1932

Abstract

The origin, distribution, and function of biological diversity are fundamental themes of ecology and evolutionary biology. Research on birds has played a major role in the history and development of these ideas, yet progress was for many decades limited by a focus on patterns of current diversity, often restricted to particular clades or regions. Deeper insight is now emerging from a recent wave of integrative studies combining comprehensive phylogenetic, environmental, and functional trait data at unprecedented scales. We review these empirical advances and describe how they are reshaping our understanding of global patterns of bird diversity and the processes by which it arises, with implications for avian biogeography and functional ecology. Further expansion and integration of data sets may help to resolve longstanding debates about the evolutionary origins of biodiversity and offer a framework for understanding and predicting the response of ecosystems to environmental change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-025023
2020-11-02
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-110218-025023.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-025023&mimeType=html&fmt=ahah

Literature Cited

  1. Araújo MB, Rozenfeld A. 2014. The geographic scaling of biotic interactions. Ecography 37:406–15
    [Google Scholar]
  2. Battey CJ. 2019. Evidence of linked selection on the Z chromosome of hybridizing hummingbirds. Evolution 74:725–39
    [Google Scholar]
  3. Bender IMA, Kissling WD, Blendinger PG, Böhning‐Gaese K, Hensen I et al. 2018. Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography 41:1910–19
    [Google Scholar]
  4. Biber MF, Voskamp A, Niamir A, Hickler T, Hof C 2019. A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. J. Biogeogr. 47:114–29
    [Google Scholar]
  5. Blair C, Ané C. 2019. Phylogenetic trees and networks can serve as powerful and complementary approaches for analysis of genomic data. Syst. Biol. 69:593–601
    [Google Scholar]
  6. Blonder B. 2018. Hypervolume concepts in niche‐ and trait‐based ecology. Ecography 41:1441–55
    [Google Scholar]
  7. Blount ZD, Lenski RE, Losos JB 2018. Contingency and determinism in evolution: replaying life's tape. Science 362:eaam5979
    [Google Scholar]
  8. Boughman JW. 2002. How sensory drive can promote speciation. Trends Ecol. Evol. 17:571–77
    [Google Scholar]
  9. Bovo AAA, Ferraz KMPMB, Magioli M, Alexandrino ER, Hasui E et al. 2018. Habitat fragmentation narrows the distribution of avian functional traits associated with seed dispersal in tropical forest. Persp. Ecol. Conserv. 16:90–96
    [Google Scholar]
  10. Bregman TP, Lees AC, MacGregor HEA, Darski B, de Moura NG et al. 2016. Using avian functional traits to quantify the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc. R. Soc. B 283:20161289
    [Google Scholar]
  11. Bregman TP, Lees AC, Seddon N, MacGregor HEA, Darski B et al. 2015. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96:2692–704
    [Google Scholar]
  12. Bright JA, Marugán-Lobón J, Cobb SN, Rayfield EJ 2016. The shapes of bird beaks are highly controlled by nondietary factors. PNAS 113:5352–57
    [Google Scholar]
  13. Burns KJ, Shultz AJ, Title PO, Mason NA, Barker FK et al. 2014. Phylogenetics and diversification of tanagers (passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Mol. Phylogenetics Evol. 75:41–77
    [Google Scholar]
  14. Burri R. 2017. Interpreting differentiation landscapes in the light of long-term linked selection. Evol. Lett. 1:118–31
    [Google Scholar]
  15. Butlin RK, Smadja CM. 2018. Coupling, reinforcement, and speciation. Am. Nat. 191:155–72
    [Google Scholar]
  16. Cadena CD, Cuervo AM, Céspedes LN, Bravo GA, Krabbe N et al. 2020. Systematics, biogeography, and diversification of Scytalopus tapaculos (Rhinocryptidae), an enigmatic radiation of Neotropical montane birds. Auk 137:ukz077
    [Google Scholar]
  17. Cai T, Shao S, Kennedy JD, Alström P, Moyle RG et al. 2020. The role of evolutionary time, diversification rates and dispersal in determining the global diversity of a large radiation of passerine birds. J. Biogeogr. 47:161225
    [Google Scholar]
  18. Campbell CR, Poelstra JW, Yoder AD 2018. What is speciation genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol. J. Linn. Soc. 124:561–83
    [Google Scholar]
  19. Cannon PG, Gilroy JJ, Tobias JA, Anderson A, Haugaasen T, Edwards DP 2019. Land-sparing agriculture sustains higher levels of avian functional diversity. Glob. Change Biol. 25:1576–90
    [Google Scholar]
  20. Cardillo M, Orme CDL, Owens IPF 2005. Testing for latitudinal bias in diversification rates: an example using New World birds. Ecology 86:2278–87
    [Google Scholar]
  21. Carling MD, Brumfield RT. 2008. Haldane's rule in an avian system: using cline theory and divergence population genetics to test for differential introgression of mitochondrial, autosomal, and sex-linked loci across the Passerina bunting hybrid zone. Evolution 62:2600–15
    [Google Scholar]
  22. Claramunt S, Derryberry EP, Remsen JV, Brumfield RT 2012. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. R. Soc. B 279:1567–74
    [Google Scholar]
  23. Cooney CR, Bright JA, Capp EJR, Chira AM, Hughes EM et al. 2017a. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542:344–47
    [Google Scholar]
  24. Cooney CR, Seddon N, Tobias JA 2016. Widespread correlations between climatic niche evolution and species diversification in birds. J. Anim. Ecol. 85:869–78
    [Google Scholar]
  25. Cooney CR, Tobias JA, Weir JT, Botero CA, Seddon N 2017b. Sexual selection, speciation and constraints on geographical range overlap in birds. Ecol. Lett. 20:863–71
    [Google Scholar]
  26. Cornetti L, Valente LM, Dunning LT, Quan X, Black RA et al. 2015. The genome of the “great speciator” provides insights into bird diversification. Genome Biol. Evol. 7:2680–91
    [Google Scholar]
  27. Cowles SA, Uy JAC. 2019. Rapid, complete reproductive isolation in two closely related Zosterops white-eye bird species despite broadly overlapping ranges. Evolution 73:1647–62
    [Google Scholar]
  28. Crouch NMA, Ricklefs RE. 2019. Speciation rate is independent of the rate of evolution of morphological size, shape, and absolute morphological specialization in a large clade of birds. Am. Nat. 193:E78–91
    [Google Scholar]
  29. Cruickshank TE, Hahn MW. 2014. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23:3133–57
    [Google Scholar]
  30. Cutter AD, Gray JC. 2016. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70:2171–85
    [Google Scholar]
  31. Czekanski-Moir JE, Rundell RJ. 2019. The ecology of nonecological speciation and nonadaptive radiations. Trends Ecol. Evol. 34:400–15
    [Google Scholar]
  32. Darwin C. 1859. On the Origin of Species by Means of Natural Selection London: John Murray
  33. Day JJ, Martins FC, Tobias JA, Murrell DJ 2020. Contrasting trajectories of morphological diversification on continents and islands in the Afrotropical white-eye radiation. J. Biogeogr. https://doi.org/10.1111/jbi.13917
    [Crossref] [Google Scholar]
  34. Delmore KE, Hübner S, Kane NC, Schuster R, Andrew RL et al. 2015. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol. Ecol. 24:1873–88
    [Google Scholar]
  35. Derryberry EP, Claramunt S, Derryberry G, Chesser RT, Cracraft J et al. 2011. Lineage diversification and morphological evolution during an exceptional continental radiation, the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65:102973–86
    [Google Scholar]
  36. Derryberry EP, Seddon N, Claramunt S, Tobias JA, Baker A et al. 2012. Correlated evolution of beak morphology and song in the Neotropical woodcreeper radiation. Evolution 66:2784–97
    [Google Scholar]
  37. Derryberry EP, Seddon N, Derryberry GE, Claramunt S, Seeholzer G et al. 2018. Ecological drivers of song evolution in birds: disentangling the effects of habitat and morphology. Ecol. Evol. 8:1890–905
    [Google Scholar]
  38. Diamond JM. 1975. Assembly of species communities. Ecology and Evolution of Communities ML Cody, JM Diamond 342–444 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  39. Drury JP, Tobias JA, Burns KJ, Mason NA, Shultz AJ, Morlon H 2018. Contrasting impacts of competition on ecological and social trait evolution in songbirds. PLOS Biol 16:e2003563
    [Google Scholar]
  40. Edwards SV, Kingan SB, Calkins JD, Balakrishnan CN, Jennings WB et al. 2005. Speciation in birds: genes, geography, and sexual selection. PNAS 102:6550–57
    [Google Scholar]
  41. Elgvin TO, Trier CN, Tørresen OK, Hagen IJ, Lien S et al. 2017. The genomic mosaicism of hybrid speciation. Sci. Adv. 3:e1602996
    [Google Scholar]
  42. Ellegren H. 2009. The different levels of genetic diversity in sex chromosomes and autosomes. Trends Genet 25:278–84
    [Google Scholar]
  43. Ellegren H, Smeds L, Burri R, Olason PI, Backström N et al. 2012. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–60
    [Google Scholar]
  44. Endler J. 1977. Geographic Variation, Speciation and Clines Princeton, NJ: Princeton Univ. Press
  45. Feder JL, Egan SP, Nosil P 2012. The genomics of speciation-with-gene-flow. Trends Genet 28:342–50
    [Google Scholar]
  46. Fitzpatrick BM, Fordyce JA, Gavrilets S 2009. Pattern, process and geographic modes of speciation. J. Evol. Biol. 22:2342–47
    [Google Scholar]
  47. Freeman BG, Tobias JA, Schluter D 2019. Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical bird diversity. Ecography 42:1832–40
    [Google Scholar]
  48. Friesen VL, Smith AL, Gómez-Díaz E, Bolton M, Furness RW et al. 2007. Sympatric speciation by allochrony in a seabird. PNAS 104:18589–94
    [Google Scholar]
  49. Futuyma DJ. 1987. On the role of species in anagenesis. Am. Nat. 130:465–73
    [Google Scholar]
  50. Futuyma DJ. 2010. Evolutionary constraint and ecological consequences. Evolution 64:1865–84
    [Google Scholar]
  51. Gómez-Bahamón V, Márquez R, Jahn AE, Miyaki CY, Tuero DT et al. 2020. Speciation associated with shifts in migratory behavior in an avian radiation. Curr. Biol. 30:1312–21
    [Google Scholar]
  52. Gotelli NJ, Graves GR, Rahbek C 2010. Macroecological signals of species interactions in the Danish avifauna. PNAS 107:5030–35
    [Google Scholar]
  53. Grant PR. 1972. Convergent and divergent character displacement. Biol. J. Linn. Soc. 4:39–69
    [Google Scholar]
  54. Grant PR, Grant RB. 2008. How and Why Species Multiply: The Radiation of Darwin's Finches Princeton, NJ: Princeton Univ. Press
  55. Graves GR. 1988. Linearity of geographic range and its possible effect on the population structure of Andean birds. Auk 105:47–52
    [Google Scholar]
  56. Grether GF, Peiman KS, Tobias JA, Robinson BW 2017. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 32:760–72
    [Google Scholar]
  57. Grinnell J. 1917. The niche-relationships of the California Thrasher. Auk 34:427–433
    [Google Scholar]
  58. Gröning J, Hochkirch A. 2008. Reproductive interference between animal species. Q. Rev. Biol. 83:257–82
    [Google Scholar]
  59. Harmon LJ, Harrison S. 2015. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185:584–93
    [Google Scholar]
  60. Harvey MG, Singhal S, Rabosky DL 2019. Beyond reproductive isolation: demographic controls on the speciation process. Annu. Rev. Ecol. Evol. Syst. 50:75–95
    [Google Scholar]
  61. Hill GE. 2017. The mitonuclear compatibility species concept. Auk 134:393–409
    [Google Scholar]
  62. Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46:523–49
    [Google Scholar]
  63. Hosner P, Tobias JA, Braun E, Kimball R 2017. How do seemingly non-vagile clades accomplish trans-marine dispersal? Trait and dispersal evolution in the landfowl (Aves: Galliformes). Proc. R. Soc. B 284:20170210
    [Google Scholar]
  64. Huang H, Rabosky DL. 2014. Sexual selection and diversification: reexamining the correlation between dichromatism and speciation rate in birds. Am. Nat. 184:E101–14
    [Google Scholar]
  65. Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography Princeton, NJ: Princeton Univ. Press
  66. Hudson EJ, Price TD. 2014. Pervasive reinforcement and the role of sexual selection in biological speciation. J. Hered. 105:Suppl. 1821–33
    [Google Scholar]
  67. Hutchinson GE. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals. ? Am. Nat. 93:145–59
    [Google Scholar]
  68. Irwin DE. 2018. Sex chromosomes and speciation in birds and other ZW systems. Mol. Ecol. 27:3831–51
    [Google Scholar]
  69. Irwin DE. 2020. Assortative mating in hybrid zones is remarkably ineffective in promoting speciation. Am. Nat. 195:E150–67
    [Google Scholar]
  70. Irwin DE, Bensch S, Price TD 2001. Speciation in a ring. Nature 409:333–37
    [Google Scholar]
  71. Irwin DE, Milá B, Toews DPL, Brelsford A, Kenyon HL et al. 2018. A comparison of genomic islands of differentiation across three young avian species pairs. Mol. Ecol. 27:4839–55
    [Google Scholar]
  72. Irwin DE, Rubtsov AS, Panov EN 2009. Mitochondrial introgression and replacement between yellowhammers (Emberiza citrinella) and pine buntings (E. leucocephalos; Aves, Passeriformes). Biol. J. Linn. Soc. 98:422–38
    [Google Scholar]
  73. Jankowski JE et al. 2010. Squeezed at the top: interspecific aggression may constrain elevational ranges in tropical birds. Ecology 91:1877–84
    [Google Scholar]
  74. Jarvis ED. 2016. Perspectives from the Avian Phylogenomics Project: questions that can be answered with sequencing all genomes of a vertebrate class. Annu. Rev. Anim. Biosci. 4:45–59
    [Google Scholar]
  75. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–31
    [Google Scholar]
  76. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO 2012. The global diversity of birds in space and time. Nature 491:444–48
    [Google Scholar]
  77. Kearns AM, Restani M, Szabo I, Schrøder-Nielsen A, Kim JA et al. 2018. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9:906
    [Google Scholar]
  78. Kennedy JD, Borregaard MK, Jønsson KA, Marki PZ, Fjeldså J, Rahbek C 2016. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B 283:20161922
    [Google Scholar]
  79. Kennedy JD, Borregaard MK, Marki PZ, Machac A, Fjeldså J, Rahbek C 2018. Expansion in geographical and morphological space drives continued lineage diversification in a global passerine radiation. Proc. R. Soc. B 285:20182181
    [Google Scholar]
  80. Kirschel ANG, Seddon N, Tobias JA 2019. Range-wide spatial mapping reveals convergent character displacement of bird song. Proc. R. Soc. B 286:20190443
    [Google Scholar]
  81. Kisel Y, Barraclough TG. 2010. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175:316–34
    [Google Scholar]
  82. La Sorte FA, Somveille M 2020. Survey completeness of a global citizen‐science database of bird occurrence. Ecography 43:34–43
    [Google Scholar]
  83. Lamichhaney S, Han F, Webster MT, Grant BR, Grant PR, Andersson L 2020. Female-biased gene flow between two species of Darwin's finches. Nat. Ecol. Evol. 4:979–86
    [Google Scholar]
  84. Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC 2011. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr. Biol. 21:1838–44
    [Google Scholar]
  85. MacArthur RH. 1972. Geographical Ecology New York: Harper and Row
  86. Mallarino R, Grant PR, Grant BR, Herrel A, Kuo WP, Abzhanov A 2011. Two developmental modules establish 3D beak-shape variation in Darwin's finches. PNAS 108:4057–62
    [Google Scholar]
  87. Mallet J. 2008. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philos. Trans. R. Soc. B 363:2971–86
    [Google Scholar]
  88. Marques DA, Meier JI, Seehausen O 2019. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34:531–44
    [Google Scholar]
  89. Martin PR, Montgomerie R, Lougheed SC 2010. Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution 64:336–47
    [Google Scholar]
  90. Mason NA, Burns KJ, Tobias JA, Claramunt S, Seddon N, Derryberry EP 2017. Song evolution, speciation, and vocal learning in passerine birds. Evolution 71:786–96
    [Google Scholar]
  91. Mayr E. 1963. Animal Species and Evolution Cambridge, MA: Belknap
  92. McEntee JP, Tobias JA, Sheard C, Burleigh JG 2018. Tempo and timing of ecological trait divergence in bird speciation. Nat. Ecol. Evol. 2:1120–27
    [Google Scholar]
  93. McGuire JA, Witt CC, Remsen JV, Corl A, Rabosky DL et al. 2014. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24:910–16
    [Google Scholar]
  94. Mendelson TC, Martin MD, Flaxman SM 2014. Mutation-order divergence by sexual selection: diversification of sexual signals in similar environments as a first step in speciation. Ecol. Lett. 17:1053–66
    [Google Scholar]
  95. Miller ET, Leighton GM, Freeman BG, Lees AC, Ligon RA 2019. Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat. Comm. 10:1602
    [Google Scholar]
  96. Miller ET, Wagner SK, Harmon LJ, Ricklefs RE 2017. Radiating despite a lack of character: ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. Am. Nat. 189:E14–30
    [Google Scholar]
  97. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10:315–31
    [Google Scholar]
  98. Moore RP, Robinson WD, Lovette IJ, Robinson TR 2008. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11:960–68
    [Google Scholar]
  99. Mořkovský L, Janoušek V, Reif J, Rídl J, Pačes J et al. 2018. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol. Ecol. 27:949–58
    [Google Scholar]
  100. Morrow EH, Pitcher TE, Arnqvist G 2003. No evidence that sexual selection is an “engine of speciation” in birds. Ecol. Lett. 6:228–34
    [Google Scholar]
  101. Nogues-Bravo D, Rodríguez-Sánchez F, Orsini L, de Boer E, Jansson R et al. 2018. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33:765–76
    [Google Scholar]
  102. Nosil P, Feder JL, Flaxman SM, Gompert Z 2017. Tipping points in the dynamics of speciation. Nat. Ecol. Evol. 1:0001
    [Google Scholar]
  103. Nosil P, Vines TH, Funk DJ 2005. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–19
    [Google Scholar]
  104. Ottenburghs J. 2018. Exploring the hybrid speciation continuum in birds. Ecol. Evol. 8:13027–34
    [Google Scholar]
  105. Ottenburghs J, Honka J, Müskens GJDM, Ellegren H 2020. Recent introgression between Taiga Bean Goose and Tundra Bean Goose results in a largely homogeneous landscape of genetic differentiation. Heredity 125:7384
    [Google Scholar]
  106. Ottenburghs J, Kraus R, van Hooft P, van Wieren S, Ydenberg R, Prins H 2017. Avian introgression in the genomic era. Avian Res 8:30
    [Google Scholar]
  107. Ottenburghs J, van Hooft P, van Wieren S, Ydenberg R, Prins H 2016. Birds in a bush: toward an avian phylogenetic network. Auk 133:577–82
    [Google Scholar]
  108. Pearse WD, Morales‐Castilla I, James LS, Farrell M, Boivin F, Davies TJ 2018. Global macroevolution and macroecology of passerine song. Evolution 72:944–60
    [Google Scholar]
  109. Pfennig DW, Pfennig KS. 2010. Character displacement and the origins of diversity. Am. Nat. 176:S26–44
    [Google Scholar]
  110. Phillimore AB, Freckleton RP, Orme CDL, Owens IPF 2006. Ecology predicts large-scale patterns of phylogenetic diversification in birds. Am. Nat. 168:220–29
    [Google Scholar]
  111. Phillimore AB, Orme CDL, Thomas GH, Blackburn TM, Bennett PM et al. 2008. Sympatric speciation in birds is rare: insights from range data and simulations. Am. Nat. 171:646–57
    [Google Scholar]
  112. Phillimore AB, Price TD. 2008. Density-dependent cladogenesis in birds. PLOS Biol 6:e71
    [Google Scholar]
  113. Pigot AL, Bregman T, Sheard C, Daly B, Etienne RS, Tobias JA 2016a. Quantifying species contributions to ecosystem processes: a global assessment of functional trait and phylogenetic metrics across avian seed-dispersal networks. Proc. R. Soc. B 283:20161597
    [Google Scholar]
  114. Pigot AL, Etienne RS. 2015. A dynamic null model for phylogenetic community structure. Ecol. Lett. 18:153–63
    [Google Scholar]
  115. Pigot AL, Jetz W, Sheard C, Tobias JA 2018. The macroecological dynamics of species coexistence in birds. Nat. Ecol. Evol. 2:1012–19
    [Google Scholar]
  116. Pigot AL, Sheard C, Miller ET, Bregman T, Freeman B et al. 2020. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4:230–39
    [Google Scholar]
  117. Pigot AL, Tobias JA. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16:330–38
    [Google Scholar]
  118. Pigot AL, Tobias JA. 2015. Dispersal and the transition to sympatry in vertebrates. Proc. R. Soc. B 282:20141929
    [Google Scholar]
  119. Pigot AL, Tobias JA, Jetz W 2016b. Energetic constraints on species coexistence in birds. PLOS Biol 14:e1002407
    [Google Scholar]
  120. Pigot AL, Trisos CH, Tobias JA 2016c. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B 283:20152013
    [Google Scholar]
  121. Podos J. 2001. Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature 409:185–88
    [Google Scholar]
  122. Poelstra J, Vijay N, Bossu C, Lantz H, Ryll B et al. 2014. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344:1410–14
    [Google Scholar]
  123. Price T. 2008. Speciation in Birds Greenwood Village, CO: Roberts and Co.
  124. Price TD, Bouvier MM. 2002. The evolution of F1 postzygotic incompatibilities in birds. Evolution 56:2083–89
    [Google Scholar]
  125. Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT et al. 2014. Niche filling slows the diversification of Himalayan songbirds. Nature 509:222–25
    [Google Scholar]
  126. Pryke SR. 2010. Sex chromosome linkage of mate preference and color signal maintains assortative mating between interbreeding finch morphs. Evolution 64:1301–10
    [Google Scholar]
  127. Pulido-Santacruz P, Aleixo A, Weir JT 2018. Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation. Proc. R. Soc. B 285:20172081
    [Google Scholar]
  128. Pulido-Santacruz P, Aleixo A, Weir JT 2020. Genomic data reveal a protracted window of introgression during the diversification of a neotropical woodcreeper radiation. Evolution 74:842–58
    [Google Scholar]
  129. Quintero I, Jetz W. 2018. Global elevational diversity and diversification of birds. Nature 555:246–50
    [Google Scholar]
  130. Quintero I, Landis MJ. 2020. Interdependent phenotypic and biogeographic evolution driven by biotic interactions. Syst. Biol. 69:739–55
    [Google Scholar]
  131. Rabosky DL. 2013. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44:481–502
    [Google Scholar]
  132. Rabosky DL, Title PO, Huang H 2015. Minimal effects of latitude on present-day speciation rates in New World birds. Proc. R. Soc. B 282:20142889
    [Google Scholar]
  133. Rabosky DL, Hurlbert AH. 2015. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185:572–83
    [Google Scholar]
  134. Rabosky DL, Matute DR. 2013. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. PNAS 110:15354–59
    [Google Scholar]
  135. Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N et al. 2017. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J. Evol. Biol. 30:1450–77
    [Google Scholar]
  136. Redding DW, Pigot AL, Dyer EE, Şekercioğlu ÇH, Kark S, Blackburn TM 2019. Location-level processes drive the establishment of alien bird populations worldwide. Nature 571:103–6
    [Google Scholar]
  137. Reddy S, Driskell A, Rabosky DL, Hackett SJ, Schulenberg TS 2012. Diversification and the adaptive radiation of the vangas of Madagascar. Proc. R. Soc. B 279:2062–71
    [Google Scholar]
  138. Ribas CC, Aleixo A, Nogueira ACR, Miyaki CY, Cracraft J 2012. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc. R. Soc. B 279:681–89
    [Google Scholar]
  139. Ribeiro ÂM, Lloyd P, Bowie RCK 2011. A tight balance between natural selection and gene flow in a southern African arid-zone endemic bird. Evolution 65:3499–514
    [Google Scholar]
  140. Ricklefs RE. 2010a. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. PNAS 107:1265–72
    [Google Scholar]
  141. Ricklefs RE. 2010b. Host-pathogen coevolution, secondary sympatry and species diversification. Philos. Trans. R. Soc. B 365:1139–47
    [Google Scholar]
  142. Ruegg K, Anderson EC, Boone J, Pouls J, Smith TB 2014. A role for migration-linked genes and genomic islands in divergence of a songbird. Mol. Ecol. 23:4757–69
    [Google Scholar]
  143. Runemark A, Trier CN, Eroukhmanoff F, Hermansen JS, Matschiner M et al. 2018. Variation and constraints in hybrid genome formation. Nat. Ecol. Evol. 2:549–56
    [Google Scholar]
  144. Saether SA, Saetre G-P, Borge T, Wiley C, Svedin N et al. 2007. Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. Science 318:95–97
    [Google Scholar]
  145. Saetre G-P, Borge T, Lindroos K, Haavie J, Sheldon BC et al. 2003. Sex chromosome evolution and speciation in Ficedula flycatchers. Proc. R. Soc. B 270:53–59
    [Google Scholar]
  146. Salisbury C, Seddon N, Cooney C, Tobias JA 2012. The latitudinal gradient in dispersal constraints: Ecological specialisation drives diversification in tropical birds. Ecol. Lett. 15:847–55
    [Google Scholar]
  147. Sayol F, Lapiedra O, Ducatez S, Sol D 2019. Larger brains spur species diversification in birds. Ecol. Lett. 73:2085–93
    [Google Scholar]
  148. Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323:737–41
    [Google Scholar]
  149. Schluter D. 2016. Speciation, ecological opportunity, and latitude. Am. Nat. 187:1–18
    [Google Scholar]
  150. Schrider DR, Kern AD. 2018. Supervised machine learning for population genetics: a new paradigm. Trends Genet 34:301–12
    [Google Scholar]
  151. Schumm M, White AE, Supriya K, Price TD 2020. Ecological limits as the driver of bird species richness patterns along the East Himalayan elevational gradient. Am. Nat. 195:802–17
    [Google Scholar]
  152. Seddon N, Botero CA, Tobias JA, Dunn PO, MacGregor HEA et al. 2013. Sexual selection accelerates signal evolution during speciation in birds. Proc. R. Soc. B 280:20131065
    [Google Scholar]
  153. Seddon N, Merrill R, Tobias JA 2008. Sexually selected traits predict patterns of species richness in a diverse clade of suboscine birds. Am. Nat. 171:620–31
    [Google Scholar]
  154. Seddon N, Tobias JA. 2007. Song divergence at the edge of Amazonia: an empirical test of the peripatric speciation model. Biol. J. Linn. Soc. 90:173–88
    [Google Scholar]
  155. Seddon N, Tobias JA. 2010. Character displacement from the receiver's perspective: species and mate-recognition despite convergent signals in suboscine birds. Proc. R. Soc. B 277:2475–83
    [Google Scholar]
  156. Servedio MR, Bürger R. 2014. The counterintuitive role of sexual selection in species maintenance and speciation. PNAS 111:8113–18
    [Google Scholar]
  157. Servedio MR, Noor MAF. 2003. The role of reinforcement in speciation: theory and data. Annu. Rev. Ecol. Evol. Syst. 34:339–64
    [Google Scholar]
  158. Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P 2011. Magic traits in speciation: “magic” but not rare?. Trends Ecol. Evol. 26:389–97
    [Google Scholar]
  159. Sheard C, Neate-Clegg MHC, Alioravainen N, Jones SEI, Vincent C et al. 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11:2463
    [Google Scholar]
  160. Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A et al. 2014. The drivers of tropical speciation. Nature 515:406–9
    [Google Scholar]
  161. Smith BT, Seeholzer GF, Harvey MG, Cuervo AM, Brumfield RT 2017. A latitudinal phylogeographic diversity gradient in birds. PLOS Biol 15:e2001073
    [Google Scholar]
  162. Smith JW, Benkman CW. 2007. A coevolutionary arms race causes ecological speciation in crossbills. Am. Nat. 169:455–65
    [Google Scholar]
  163. Sol D, Trisos C, Múrria C, Jeliazkov A, González-Lagos C et al. 2020. The global impact of urbanisation on avian functional diversity. Ecol. Lett. 23:962–72
    [Google Scholar]
  164. Sorenson MD, Sefc KM, Payne RB 2003. Speciation by host switch in brood parasitic indigobirds. Nature 424:928–31
    [Google Scholar]
  165. Stiller J, Zhang G. 2019. Comparative phylogenomics, a stepping stone for bird biodiversity studies. Diversity 11:115
    [Google Scholar]
  166. Stuart YE, Losos JB. 2013. Ecological character displacement: glass half full or half empty. ? Trends Ecol. Evol. 28:402–8
    [Google Scholar]
  167. Taylor SA, Curry RL, White TA, Ferretti V, Lovette I 2014. Spatiotemporally consistent genomic signatures of reproductive isolation in a moving hybrid zone. Evolution 68:3066–81
    [Google Scholar]
  168. Terborgh J, Robinson SK, Parker TA, Munn CA, Pierpont N 1990. Structure and organization of an Amazonian forest bird community. Ecol. Monog. 60:213–38
    [Google Scholar]
  169. Terborgh J, Weske JS. 1975. The role of competition in the distribution of Andean birds. Ecology 56:562–76
    [Google Scholar]
  170. Theodosopoulos AN, Hund AK, Taylor SA 2018. Parasites and host species barriers in animal hybrid zones. Trends Ecol. Evol. 34:19–30
    [Google Scholar]
  171. Tietze DT. 2018. Bird Species: How They Arise, Modify and Vanish Cham, Switz: Springer
  172. Tobias JA, Aben J, Brumfield RT, Derryberry EP, Halfwerk W et al. 2010a. Song divergence by sensory drive in Amazonian birds. Evolution 64:2820–39
    [Google Scholar]
  173. Tobias JA, Bates JM, Hackett SJ, Seddon N 2008. Comment on: “The latitudinal gradient in recent speciation and extinction rates of birds and mammals. .” Science 319:901
    [Google Scholar]
  174. Tobias JA, Cornwallis CK, Derryberry EP, Claramunt S, Brumfield RT, Seddon N 2014a. Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature 506:359–63
    [Google Scholar]
  175. Tobias JA, Gamarra-Toledo V, Garcia-Olaechea D, Pulgarin PC, Seddon N 2011. Year-round resource defence and the evolution of male and female song in suboscine birds: Social armaments are mutual ornaments. J. Evol. Biol. 24:2118–38
    [Google Scholar]
  176. Tobias JA, Pigot AL. 2019. Integrating behaviour and ecology into global biodiversity conservation strategies. Philos. Trans. R. Soc. B 374:20190012
    [Google Scholar]
  177. Tobias JA, Planque R, Cram DL, Seddon N 2014b. Species interactions and the structure of complex communication networks. PNAS 111:1020–25
    [Google Scholar]
  178. Tobias JA, Seddon N. 2009. Signal design and perception in Hypocnemis antbirds: evidence for convergent evolution via social selection. Evolution 63:3169–89
    [Google Scholar]
  179. Tobias JA, Seddon N, Spottiswoode CN, Pilgrim JD, Fishpool LDC, Collar NJ 2010b. Quantitative criteria for species delimitation. Ibis 152:724–46
    [Google Scholar]
  180. Toews DPL, Taylor SA, Vallender R, Brelsford A, Butcher BG et al. 2016. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr. Biol. 26:2313–18
    [Google Scholar]
  181. Trisos CH, Petchey OL, Tobias JA 2014. Unraveling the interplay of community assembly processes acting on multiple niche axes across spatial scales. Am. Nat. 184:593–608
    [Google Scholar]
  182. Ulrich W, Banks-Leite C, De Coster G, Habel JC, Matheve H et al. 2017. Environmentally and behaviourally mediated co-occurrence of functional traits in bird communities of tropical forest fragments. Oikos 127:274–84
    [Google Scholar]
  183. Uy JAC, Irwin DE, Webster MS 2018. Behavioural isolation and incipient speciation in birds. Annu. Rev. Ecol. Evol. Syst. 49:1–24
    [Google Scholar]
  184. Valente L, Phillimore AB, Melo M et al. 2020. A simple dynamic model explains the diversity of island birds worldwide. Nature 579:92–96
    [Google Scholar]
  185. Valente LM, Phillimore AB, Etienne RS 2015. Equilibrium and non‐equilibrium dynamics simultaneously operate in the Galápagos islands. Ecol. Lett. 18:844–52
    [Google Scholar]
  186. von Humboldt A, Bonpland A 1807. 2009. Essay on the Geography of Plants, transl. S Romanowski Chicago: Univ. Chicago Press
    [Google Scholar]
  187. Wallace AR. 1876. The Geographical Distribution of Animals London: Macmillan and Co.
  188. Weeks BC, Claramunt S. 2014. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. R. Soc. B 281:20141257
    [Google Scholar]
  189. Weir JT, Price TD. 2011. Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. Am. Nat. 177:462–69
    [Google Scholar]
  190. Weir JT, Price TD. 2019. Song playbacks demonstrate slower evolution of song discrimination in birds from Amazonia than from temperate North America. PLOS Biol 17:e3000478
    [Google Scholar]
  191. Weir JT, Schluter D. 2007. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574–76
    [Google Scholar]
  192. West-Eberhard MJ. 1983. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58:155–83
    [Google Scholar]
  193. White AE. 2016. Geographical barriers and dispersal propensity interact to limit range expansions of Himalayan birds. Am. Nat. 188:99–112
    [Google Scholar]
  194. Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W 2014. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95:2027
    [Google Scholar]
  195. Winker K, McCracken KG, Gibson DD, Peters JL 2013. Heteropatric speciation in a duck. Anas crecca. Mol. Ecol. 22:22–35
    [Google Scholar]
  196. Withrow JJ, Winker K. 2014. Genetics of a high-latitude cryptic speciation event: American and Pacific golden-plovers. Wilson J. Ornithol. 126:429–42
    [Google Scholar]
  197. Wolf JBW, Ellegren H. 2017. Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Genet. 18:87–100
    [Google Scholar]
  198. Wu C-I. 2001. The genic view of the process of speciation. J. Evol. Biol. 14:851–65
    [Google Scholar]
  199. Zhang G, Li C, Li Q, Li B, Larkin DM et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–20
    [Google Scholar]
  200. Zhen Y, Harrigan RJ, Ruegg KC, Anderson EC, Ng TC et al. 2017. Genomic divergence across ecological gradients in the Central African rainforest songbird (Andropadus virens). Mol. Ecol. 26:4966–77
    [Google Scholar]
  201. Zink RM, Vázquez-Miranda H. 2019. Species limits and phylogenomic relationships of Darwin's finches remain unresolved: potential consequences of a volatile ecological setting. Syst. Biol. 68:347–57
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-025023
Loading
/content/journals/10.1146/annurev-ecolsys-110218-025023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error