber. Zootaxa 4079:229–45
    [Google Scholar]
  136. Zhang S, Zhang Y, Ma K. 2012. The ecological effects of the ant–hemipteran mutualism: a meta-analysis. Basic Appl. Ecol. 13:2116–24
    [Google Scholar]
  137. Zhou AM, Wu D, Liang GW, Lu YY, Xu YJ. 2015. Effects of tending by Solenopsis invicta (Hymenoptera: Formicidae) on the sugar composition and concentration in the honeydew of an invasive mealybug, Phenacoccus Solenopsis (Hemiptera: Pseudococcidae). Ethology 121:5492–500
    [Google Scholar]
  138. Züst T, Agrawal AA. 2017. Plant chemical defense indirectly mediates aphid performance via interactions with tending ants. Ecology 98:3601–7
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102220-014840
Loading
/content/journals/10.1146/annurev-ecolsys-102220-014840
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error