1932

Abstract

Transgenerational plasticity (TGP) occurs when the environment experienced by a parent influences the development of their offspring. In this article, we develop a framework for understanding the mechanisms and multigenerational consequences of TGP. First, we conceptualize the mechanisms of TGP in the context of communication between parents (senders) and offspring (receivers) by dissecting the steps between an environmental cue received by a parent and its resulting effects on the phenotype of one or more future generations. Breaking down the problem in this way highlights the diversity of mechanisms likely to be involved in the process. Second, we review the literature on multigenerational effects and find that the documented patterns across generations are diverse. We categorize different multigenerational patterns and explore the proximate and ultimate mechanisms that can generate them. Throughout, we highlight opportunities for future work in this dynamic and integrative area of study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-024613
2019-11-02
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110218-024613.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-024613&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander HM, Wulff RD. 1985. Experimental ecological genetics in Plantago: X. The effects of maternal temperature on seed and seedling characters in P. lanceolata. J. Ecol 73:271–82
    [Google Scholar]
  2. Alfonso S, Blanc M, Joassard L, Keiter SH, Munschy C et al. 2019. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. Aquat. Toxicol. 208:29–38
    [Google Scholar]
  3. Anway MD, Cupp AS, Uzumcu M, Skinner MK 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–69
    [Google Scholar]
  4. Ashe A, Sapetschnig A, Weick E-M, Mitchell J, Bagijn MP et al. 2012. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150:88–99
    [Google Scholar]
  5. Auge GA, Leverett LD, Edwards BR, Donohue K 2017. Adjusting phenotypes via within- and across-generational plasticity. New Phytol 216:343–49
    [Google Scholar]
  6. Badyaev AV, Uller T. 2009. Parental effects in ecology and evolution: mechanisms, processes and implications. Philos. Trans. R. Soc. B 364:1169–77
    [Google Scholar]
  7. Bale TL. 2011. Sex differences in prenatal epigenetic programing of stress pathways. Stress 14:348–56
    [Google Scholar]
  8. Beemelmanns A, Roth O. 2016. Biparental immune priming in the pipefish Syngnathus typhle. Zoology 119:262–72
    [Google Scholar]
  9. Bonduriansky R, Day T. 2009. Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 40:103–25
    [Google Scholar]
  10. Bonduriansky R, Day T. 2018. Extended Heredity: A New Understanding of Inheritance and Evolution Princeton, NJ: Princeton Univ. Press
  11. Bošković A, Rando OJ. 2018. Transgenerational epigenetic inheritance. Annu. Rev. Genet. 52:21–41
    [Google Scholar]
  12. Bradbury JW, Vehrencamp S. 2011. Principles of Animal Communication Sunderland, MA: Sinauer. , 2nd ed..
  13. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA 2007. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br. J. Nutr. 97:435–39
    [Google Scholar]
  14. Burton T, Metcalfe NB. 2014. Can environmental conditions experienced in early life influence future generations?. Proc. R. Soc. B 281:20140311
    [Google Scholar]
  15. Case AL, Lacey EP, Hopkins RG 1996. Parental effects in Plantago lanceolata L. II. Manipulation of grandparental temperature and parental flowering time. Heredity 76:287–95
    [Google Scholar]
  16. Crean AJ, Bonduriansky R. 2014. What is a paternal effect?. Trends Ecol. Evol. 29:554–59
    [Google Scholar]
  17. Crean AJ, Marshall DJ. 2009. Coping with environmental uncertainty: dynamic bet hedging as a maternal effect. Philos. Trans. R. Soc. B 364:1087–96
    [Google Scholar]
  18. Crocker KC, Hunter MD. 2018. Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. J. Insect Physiol 109:69–78
    [Google Scholar]
  19. Cropley JE, Eaton SA, Aiken A, Young PE, Giannoulatou E et al. 2016. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 5:699–708
    [Google Scholar]
  20. Dall SR, McNamara JM, Leimar O 2015. Genes as cues: phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends Ecol. Evol. 30:327–33
    [Google Scholar]
  21. Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S 2011. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet. 12:475–86
    [Google Scholar]
  22. Day T, Bonduriansky R. 2011. A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am. Nat. 178:E18–36
    [Google Scholar]
  23. Dias BG, Ressler KJ. 2014. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17:89–96
    [Google Scholar]
  24. Donelan SC, Trussell GC. 2018. Synergistic effects of parental and embryonic exposure to predation risk on prey offspring size at emergence. Ecology 99:68–78
    [Google Scholar]
  25. Donelson JM, Munday PL, McCormick MI, Pitcher CR 2011. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2:30–32
    [Google Scholar]
  26. Donohue K. 2005. Niche construction through phenological plasticity: life history dynamics and ecological consequences. New Phytol 166:83–92
    [Google Scholar]
  27. Dunn GA, Bale TL. 2011. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152:2228–36
    [Google Scholar]
  28. Engqvist L, Reinhold K. 2016. Adaptive trans-generational phenotypic plasticity and the lack of an experimental control in reciprocal match/mismatch experiments. Methods Ecol. Evol. 7:1482–88
    [Google Scholar]
  29. Falcão-Tebas F, Kuang J, Arceri C, Kerris JP, Andrikopoulos S et al. 2019. Four weeks of exercise early in life reprograms adult skeletal muscle insulin resistance caused by a paternal high-fat diet. J. Physiol. 597:121–36
    [Google Scholar]
  30. Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetics Harlow, UK: Longman. , 4th ed..
  31. Fang X, Poulsen RR, Rivkees SA, Wendler CC 2016. In utero caffeine exposure induces transgenerational effects on the adult heart. Sci. Rep. 6:34106
    [Google Scholar]
  32. Frankenhuis WE, Panchanathan K. 2011. Balancing sampling and specialization: an adaptationist model of incremental development. Proc. R. Soc. B 278:3558–65
    [Google Scholar]
  33. Galloway LF. 2005. Maternal effects provide phenotypic adaptation to local environmental conditions. New Phytol 166:93–99
    [Google Scholar]
  34. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P et al. 2014. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17:667–69
    [Google Scholar]
  35. Gapp K, van Steenwyk G, Germain P-L, Matsushima W, Rudolph K et al. 2018. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol. Psychiatry In press. https://doi.org/10.1038/s41380-018-0271-6
    [Crossref] [Google Scholar]
  36. Glover V, Hill J. 2012. Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: an evolutionary perspective. Physiol. Behav. 106:736–40
    [Google Scholar]
  37. Godfray HCJ, Johnstone RA. 2000. Begging and bleating: the evolution of parent–offspring signalling. Proc. R. Soc. B 355:1581–91
    [Google Scholar]
  38. Groot MP, Kooke R, Knoben N, Vergeer P, Keurentjes JJB et al. 2016. Effects of multi-generational stress exposure and offspring environment on the expression and persistence of transgenerational effects in Arabidopsis thaliana. PLOS ONE 11:e0151566
    [Google Scholar]
  39. Groothuis TGG, Schwabl H. 2007. Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them?. Philos. Trans. R. Soc. B 363:1647–61
    [Google Scholar]
  40. Hafer N, Ebil S, Uller T, Pike N 2011. Transgenerational effects of food availability on age at maturity and reproductive output in an asexual collembolan species. Biol. Lett. 7:755–58
    [Google Scholar]
  41. He N, Kong Q-Q, Wang J-Z, Ning S-F, Miao Y-L et al. 2016. Parental life events cause behavioral difference among offspring: Adult pre-gestational restraint stress reduces anxiety across generations. Sci. Rep. 6:39497
    [Google Scholar]
  42. Heard E, Martienssen RA. 2014. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109
    [Google Scholar]
  43. Hebets EA, Papaj DR. 2005. Complex signal function: developing a framework of testable hypotheses. Behav. Ecol. Sociobiol. 57:197–214
    [Google Scholar]
  44. Herman JJ, Spencer HG, Donohue K, Sultan SE 2014. How stable “should” epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 68:632–43
    [Google Scholar]
  45. Herman JJ, Sultan SE, Horgan-Kobelski T, Riggs C 2012. Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil. Integr. Comp. Biol. 52:77–88
    [Google Scholar]
  46. Hoyle RB, Ezard THG. 2012. The benefits of maternal effects in novel and in stable environments. J. R. Soc. Interface 9:2403–13
    [Google Scholar]
  47. Jablonka E, Oborny B, Molnar I, Kisdi E, Hofbauer J, Czaran T 1995. The adaptive advantage of phenotypic memory in changing environments. Philos. Trans. R. Soc. B 350:133–41
    [Google Scholar]
  48. Jablonka E, Raz G. 2009. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84:131–76
    [Google Scholar]
  49. Johnstone RA. 1996. Multiple displays in animal communication: ‘backup signals’ and ‘multiple messages’. Philos. Trans. R. Soc. B 351:329–38
    [Google Scholar]
  50. Johnstone RA, Grafen A. 1993. Dishonesty and the handicap principle. Anim. Behav. 46:759–64
    [Google Scholar]
  51. Kamstra JH, Hurem S, Martin LM, Lindeman LC, Legler J et al. 2018. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci. Rep. 8:15373
    [Google Scholar]
  52. Kim SW, Kwak JI, An Y-J 2013. Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environ. Sci. Technol. 47:5393–99
    [Google Scholar]
  53. Kirkpatrick M, Lande R. 1989. The evolution of maternal characters. Evolution 43:485–503
    [Google Scholar]
  54. Kishimoto S, Uno M, Okabe E, Nono M, Nishida E 2017. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat. Commun 8:14031
    [Google Scholar]
  55. Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B 2017. Transgenerational transmission of environmental information in C. elegans. Science 356:320–23
    [Google Scholar]
  56. Kou HP, Li Y, Song XX, Ou XF, Xing SC et al. 2011. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J. Plant Physiol. 168:1685–93
    [Google Scholar]
  57. Kuijper B, Hoyle RB. 2015. When to rely on maternal effects and when on phenotypic plasticity?. Evol. Int. J. Organ. Evol. 69:950–68
    [Google Scholar]
  58. Kuijper B, Johnstone RA. 2018. Maternal effects and parent–offspring conflict. Evolution 72:220–33
    [Google Scholar]
  59. Kuijper B, Johnstone RA, Townley S 2014. The evolution of multivariate maternal effects. PLOS Comput. Biol. 10:e1003550
    [Google Scholar]
  60. Laidre ME, Johnstone RA. 2013. Animal signals. Curr. Biol. 23:R829–33
    [Google Scholar]
  61. Laland K, Matthews B, Feldman MW 2016. An introduction to niche construction theory. Evol. Ecol. 30:191–202
    [Google Scholar]
  62. Le Roy A, Loughland I, Seebacher F 2017. Differential effects of developmental thermal plasticity across three generations of guppies (Poecilia reticulata): canalization and anticipatory matching. Sci. Rep. 7:4313
    [Google Scholar]
  63. Leimar O, McNamara JM. 2015. The evolution of transgenerational integration of information in heterogeneous environments. Am. Nat. 185:E55–69
    [Google Scholar]
  64. Levis NA, Pfennig DW. 2016. Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31:563–74
    [Google Scholar]
  65. Liang H, Xiong W, Zhang Z 2007. Effect of maternal food restriction during gestation on early development of F1 and F2 offspring in the rat-like hamster (Cricetulus triton). Zoology 110:118–26
    [Google Scholar]
  66. Magiafoglou A, Hoffmann AA. 2003. Cross-generation effects due to cold exposure in Drosophila serrata. Funct. Ecol 17:664–72
    [Google Scholar]
  67. Manikkam M, Haque MM, Guerrero-Bosagna C, Nilsson EE, Skinner MK 2014. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLOS ONE 9:e102091
    [Google Scholar]
  68. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK 2013. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLOS ONE 8:e55387
    [Google Scholar]
  69. Marshall DJ. 2008. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history. Ecology 89:418–27
    [Google Scholar]
  70. Martin LB, Liebl AL, Trotter JH, Richards CL, McCoy K, McCoy MW 2011. Integrator networks: illuminating the black box linking genotype and phenotype. Integr. Comp. Biol. 51:514–27
    [Google Scholar]
  71. McCarthy DM, Morgan TJ Jr., Lowe SE, Williamson MJ, Spencer TJ et al. 2018. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLOS Biol 16:e2006497
    [Google Scholar]
  72. McCormick MI. 1998. Behaviorally induced maternal stress in a fish influences progeny quality by a hormonal mechanism. Ecology 79:1873–83
    [Google Scholar]
  73. McNamara JM, Dall SR, Hammerstein P, Leimar O 2016. Detection versus selection: integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecol. Lett. 19:1267–76
    [Google Scholar]
  74. Meaney MJ. 2001. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 24:1161–92
    [Google Scholar]
  75. Messerschmidt DM. 2012. Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes. Epigenetics 7:969–75
    [Google Scholar]
  76. Moran NA. 1992. The evolutionary maintenance of alternative phenotypes. Am. Nat. 139:971–89
    [Google Scholar]
  77. Mousseau TA, Fox CW. 1998. Maternal Effects as Adaptations Oxford, UK: Oxford Univ. Press
  78. Nephew BC, Carini LM, Sallah S, Cotino C, Alyamani RAS et al. 2017. Intergenerational accumulation of impairments in maternal behavior following postnatal social stress. Psychoneuroendocrinology 82:98–106
    [Google Scholar]
  79. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK 2012. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLOS ONE 7:e36129
    [Google Scholar]
  80. Paitz RT, Bowden RM, Casto JM 2011. Embryonic modulation of maternal steroids in European starlings (Sturnus vulgaris). Proc. R. Soc. B 278:99–106
    [Google Scholar]
  81. Paitz RT, Bukhari SA, Bell AM 2016. Stickleback embryos use ATP-binding cassette transporters as a buffer against exposure to maternally derived cortisol. Proc. R. Soc. B 283:20152838
    [Google Scholar]
  82. Pal C. 1998. Plasticity, memory and the adaptive landscape of the genotype. Proc. R. Soc. B 265:1319–23
    [Google Scholar]
  83. Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J et al. 2011. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ. Sci. Technol 45:4974–79
    [Google Scholar]
  84. Pang TYC, Short AK, Bredy TW, Hannan AJ 2017. Transgenerational paternal transmission of acquired traits: stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes. Curr. Opin. Behav. Sci. 14:140–47
    [Google Scholar]
  85. Pembrey M, Saffery R, Bygren LO 2014. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J. Med. Genet. 51:563–72
    [Google Scholar]
  86. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K et al. 2006. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14:159–66
    [Google Scholar]
  87. Pentinat T, Ramon-Krauel M, Cebria J, Diaz R, Jimenez-Chillaron JC 2010. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151:5617–23
    [Google Scholar]
  88. Potok ME, Nix DA, Parnell TJ, Cairns BR 2013. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153:759–72
    [Google Scholar]
  89. Prizak R, Ezard THG, Hoyle RB 2014. Fitness consequences of maternal and grandmaternal effects. Ecol. Evol. 4:3139–45
    [Google Scholar]
  90. Proulx SR, Teotonio H. 2017. What kind of maternal effects can be selected for in fluctuating environments?. Am. Nat. 189:E118–37
    [Google Scholar]
  91. Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R et al. 2012. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–63
    [Google Scholar]
  92. Rehan VK, Liu J, Naeem E, Tian J, Sakurai R et al. 2012. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med 10:129
    [Google Scholar]
  93. Remy J-J. 2010. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol 20:R877–78
    [Google Scholar]
  94. Rodgers AB, Bale TL 2015. Germ cell origins of posttraumatic stress disorder risk: the transgenerational impact of parental stress experience. Biol. Psychiatry 78:307–14
    [Google Scholar]
  95. Rodgers AB, Morgan CP, Leu NA, Bale TL 2015. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. PNAS 112:13699–704
    [Google Scholar]
  96. Rossiter MC. 1996. Incidence and consequences of inherited environmental effects. Annu. Rev. Ecol. Syst. 27:451–76
    [Google Scholar]
  97. Saavedra-Rodríguez L, Feig LA. 2013. Chronic social instability induces anxiety and defective social interactions across generations. Biol. Psychiatry 73:44–53
    [Google Scholar]
  98. Schlaepfer MA, Runge MC, Sherman PW 2002. Ecological and evolutionary traps. Trends Ecol. Evol. 17:474–80
    [Google Scholar]
  99. Schlichting CD, Pigliucci M. 1998. Phenotypic Evolution: A Reaction Norm Perspective Sunderland, MA: Sinauer
  100. Sentis A, Bertram R, Dardenne N, Ramon-Portugal F, Espinasse G et al. 2018. Evolution without standing genetic variation: change in transgenerational plastic response under persistent predation pressure. Heredity 121:266–81
    [Google Scholar]
  101. Shama LNS, Wegner KM. 2014. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. J. Evol. Biol. 27:2297–307
    [Google Scholar]
  102. Sheriff MJ, Dantzer B, Love OP, Orrock JL 2018. Error management theory and the adaptive significance of transgenerational maternal-stress effects on offspring phenotype. Ecol. Evol. 8:6473–82
    [Google Scholar]
  103. Short AK, Fennell KA, Perreau VM, Fox A, O'Bryan MK et al. 2016. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl. Psychiatry 6:e837
    [Google Scholar]
  104. Simons AM. 2011. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc. R. Soc. B 278:1601–9
    [Google Scholar]
  105. Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E et al. 2018. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 11:8
    [Google Scholar]
  106. Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE 2013. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med 11:228
    [Google Scholar]
  107. Stamps JA, Krishnan VV. 2014. Combining information from ancestors and personal experiences to predict individual differences in developmental trajectories. Am. Nat. 184:647–57
    [Google Scholar]
  108. Stein LR, Bukhari SA, Bell AM 2018. Personal and transgenerational cues are nonadditive at the phenotypic and molecular level. Nat. Ecol. Evol. 2:1306–11
    [Google Scholar]
  109. Sultan SE, Barton K, Wilczek AM 2009. Contrasting patterns of transgenerational plasticity in ecologically distinct congeners. Ecology 90:1831–39
    [Google Scholar]
  110. Taborsky B. 2006. Mothers determine offspring size in response to own juvenile growth conditions. Biol. Lett. 2:225–28
    [Google Scholar]
  111. Tabuchi TM, Rechtsteiner A, Jeffers TE, Egelhofer TA, Murphy CT, Strome S 2018. Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nat. Commun. 9:4310
    [Google Scholar]
  112. Tobler M, Smith HG. 2010. Mother–offspring conflicts, hormone signaling, and asymmetric ownership of information. Behav. Ecol. 21:893–97
    [Google Scholar]
  113. Trivers RL. 1974. Parent-offspring conflict. Am. Zool. 14:249–64
    [Google Scholar]
  114. Uller T. 2008. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 23:432–38
    [Google Scholar]
  115. Uller T, Nakagawa S, English S 2013. Weak evidence for anticipatory parental effects in plants and animals. J. Evol. Biol. 26:2161–70
    [Google Scholar]
  116. Uller T, Pen I. 2011. A theoretical model of the evolution of maternal effects under parent–offspring conflict. Evolution 65:2075–84
    [Google Scholar]
  117. Vågerö D, Pinger PR, Aronsson V, van den Berg GJ 2018. Paternal grandfather's access to food predicts all-cause and cancer mortality in grandsons. Nat. Commun. 9:5124
    [Google Scholar]
  118. Vassoler FM, Oliver DJ, Wyse C, Blau A, Shtutman M et al. 2017. Transgenerational attenuation of opioid self-administration as a consequence of adolescent morphine exposure. Neuropharmacology 113:271–80
    [Google Scholar]
  119. Walsh MR, Castoe T, Holmes J, Packer M, Biles K et al. 2016. Local adaptation in transgenerational responses to predators. Proc. R. Soc. B 283:20152271
    [Google Scholar]
  120. Wang M, Nie Y, Liu Y, Dai H, Wang J et al. 2019. Transgenerational effects of diesel particulate matter on Caenorhabditis elegans through maternal and multigenerational exposure. Ecotoxicol. Environ. Saf. 170:635–43
    [Google Scholar]
  121. West-Eberhard MJ. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
  122. Wibowo A, Becker C, Marconi G, Durr J, Price J et al. 2016. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5:e13546
    [Google Scholar]
  123. Yehuda R, Bell A, Bierer LM, Schmeidler J 2008. Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors. J. Psychiatr. Res. 42:1104–11
    [Google Scholar]
  124. Youngson NA, Whitelaw E. 2008. Transgenerational epigenetic effects. Annu. Rev. Genom. Hum. Genet. 9:233–57
    [Google Scholar]
  125. Zannas AS, Chrousos GP. 2017. Epigenetic programming by stress and glucocorticoids along the human lifespan. Mol. Psychiatry 22:640–46
    [Google Scholar]
  126. Zhou Y, Zhu H, Wu H-Y, Jin L-Y, Chen B et al. 2018. Diet-induced paternal obesity impairs cognitive function in offspring by mediating epigenetic modifications in spermatozoa. Obesity 26:1749–57
    [Google Scholar]
  127. Zuccolo L, DeRoo LA, Wills AK, Smith GD, Suren P et al. 2016. Pre-conception and prenatal alcohol exposure from mothers and fathers drinking and head circumference: results from the Norwegian Mother-Child Study (MoBa). Sci. Rep. 6:39535
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-024613
Loading
/content/journals/10.1146/annurev-ecolsys-110218-024613
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error