1932

Abstract

To cope with the reduced availability of O at high altitude, air-breathing vertebrates have evolved myriad adjustments in the cardiorespiratory system to match tissue O delivery with metabolic O demand. We explain how changes at interacting steps of the O transport pathway contribute to plastic and evolved changes in whole-animal aerobic performance under hypoxia. In vertebrates native to high altitude, enhancements of aerobic performance under hypoxia are attributable to a combination of environmentally induced and evolved changes in multiple steps of the pathway. Additionally, evidence suggests that many high-altitude natives have evolved mechanisms for attenuating maladaptive acclimatization responses to hypoxia, resulting in counter-gradient patterns of altitudinal variation for key physiological phenotypes. For traits that exhibit counteracting environmental and genetic effects, evolved changes in phenotype may be cryptic under field conditions and can only be revealed by rearing representatives of high- and low-altitude populations under standardized environmental conditions to control for plasticity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-025014
2019-11-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110218-025014.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-025014&mimeType=html&fmt=ahah

Literature Cited

  1. Bassett DR Jr., Howley ET. 2000. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 32:70–84
    [Google Scholar]
  2. Beall CM, Reichsman AB. 1984. Hemoglobin levels in a Himalayan high altitude population. Am. J. Phys. Anthr. 63:301–6
    [Google Scholar]
  3. Beall CM, Strohl KP, Blangero J, Williams-Blangero S, Almasy LA et al. 1997. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. Am. J. Phys. Anthr. 104:427–47
    [Google Scholar]
  4. Bernardi L, Passino C, Spadacini G, Calciati A, Robergs R et al. 1998. Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude. Clin. Sci. 95:565–73
    [Google Scholar]
  5. Black CP, Tenney SM. 1980. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol. 39:217–39
    [Google Scholar]
  6. Brutsaert T. 2016. Why are high altitude natives so strong at high altitude? Nature versus nurture: genetic factors versus growth and development. Advances in Experimental Medicine and Biology, Vol. 903 R Roach, P Hackett, P Wagner 101–12 Boston: Springer
    [Google Scholar]
  7. Brutsaert TD. 2007. Population genetic aspects and phenotypic plasticity of ventilatory responses in high altitude natives. Respir. Physiol. Neurobiol. 158:151–60
    [Google Scholar]
  8. Brutsaert TD, Araoz M, Soria R, Spielvogel H, Haas JD 2000. Higher arterial oxygen saturation during submaximal exercise in Bolivian Aymara compared to European sojourners and Europeans born and raised at high altitude. Am. J. Phys. Anthr. 113:169–81
    [Google Scholar]
  9. Brutsaert TD, Parra EJ, Shriver MD, Gamboa A, León-Velarde F 2005. Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives. Am. J. Physiol. Reg. Integr. Comp. Physiol. 289:R225–34
    [Google Scholar]
  10. Brutsaert TD, Parra EJ, Shriver MD, Gamboa A, Palacios JA et al. 2003. Spanish genetic admixture is associated with larger O2max decrement from sea level to 4,338 m in Peruvian Quechua. J. Appl. Physiol. 95:519–28
    [Google Scholar]
  11. Burri PH, Weibel ER. 1971. Morphometric estimation of pulmonary diffusion capacity. II. Effect of Po2 on the growing lung adaption of the growing rat lung to hypoxia and hyperoxia. Respir. Physiol. 11:247–64
    [Google Scholar]
  12. Calbet JA. 2003. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J. Physiol. 551:379–86
    [Google Scholar]
  13. Chen QH, Ge RL, Wang XZ, Chen HX, Wu TY et al. 1997. Exercise performance of Tibetan and Han adolescents at altitudes of 3,417 and 4,300 m. J. Appl. Physiol. 83:661–67
    [Google Scholar]
  14. Cheviron ZA, Bachman GC, Connaty AD, McClelland GB, Storz JF 2012. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. PNAS 109:8635–40
    [Google Scholar]
  15. Cheviron ZA, Bachman GC, Storz JF 2013. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice. J. Exp. Biol. 216:1160–66
    [Google Scholar]
  16. Cheviron ZA, Connaty AD, McClelland GB, Storz JF 2014. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution 68:48–62
    [Google Scholar]
  17. Conover DO, Duffy TA, Hice LA 2009. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Ann. N.Y. Acad. Sci. 1168:100–29
    [Google Scholar]
  18. Conover DO, Schultz ET. 1995. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10:248–52
    [Google Scholar]
  19. Dane DM, Cao K, Lu H, Yilmaz C, Dolan J et al. 2018. Acclimatization of low altitude-bred deer mice (Peromyscus maniculatus) to high altitude. J. Appl. Physiol. 125:1411–23
    [Google Scholar]
  20. Dawson NJ, Ivy CM, Alza L, Cheek R, York JM et al. 2016. Mitochondrial physiology in the skeletal and cardiac muscles is altered in torrent ducks, Merganetta armata, from high altitudes in the Andes. J. Exp. Biol. 219:3719–28
    [Google Scholar]
  21. Dawson NJ, Lyons SA, Henry DA, Scott GR 2018. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude. Acta Physiol 223:e13030
    [Google Scholar]
  22. Dempsey JA, Morgan BJ. 2015. Humans in hypoxia: a conspiracy of maladaptation?!. Physiology 30:304–16
    [Google Scholar]
  23. Falconer DS. 1990. Selection in different environments: effects on environmental sensitivity (reaction norm) and on mean performance. Genet. Res. 56:57–70
    [Google Scholar]
  24. Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetics Harlow, UK: Longman Sci. Technol. , 4th ed..
  25. Galen SC, Natarajan C, Moriyama H, Weber RE, Fago A et al. 2015. Contribution of a mutational hotspot to adaptive changes in hemoglobin function in high-altitude Andean house wrens. PNAS 112:13958–63
    [Google Scholar]
  26. Ge R-L, Kubo K, Kobayashi T, Sekiguchi M, Honda T 1998. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol. Heart Circ. Physiol. 274:H1792–99
    [Google Scholar]
  27. Ge R-L, Lun G-WH, Chen Q-H, Li H-L, Gen D et al. 1995. Comparisons of oxygen transport between Tibetan and Han residents at moderate altitude. Wilderness Environ. Med. 6:391–400
    [Google Scholar]
  28. Ghalambor CK, McKay JK, Carroll SP, Reznick DN 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21:394–407
    [Google Scholar]
  29. Gilbert-Kawai ET, Milledge JS, Grocott MP, Martin DS 2014. King of the mountains: Tibetan and Sherpa physiological adaptations for life at high altitude. Physiology 29:388–402
    [Google Scholar]
  30. Gonzalez NC, Kirkton SD, Howlett RA, Britton SL, Koch LG et al. 2006. Continued divergence in O2max of rats artificially selected for running endurance is mediated by greater convective blood O2 delivery. J. Appl. Physiol. 101:1288–96
    [Google Scholar]
  31. Grether GF. 2005. Environmental change, phenotypic plasticity, and genetic compensation. Am. Nat. 166:E115–23
    [Google Scholar]
  32. Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE et al. 1993. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J. Appl. Physiol. 74:312–18
    [Google Scholar]
  33. Günther H, Brunner R, Klußmann FW 1983. Spectral analysis of tremorine and cold tremor electromyograms in animal species of different size. Pflügers Archiv. Eur. J. Physiol. 399:180–85
    [Google Scholar]
  34. Hainsworth R, Drinkhill MJ. 2007. Cardiovascular adjustments for life at high altitude. Respir. Physiol. Neurobiol. 158:204–11
    [Google Scholar]
  35. Hayes JP. 1989. Field and maximal metabolic rates of deer mice (Peromyscus maniculatus) at low and high altitudes. Physiol. Zool. 62:732–44
    [Google Scholar]
  36. Hayes JP, O'Connor CS. 1999. Natural selection on thermogenic capacity of high-altitude deer mice. Evolution 53:1280–87
    [Google Scholar]
  37. Henderson KK, Wagner H, Favret F, Britton SL, Koch LG et al. 2002. Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J. Appl. Physiol. 93:1265–74
    [Google Scholar]
  38. Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ et al. 2017. Metabolic basis to Sherpa altitude adaptation. PNAS 114:6382–87
    [Google Scholar]
  39. Howlett RA, Kirkton SD, Gonzalez NC, Wagner HE, Britton SL et al. 2009. Peripheral oxygen transport and utilization in rats following continued selective breeding for endurance running capacity. J. Appl. Physiol. 106:1819–25
    [Google Scholar]
  40. Hsia CCW, Carbayo JJ, Yan X, Bellotto DJ 2005. Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude. Respir. Physiol. Neurobiol. 147:105–15
    [Google Scholar]
  41. Hsia CCW, Johnson RL, McDonough P, Dane DM, Hurst MD et al. 2007. Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years. J. Appl. Physiol. 102:1448–55
    [Google Scholar]
  42. Ivy CM, Lague SL, York JM, Chua BA, Alza L et al. 2019. Control of breathing and respiratory gas exchange in ducks native to high altitude in the Andes. J. Exp. Biol. 222: jeb198622
    [Google Scholar]
  43. Ivy CM, Scott GR. 2015. Control of breathing and the circulation in high-altitude mammals and birds. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 186:66–74
    [Google Scholar]
  44. Ivy CM, Scott GR. 2017a. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes. Acta Physiol 221:266–82
    [Google Scholar]
  45. Ivy CM, Scott GR. 2017b. Ventilatory acclimatization to hypoxia in mice: methodological considerations. Respir. Physiol. Neurobiol. 235:95–103
    [Google Scholar]
  46. Ivy CM, Scott GR. 2018. Evolved changes in breathing and CO2 sensitivity in deer mice native to high altitudes. Am. J. Physiol. Reg. Integr. Comp. Physiol. 315:R1027–37
    [Google Scholar]
  47. Jensen B, Storz JF, Fago A 2016. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 195:10–14
    [Google Scholar]
  48. Kayser B, Hoppeler H, Claassen H, Cerretelli P 1991. Muscle structure and performance capacity of Himalayan Sherpas. J. Appl. Physiol. 70:1938–42
    [Google Scholar]
  49. Kayser B, Hoppeler H, Desplanches D, Marconi C, Broers B, Cerretelli P 1996. Muscle ultrastructure and biochemistry of lowland Tibetans. J. Appl. Physiol. 81:419–25
    [Google Scholar]
  50. Kirkton SD, Howlett RA, Gonzalez NC, Giuliano PG, Britton SL et al. 2009. Continued artificial selection for running endurance in rats is associated with improved lung function. J. Appl. Physiol. 106:1810–18
    [Google Scholar]
  51. Kumar P, Prabhakar NR. 2012. Peripheral chemoreceptors: function and plasticity of the carotid body. Compr. Physiol. 2:141–219
    [Google Scholar]
  52. Lague SL, Chua B, Alza L, Scott GR, Frappell PB et al. 2017. Divergent respiratory and cardiovascular responses to hypoxia in bar-headed geese and Andean birds. J. Exp. Biol. 220:4186–94
    [Google Scholar]
  53. Lechner AJ. 1977. Metabolic performance during hypoxia in native and acclimated pocket gophers. J. Appl. Physiol. 43:965–70
    [Google Scholar]
  54. León-Velarde F, Sanchez J, Bigard AX, Brunet A, Lesty C, Monge C 1993. High altitude tissue adaptation in Andean coots: capillarity, fibre area, fiber type and enzymatic activities of skeletal muscle. J. Comp. Physiol. B 163:52–58
    [Google Scholar]
  55. Levins R. 1969. Thermal acclimation and heat resistance in Drosophila species. Am. Nat. 103:483–99
    [Google Scholar]
  56. Lindsey BG, Nuding SC, Segers LS, Morris KF 2018. Carotid bodies and the integrated cardiorespiratory response to hypoxia. Physiology 33:281–97
    [Google Scholar]
  57. Lopez-Barneo J, Gonzalez-Rodriguez P, Gao L, Fernandez-Aguera MC, Pardal R, Ortega-Saenz P 2016. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am. J. Physiol. Cell Physiol. 310:C629–42
    [Google Scholar]
  58. Lui MA, Mahalingam S, Patel P, Connaty AD, Ivy CM et al. 2015. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. Am. J. Physiol. Reg. Integr. Comp. Physiol. 308:R779–91
    [Google Scholar]
  59. Mahalingam S, McClelland GB, Scott GR 2017. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice. J. Physiol. 595:4785–801
    [Google Scholar]
  60. Maina JN, McCracken KG, Chua B, York JM, Milsom WK 2017. Morphological and morphometric specializations of the lung of the Andean goose, Chloephaga melanoptera: a lifelong high-altitude resident. PLOS ONE 12:e0174395
    [Google Scholar]
  61. Mathieu-Costello O, Agey PJ, Wu L, Szewczak JM, MacMillen RE 1998. Increased fiber capillarization in flight muscle of finch at altitude. Respir. Physiol. 111:189–99
    [Google Scholar]
  62. McClelland GB, Scott GR. 2019. Evolved mechanisms of aerobic performance and hypoxia resistance in high-altitude natives. Annu. Rev. Physiol. 81:561–83
    [Google Scholar]
  63. Monge C, León-Velarde F. 1991. Physiological adaptation to high altitude: oxygen-transport in mammals and birds. Physiol. Rev. 71:1135–72
    [Google Scholar]
  64. Monge CC, Arregui A, León-Velarde F 1992. Pathophysiology and epidemiology of chronic mountain sickness. Int. J. Sports Med. 13:S79–81
    [Google Scholar]
  65. Moore LG. 2000. Comparative human ventilatory adaptation to high altitude. Respir. Physiol. 121:257–76
    [Google Scholar]
  66. Moore LG, Charles SM, Julian CG 2011. Humans at high altitude: hypoxia and fetal growth. Respir. Physiol. Neurobiol. 178:181–90
    [Google Scholar]
  67. Natarajan C, Hoffman FG, Lanier HC, Wolf CJ, Cheviron ZA et al. 2015a. Intraspecific polymorphism, interspecific divergence, and the origins of function-altering mutations in deer mouse hemoglobin. Mol. Biol. Evol. 32:978–97
    [Google Scholar]
  68. Natarajan C, Hoffmann FG, Weber RE, Fago A, Witt CC, Storz JF 2016. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science 354:336–40
    [Google Scholar]
  69. Natarajan C, Inoguchi N, Weber RE, Fago A, Moriyama H, Storz JF 2013. Epistasis among adaptive mutations in deer mouse hemoglobin. Science 340:1324–27
    [Google Scholar]
  70. Natarajan C, Jendroszek A, Kumar A, Weber RE, Tame JRH et al. 2018. Molecular basis of hemoglobin adaptation in the high-flying bar-headed goose. PLOS Genet 14:e1007331
    [Google Scholar]
  71. Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Munoz-Fuentes V et al. 2015b. Convergent evolution of hemoglobin function in high-altitude Andean waterfowl involves limited parallelism at the molecular sequence level. PLOS Genet 11:e1005681
    [Google Scholar]
  72. Nikel KE, Shanishchara NK, Ivy CM, Dawson NJ, Scott GR 2017. Effects of hypoxia at different life stages on locomotory muscle phenotype in deer mice native to high altitude. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 224:98–104
    [Google Scholar]
  73. Pamenter ME, Carr JA, Go A, Fu Z, Reid SG, Powell FL 2014. Glutamate receptors in the nucleus tractus solitarius contribute to ventilatory acclimatization to hypoxia in rat. J. Physiol. 592:1839–56
    [Google Scholar]
  74. Pamenter ME, Powell FL. 2016. Time domains of the hypoxic ventilatory response and their molecular basis. Compr. Physiol. 6:1345–85
    [Google Scholar]
  75. Pardal R, Ortega-Saenz P, Duran R, Lopez-Barneo J 2007. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131:364–77
    [Google Scholar]
  76. Pearson KG, Acharya H, Fouad K 2005. A new electrode configuration for recording electromyographic activity in behaving mice. J. Neurosci. Methods 148:36–42
    [Google Scholar]
  77. Pearson OP, Pearson A. 1976. A stereological analysis of the ultrastructure of the lungs of wild mice living at low and high altitude. J. Morphol. 150:359–68
    [Google Scholar]
  78. Pichon A, Zhenzhong B, Favret F, Jin G, Shufeng H et al. 2009. Long-term ventilatory adaptation and ventilatory response to hypoxia in plateau pika (Ochotona curzoniae): role of nNOS and dopamine. Am. J. Physiol. Reg. Integr. Comp. Physiol. 297:R978–87
    [Google Scholar]
  79. Pichon A, Zhenzhong B, Marchant D, Jin G, Voituron N et al. 2013. Cardiac adaptation to high altitude in the plateau pika (Ochotona curzoniae). Physiol. Rep. 1:e00032
    [Google Scholar]
  80. Powell FL. 2007. The influence of chronic hypoxia upon chemoreception. Respir. Physiol. Neurobiol. 157:154–61
    [Google Scholar]
  81. Powell FL, Milsom WK, Mitchell GS 1998. Time domains of the hypoxic ventilatory response. Respir. Physiol. 112:123–34
    [Google Scholar]
  82. Prabhakar NR, Peng YJ. 2017. Oxygen sensing by the carotid body: past and present. Adv. Exp. Med. Biol. 977:3–8
    [Google Scholar]
  83. Projecto-Garcia J, Natarajan C, Moriyama H, Weber RE, Fago A et al. 2013. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. PNAS 110:20669–74
    [Google Scholar]
  84. Ramirez J-M, Folkow LP, Blix AS 2007. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu. Rev. Physiol. 69:113–43
    [Google Scholar]
  85. Rhodes J. 2005. Comparative physiology of hypoxic pulmonary hypertension: historical clues from brisket disease. J. Appl. Physiol. 98:1092–100
    [Google Scholar]
  86. Schippers M-P, Ramirez O, Arana M, Pinedo-Bernal P, McClelland GB 2012. Increase in carbohydrate utilization in high-altitude Andean mice. Curr. Biol. 22:2350–54
    [Google Scholar]
  87. Scott AL, Pranckevicius NA, Nurse CA, Scott GR 2019. Regulation of catecholamine release from the adrenal medulla is altered in deer mice (Peromyscus maniculatus) native to high altitudes. Am. J. Physiol. Reg. Integr. Comp. Physiol. 317:R407–17
    [Google Scholar]
  88. Scott GR. 2011. Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214:2455–62
    [Google Scholar]
  89. Scott GR, Egginton S, Richards JG, Milsom WK 2009a. Evolution of muscle phenotype for extreme high altitude flight in the bar-headed goose. Proc. R. Soc. B 276:3645–53
    [Google Scholar]
  90. Scott GR, Elogio TS, Lui MA, Storz JF, Cheviron ZA 2015a. Adaptive modifications of muscle phenotype in high-altitude deer mice are associated with evolved changes in gene regulation. Mol. Biol. Evol. 32:1962–76
    [Google Scholar]
  91. Scott GR, Hawkes LA, Frappell PB, Butler PJ, Bishop CM, Milsom WK 2015b. How bar-headed geese fly over the Himalayas. Physiology 30:107–15
    [Google Scholar]
  92. Scott GR, Milsom WK. 2006. Flying high: a theoretical analysis of the factors limiting exercise performance in birds at altitude. Respir. Physiol. Neurobiol. 154:284–301
    [Google Scholar]
  93. Scott GR, Milsom WK. 2007. Control of breathing and adaptation to high altitude in the bar-headed goose. Am. J. Physiol. Reg. Integr. Comp. Physiol. 293:R379–91
    [Google Scholar]
  94. Scott GR, Milsom WK. 2009. Control of breathing in birds: implications for high altitude flight. Cardio-Respiratory Control in Vertebrates: Comparative and Evolutionary Aspects ML Glass, SC Wood 429–48 Berlin: Springer-Verlag
    [Google Scholar]
  95. Scott GR, Richards JG, Milsom WK 2009b. Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds. Am. J. Physiol. Reg. Integr. Comp. Physiol 297:R1066–74
    [Google Scholar]
  96. Scott GR, Schulte PM, Egginton S, Scott ALM, Richards JG, Milsom WK 2011. Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Mol. Biol. Evol. 28:351–63
    [Google Scholar]
  97. Seidler FJ, Slotkin TA. 1985. Adrenomedullary function in the neonatal rat: responses to acute hypoxia. J. Physiol. 358:1–16
    [Google Scholar]
  98. Shimoda LA, Laurie SS. 2014. HIF and pulmonary vascular responses to hypoxia. J. Appl. Physiol. 116:867–74
    [Google Scholar]
  99. Siebenmann C, Robach P, Lundby C 2017. Regulation of blood volume in lowlanders exposed to high altitude. J. Appl. Physiol. 123:957–66
    [Google Scholar]
  100. Signore AV, Yang Y-Z, Yang Q-Y, Qin G, Moriyama H et al. 2019. Adaptive changes in hemoglobin function in high-altitude Tibetan canids were derived via gene conversion and introgression. Mol. Biol. Evol. In press. https://doi.org/10.1093/molbev/msz097
    [Crossref] [Google Scholar]
  101. Simonson TS, Huff CD, Witherspoon DJ, Prchal JT, Jorde LB 2015a. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans. Exp. Physiol. 100:1263–68
    [Google Scholar]
  102. Simonson TS, Wei G, Wagner HE, Wuren T, Qin G et al. 2015b. Low haemoglobin concentration in Tibetan males is associated with greater high-altitude exercise capacity. J. Physiol. 593:3207–18
    [Google Scholar]
  103. Slotkin TA, Seidler FJ. 1988. Adrenomedullary catecholamine release in the fetus and newborn: secretory mechanisms and their role in stress and survival. J. Dev. Physiol. 10:1–16
    [Google Scholar]
  104. Storz JF. 2010. Genes for high altitudes. Science 329:40–41
    [Google Scholar]
  105. Storz JF. 2016. Hemoglobin-oxygen affinity in high-altitude vertebrates: Is there evidence for an adaptive trend?. J. Exp. Biol. 219:3190–203
    [Google Scholar]
  106. Storz JF. 2019. Hemoglobin: Insights into Protein Structure, Function, and Evolution Oxford, UK: Oxford Univ. Press
  107. Storz JF, Bridgham JT, Kelly SA, Garland T 2015. Genetic approaches in comparative and evolutionary physiology. Am. J. Physiol. Reg. Integr. Comp. Physiol.R197–214
    [Google Scholar]
  108. Storz JF, Cheviron ZA, McClelland GB, Scott GR 2019. Evolution of physiological performance capacities and environmental adaptation: insights from high-elevation deer mice (Peromyscus maniculatus). J. Mammal. 100:910–22
    [Google Scholar]
  109. Storz JF, Runck AM, Moriyama H, Weber RE, Fago A 2010a. Genetic differences in hemoglobin function between highland and lowland deer mice. J. Exp. Biol. 213:2565–74
    [Google Scholar]
  110. Storz JF, Runck AM, Sabatino SJ, Kelly JK, Ferrand N et al. 2009. Evolutionary and functional insights into the mechanism underlying high altitude adaptation of deer mouse hemoglobin. PNAS 106:14450–55
    [Google Scholar]
  111. Storz JF, Scott GR, Cheviron ZA 2010b. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213:4125–36
    [Google Scholar]
  112. Swenson ER, Bärtsch P. 2014. High Altitude: Human Adaptation to Hypoxia New York: Springer
  113. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT 2012. Hypoxic pulmonary vasoconstriction. Physiol. Rev. 92:367–520
    [Google Scholar]
  114. Tate KB, Ivy CM, Velotta JP, Storz JF, McClelland GB et al. 2017. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice. J. Exp. Biol. 220:3616–20
    [Google Scholar]
  115. Tufts DM, Natarajan C, Revsbech IG, Projecto-Garcia J, Hoffman FG et al. 2015. Epistasis constrains mutational pathways of hemoglobin adaptation in high-altitude pikas. Mol. Biol. Evol. 32:287–98
    [Google Scholar]
  116. Velotta JP, Ivy CM, Wolf CJ, Scott GR, Cheviron ZA 2018. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution 72:2712–27
    [Google Scholar]
  117. Wagner PD. 1996. A theoretical analysis of factors determining VO2max at sea level and altitude. Respir. Physiol. 106:329–43
    [Google Scholar]
  118. Wagner PD, Araoz M, Boushel R, Calbet JAL, Jessen B et al. 2002. Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. J. Appl. Physiol. 92:1393–400
    [Google Scholar]
  119. Wagner PD, Simonson TS, Wei G, Wagner HE, Wuren T et al. 2015. Sea-level haemoglobin concentration is associated with greater exercise capacity in Tibetan males at 4200 m. Exp. Physiol. 100:1256–62
    [Google Scholar]
  120. Weibel ER, Taylor CR, Hoppeler H 1991. The concept of symmorphosis: a testable hypothesis of structure-function relationship. PNAS 88:10357–61
    [Google Scholar]
  121. York JM, Scadeng M, McCracken KG, Milsom WK 2018. Respiratory mechanics and morphology of Tibetan and Andean high-altitude geese with divergent life histories. J. Exp. Biol. 221:jeb170738
    [Google Scholar]
  122. Zhu X, Guan Y, Signore AV, Natarajan C, DuBay SG et al. 2018. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. PNAS 115:1865–70
    [Google Scholar]
  123. Zhuang J, Droma T, Sutton JR, Groves BM, McCullough RE et al. 1996. Smaller alveolar-arterial O2 gradients in Tibetan than Han residents of Lhasa (3658 m). Respir. Physiol. 103:75–82
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-025014
Loading
/content/journals/10.1146/annurev-ecolsys-110218-025014
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error