1932

Abstract

We review transitions between hermaphroditism and dioecy in animals and (mainly flowering) plants. Although hermaphroditism and dioecy represent two end states in a sex-allocation continuum, both vary in major ways among clades. However, drawing on sex-allocation theory and distinguishing between self-fertilization and outcrossing, we recognize five broad paths to dioecy and two broad paths to hermaphroditism. Which path is taken likely depends on the starting state (especially in terms of the mating system), as well as the ecological setting or genetic context of the transition. Androdioecy may have been more important in some transitions to dioecy than current theory would suggest, and gynodioecy may often be an evolutionary end point in itself rather than a step between hermaphroditism and dioecy. Transitions between environmental and genetic sex determination may also play an important role in sexual-system evolution. Further theory is required to address these possibilities. Detailed empirical work is also greatly needed, especially in animal clades that vary in their sexual system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102320-085812
2022-11-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102320-085812.html?itemId=/content/journals/10.1146/annurev-ecolsys-102320-085812&mimeType=html&fmt=ahah

Literature Cited

  1. Akagi T, Charlesworth D. 2019. Pleiotropic effects of sex-determining genes in the evolution of dioecy in two plant species. Proc. R. Soc. B 286:20191805
    [Google Scholar]
  2. Barrett SCH. 2019.. ‘ A most complex marriage arrangement’: recent advances on heterostyly and unresolved questions. New Phytol 224:1051–67
    [Google Scholar]
  3. Barrett SCH. 2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3:274–84
    [Google Scholar]
  4. Barrett SCH, Harder LD. 2017. The ecology of mating and its evolutionary consequences in seed plants. Annu. Rev. Ecol. Evol. Syst. 48:135–57
    [Google Scholar]
  5. Barrett SCH, Jesson LK, Baker AM. 2000. The evolution and function of stylar polymorphisms in flowering plants. Ann. Bot. 85:253–65
    [Google Scholar]
  6. Beach JH, Bawa KS. 1980. Role of pollinators in the evolution of dioecy from distyly. Evolution 34:1138–42
    [Google Scholar]
  7. Bertin RI, Newman CM. 1993. Dichogamy in angiosperms. Bot. Rev. 59:112–52
    [Google Scholar]
  8. Billiard S, Husse L, Lepercq P, Godé C, Bourceaux Aet al 2015. Selfish male-determining element favors the transition from hermaphroditism to androdioecy. Evolution 69:68393
    [Google Scholar]
  9. Brunet J. 1992. Sex allocation in hermaphroditic plants. Trends Ecol. Evol. 7:79–84
    [Google Scholar]
  10. Bulmer MG, Bull JJ. 1982. Models of polygenic sex determination and sex-ratio control. Evolution 36:13–26
    [Google Scholar]
  11. Cadet C, Metz JAJ, Klinkhamer PGL. 2004. Size and the not-so-single sex: disentangling the effects of size and budget on sex allocation in hermaphrodites. Amer. Nat. 164:779–92
    [Google Scholar]
  12. Campbell DR, Brody AK, Price MV, Waser NM, Aldridge G. 2017. Is plant fitness proportional to seed set? An experiment and a spatial model. Amer. Nat. 190:818–27
    [Google Scholar]
  13. Caruso CM, Eisen K, Case AL. 2016. An angiosperm-wide analysis of the correlates of gynodioecy. Int. J. Plant Sci. 177:115–21
    [Google Scholar]
  14. Charlesworth D. 1984. Androdioecy and the evolution of dioecy. Biol. J. Linn. Soc. 23:333–48
    [Google Scholar]
  15. Charlesworth D. 1989. Allocation to male and female function in hermaphrodites in sexually polymorphic populations. J. Theor. Biol. 139:327–42
    [Google Scholar]
  16. Charlesworth D 1999. Theories of the evolution of dioecy. Gender and Sexual Dimorphism in Flowering Plants MA Geber, TE Dawson, LF Delph 33–60 Heidelberg, Ger.: Springer
    [Google Scholar]
  17. Charlesworth D. 2006. Evolution of plant breeding systems. Curr. Biol. 16:R726–35
    [Google Scholar]
  18. Charlesworth D, Charlesworth B. 1978a. A model for the evolution of dioecy and gynodioecy. Amer. Nat. 112:975–97
    [Google Scholar]
  19. Charlesworth D, Charlesworth B. 1978b. Population genetics of partial male sterility and the evolution of monoecy and dioecy. Heredity 41:137–53
    [Google Scholar]
  20. Charnov EL. 1979. Simultaneous hermaphroditism and sexual selection. PNAS 76:2480–82
    [Google Scholar]
  21. Charnov EL. 1982. The Theory of Sex Allocation Princeton, NJ: Princeton Univ. Press
  22. Charnov EL, Bull J. 1977. When is sex environmentally determined?. Nature 266:228–30
    [Google Scholar]
  23. Charnov EL, Maynard Smith J, Bull JJ 1976. Why be an hermaphrodite?. Nature 263:125–26
    [Google Scholar]
  24. Coelho SM, Umen J. 2021. Switching it up: algal insights into sexual transitions. Plant Reprod. 34:287–96
    [Google Scholar]
  25. Cossard GG, Gerchen JF, Li XJ, Cuenot Y, Pannell JR. 2021. The rapid dissolution of dioecy by experimental evolution. Curr. Biol. 31:1277–83.e5
    [Google Scholar]
  26. Cossard GG, Pannell JR. 2019. A functional decomposition of sex inconstancy in the dioecious, colonizing plant Mercurialis annua. Amer. J. Bot. 106:722–32
    [Google Scholar]
  27. Crossman A, Charlesworth D. 2014. Breakdown of dioecy: models where males acquire cosexual functions. Evolution 68:426–40
    [Google Scholar]
  28. Cutter AD. 2006. Nucleotide polymorphism and linkage disequilibrium in wild populations of the partial selfer Caenorhabditis elegans. Genetics 172:171–84
    [Google Scholar]
  29. Dufay M, Billard E. 2012. How much better are females? The occurrence of female advantage, its proximal causes and its variation within and among gynodioecious species. Ann. Bot. 109:505–19
    [Google Scholar]
  30. Dufay M, Champelovier P, Kafer J, Henry JP, Mousset S, Marais GAB. 2014. An angiosperm-wide analysis of the gynodioecy–dioecy pathway. Ann. Bot. 114:539–48
    [Google Scholar]
  31. Duffy K, Johnson S 2014. Male interference with pollination efficiency in a hermaphroditic orchid. J. Evol. Biol. 27:1751–56
    [Google Scholar]
  32. Eckert CG. 2000. Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 81:532–42
    [Google Scholar]
  33. Ehlers BK, Bataillon T. 2007.. ‘ Inconstant males’ and the maintenance of labile sex expression in subdioecious plants. New Phytol 174:194–211
    [Google Scholar]
  34. Eppley SM, Jesson LK. 2008. Moving to mate: the evolution of separate and combined sexes in multicellular organisms. J. Evol. Biol. 21:727–36
    [Google Scholar]
  35. Erisman BE, Petersen CW, Hastings PA, Warner RR. 2013. Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr. Comp. Biol. 53:736–54
    [Google Scholar]
  36. Flores-Renteria L, Molina-Freaner F, Whipple AV, Gehring CA, Dominguez CA. 2013. Sexual stability in the nearly dioecious Pinus johannis (Pinaceae). Amer. J. Bot. 100:602–12
    [Google Scholar]
  37. Freeman DC, Lovett Doust J, El-Keblawy A, Miglia KJ, McArthur ED 1997. Sexual specialization and inbreeding avoidance in the evolution of dioecy. Bot. Rev. 63:65–92
    [Google Scholar]
  38. Friedman J, Barrett SCH. 2008. A phylogenetic analysis of the correlates and evolution of wind pollination in the angiosperms. Int. J. Plant Sci. 169:49–58
    [Google Scholar]
  39. Friedman J, Barrett SCH. 2009. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot. 103:1515–27
    [Google Scholar]
  40. Gerchen JF, Veltsos P, Pannell JR. 2022. Recurrent allopolyploidization, Y-chromosome introgression and the evolution of sexual systems in the plant genus Mercurialis. Philos. Trans. R. Soc. B 377:20210224
    [Google Scholar]
  41. Ghiselin MT. 1969. The evolution of hermaphroditism among animals. Quart. Rev. Biol. 44:189–208
    [Google Scholar]
  42. Ghiselin MT. 1974. The Economy of Nature and the Evolution of Sex Berkeley: Univ. Calif. Press
  43. Givnish TJ. 1980. Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in Gymnosperms. Evolution 34:959–72
    [Google Scholar]
  44. Givnish TJ. 1982. Outcrossing versus ecological constraints in the evolution of dioecy. Amer. Nat. 119:849–65
    [Google Scholar]
  45. Gleiser G, Verdú M. 2005. Repeated evolution of dioecy from androdioecy in Acer. New Phytol 165:633–40
    [Google Scholar]
  46. Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N et al. 2017. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71:898–912
    [Google Scholar]
  47. Goodwillie C, Kalisz S, Eckert CG. 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36:47–79
    [Google Scholar]
  48. Hamilton WD. 1967. Extraordinary sex ratios. Science 156:477–88
    [Google Scholar]
  49. Harder LD, Barrett SCH. 1995. Mating cost of large floral displays in hermaphrodite plants. Nature 373:512–15
    [Google Scholar]
  50. Harder LD, Prusinkiewicz P. 2013. The interplay between inflorescence development and function as the crucible of architectural diversity. Ann. Bot. 112:1477–93
    [Google Scholar]
  51. Harris MS, Pannell JR. 2008. Roots, shoots and reproduction: sexual dimorphism in size and costs of reproductive allocation in an annual herb. Proc. R. Soc. B 275:2595–602
    [Google Scholar]
  52. Heath DJ. 1977. Simultaneous hermaphroditism: cost and benefit. J. Theor. Biol. 64:363–73
    [Google Scholar]
  53. Heesch S, Serrano-Serrano M, Barrera-Redondo J, Luthringer R, Peters AF et al. 2021. Evolution of life cycles and reproductive traits: insights from the brown algae. J. Evol. Biol. 34:992–1009
    [Google Scholar]
  54. Heilbuth JC, Ilves KL, Otto SP. 2001. The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55:880–88
    [Google Scholar]
  55. Himmelreich S, Breitwieser I, Oberprieler C. 2012. Phylogeny, biogeography, and evolution of sex expression in the southern hemisphere genus Leptinella (Compositae, Anthemideae). Mol. Phylogenet. Evol. 65:464–81
    [Google Scholar]
  56. Iyer P, Roughgarden J. 2008. Gametic conflict versus contact in the evolution of anisogamy. Theor. . Popul. Biol. 73:461–72
    [Google Scholar]
  57. Jarne P, Auld JR. 2006. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60:1816–24
    [Google Scholar]
  58. Käfer J, Marais GAB, Pannell JR. 2017. On the rarity of dioecy in flowering plants. Mol. Ecol. 26:1225–41
    [Google Scholar]
  59. Khanduri VP, Sukumaran A, Sharma CM. 2021. Gender plasticity uncovers multiple sexual morphs in natural populations of Cedrus deodara (Roxb.) G. Don. Ecol. Process. 10:35
    [Google Scholar]
  60. Kirk DL. 2006. Oogamy: inventing the sexes. Curr. Biol. 16:R1028–30
    [Google Scholar]
  61. Lande R. 1980. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34:292–305
    [Google Scholar]
  62. Leonard JL. 2013. Williams’ paradox and the role of phenotypic plasticity in sexual systems. Integr. Comp. Biol. 53:671–88
    [Google Scholar]
  63. Leonard JL 2018a. The evolution of sexual systems in animals. Transitions Between Sexual Systems JL Leonard 1–58 Cham, Switz: Springer Nature
    [Google Scholar]
  64. Leonard JL 2018b. Transitions Between Sexual Systems Cham, Switz.: Springer Nature
  65. Lessells CM, Snook RR, Hosken DJ 2009. The evolutionary origin and maintenance of sperm: selection for a small, motile gamete mating type. Sperm Biology: An Evolutionary Perspective TR Birkhead, DJ Hosken, S Pitnick 43–67 London: Academic Press
    [Google Scholar]
  66. Lewis D. 1942. The evolution of sex in flowering plants. Camb. Philos. Soc. Biol. Rev. 17:46–67
    [Google Scholar]
  67. Lloyd DG. 1972. Breeding systems in Cotula L. (Compositae, Anthemedae). I. The array of monoclinous and diclinous systems. New Phytol 71:1181–94
    [Google Scholar]
  68. Lloyd DG. 1975a. Breeding systems in Cotula. III. Dioecious populations. New Phytol 74:109–23
    [Google Scholar]
  69. Lloyd DG. 1975b. The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–39
    [Google Scholar]
  70. Lloyd DG. 1976. The transmission of genes via pollen and ovules in gynodioecious angiosperms. Theor. Popul. Biol. 9:299–316
    [Google Scholar]
  71. Lloyd DG. 1982. Selection of combined versus separate sexes in seed plants. Amer. Nat. 120:571–85
    [Google Scholar]
  72. Lloyd DG, Webb CJ. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms. I. Dichogamy. N. Z. J. Bot. 24:135–62
    [Google Scholar]
  73. Lorenzi MC, Schleicherova D, Sella G 2014. Multiple paternity and mate competition in non-selfing, monogamous, egg-trading hermaphrodites. Acta Ethologica 17:173–79
    [Google Scholar]
  74. Mangla Y, Das K, Bali S, Ambreen H, Raina SN et al. 2019. Occurrence of subdioecy and scarcity of gender-specific markers reveal an ongoing transition to dioecy in Himalayan seabuckthorn (Hippophae rhamnoides ssp. turkestanica). Heredity 122:120–32
    [Google Scholar]
  75. Maurice S, Fleming TH 1995. The effect of pollen limitation on plant reproductive systems and the maintenance of sexual polymorphisms. Oikos 74:55–60
    [Google Scholar]
  76. McCauley DE, Bailey MF. 2009. Recent advances in the study of gynodioecy: the interface of theory and empiricism. Ann. Bot. 104:611–20
    [Google Scholar]
  77. McDaniel SF, Perroud PF. 2012. Invited perspective: bryophytes as models for understanding the evolution of sexual systems. Bryologist 115:1–11
    [Google Scholar]
  78. Mongue AJ, Michaelides S, Coombe O, Tena A, Kim DS et al. 2021. Sex, males, and hermaphrodites in the scale insect Icerya purchasi. Evolution 75:2972–83
    [Google Scholar]
  79. Muralidhar P, Veller C. 2018. Sexual antagonism and the instability of environmental sex determination. Nat. Ecol. Evol. 2:343–51
    [Google Scholar]
  80. Olito C, Connallon T. 2019. Sexually antagonistic variation and the evolution of dimorphic sexual systems. Amer. Nat. 193:688–701
    [Google Scholar]
  81. Olson MS, Hamrick JL, Moore RC 2016. Breeding systems, mating systems, and gender determination in angiosperm trees. Comparative and Evolutionary Genomics of Angiosperm Trees A Groover, Q Cronk London: Springer
    [Google Scholar]
  82. Pannell JR. 2002. The evolution and maintenance of androdioecy. Annu. Rev. Ecol. Syst. 33:397–425
    [Google Scholar]
  83. Pannell JR. 2009. On the problems of a closed marriage: celebrating Darwin 200. Biol. Lett. 5:332–35
    [Google Scholar]
  84. Pannell JR. 2015. Evolution of the mating system in colonizing plants. Mol. Ecol. 24:2018–37
    [Google Scholar]
  85. Pannell JR, Auld JR, Brandvain Y, Burd M, Busch JW et al. 2015. The scope of Baker's law. New Phytol 208:656–67
    [Google Scholar]
  86. Pannell JR, Verdu M. 2006. The evolution of gender specialization from dimorphic hermaphroditism: paths from heterodichogamy to gynodioecy and androdioecy. Evolution 60:660–73
    [Google Scholar]
  87. Picchi L, Lorenzi MC 2018. Polychaete worms on the brink between hermaphroditism and separate sexes. Transitions Between Sexual Systems JL Leonard 123–63 Cham, Switz: Springer Nature
    [Google Scholar]
  88. Renner SS. 2001. How common is heterodichogamy?. Trends Ecol. Evol. 16:595–97
    [Google Scholar]
  89. Renner SS. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Amer. J. Bot. 101:1588–96
    [Google Scholar]
  90. Renner SS, Ricklefs RE. 1995. Dioecy and its correlates in the flowering plants. Amer. J. Bot. 82:596–606
    [Google Scholar]
  91. Ross MD. 1978. The evolution of gynodioecy and subdioecy. Evolution 32:174–88
    [Google Scholar]
  92. Saumitou-Laprade P, Vernet P, Vassiliadis C, Hoareau Y, de Magny Get al 2010. A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327:164850
    [Google Scholar]
  93. Santos del Blanco L, Tudor E, Pannell JR 2018. Low siring success of females with an acquired male function illustrates the legacy of sexual dimorphism in constraining the breakdown of dioecy. Ecol. Lett. 22:486–97
    [Google Scholar]
  94. Sarkissian TS, Barrett SCH, Harder LD. 2001. Gender variation in Sagittaria latifolia (Alismataceae): Is size all that matters?. Ecology 82:360–73
    [Google Scholar]
  95. Sasson DA, Ryan JF. 2017. A reconstruction of sexual modes throughout animal evolution. BMC Evol. Biol. 17:242
    [Google Scholar]
  96. Schärer L, Janicke T, Ramm SA. 2015. Sexual conflict in hermaphrodites. Cold Spring Harb. Perspect. Biol. 7:a017673
    [Google Scholar]
  97. Schärer L, Pen I 2013. Sex allocation and investment into pre- and post-copulatory traits in simultaneous hermaphrodites: the role of polyandry and local sperm competition. Philos. Trans. R. Soc. B 368:20120052
    [Google Scholar]
  98. Schultz ST. 1994. Nucleo-cytoplasmic male sterility and alternative routes to dioecy. Evolution 48:1933–45
    [Google Scholar]
  99. Spigler RB, Ashman TL. 2012. Gynodioecy to dioecy: Are we there yet?. Ann. Bot. 109:531–43
    [Google Scholar]
  100. Tomlinson J. 1966. The advantages of hermaphroditism and parthenogenesis. J. Theor. Biol. 11:54–58
    [Google Scholar]
  101. Torices R, Anderberg AA. 2009. Phylogenetic analysis of sexual systems in Inuleae (Asteraceae). Amer. J. Bot. 96:1011–19
    [Google Scholar]
  102. Urano S, Yamaguchi S, Yamato S, Takahashi S, Yusa Y. 2009. Evolution of dwarf males and a variety of sexual modes in barnacles: an ESS approach. Evol. Ecol. Res. 11:713–29
    [Google Scholar]
  103. Vamosi JC, Otto SP, Barrett SCH. 2003. Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. J. Evol. Biol. 16:1006–18
    [Google Scholar]
  104. Walas L, Mandryk W, Thomas PA, Tyrala-Wierucka Z, Iszkulo G. 2018. Sexual systems in gymnosperms: a review. Basic Appl. Ecol. 31:1–9
    [Google Scholar]
  105. Wallander E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst. Evol. 273:25–49
    [Google Scholar]
  106. Warner RR. 1988. Sex change and the size-advantage model. Trends Ecol. Evol. 3:133–36
    [Google Scholar]
  107. Webb CJ 1999. Empirical studies: evolution and maintenance of dimorphic breeding systems. Gender and Sexual Dimorphism in Flowering Plants MA Geber, TE Dawson, LF Delph 61–95 Berlin: Springer
    [Google Scholar]
  108. Weeks SC. 2012. The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the Animalia. Evolution 66:3670–86
    [Google Scholar]
  109. Weeks SC, Benvenuto C, Reed SK. 2006. When males and hermaphrodites coexist: a review of androdioecy in animals. Integr. Comp. Biol. 46:449–64
    [Google Scholar]
  110. West SA. 2009. Sex Allocation Princeton, NJ: Princeton Univ. Press
  111. Williams GC. 1975. Sex and Evolution Princeton, NJ: Princeton Univ. Press
  112. Willson MF. 1979. Sexual selection in plants. Amer. Nat. 113:777–90
    [Google Scholar]
  113. Wolf DE, Takebayashi N. 2004. Pollen limitation and the evolution of androdioecy from dioecy. Amer. Nat. 163:122–37
    [Google Scholar]
  114. Yund PO. 1998. The effect of sperm competition on male gain curves in a colonial marine invertebrate. Ecology 79:328–39
    [Google Scholar]
  115. Yund PO, McCartney MA. 1994. Male reproductive success in sessile invertebrates: competition for fertilizations. Ecology 75:2151–67
    [Google Scholar]
  116. Yusa Y 2018. Hermaphrodites, dwarf males, and females: evolutionary transitions of sexual systems in barnacles. Transitions Between Sexual Systems JL Leonard 221–45 Cham, Switz: Springer Nature
    [Google Scholar]
  117. Yusa Y, Yoshikawa M, Kitaura J, Kawane M, Ozaki Y et al. 2012. Adaptive evolution of sexual systems in pedunculate barnacles. Proc. R. Soc. B 279:959–66
    [Google Scholar]
  118. Zemp N, Widmer A, Charlesworth D. 2018. Has adaptation occurred in males and females since separate sexes evolved in the plant Silene latifolia?. Proc. R. Soc. B 285:20172824
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102320-085812
Loading
/content/journals/10.1146/annurev-ecolsys-102320-085812
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error