1932

Abstract

Early botanical explorers invoked biogeographic history to explain the remarkable tree diversity of Neotropical forests. In this context, we review the history of Neotropical tree diversity over the past 100 million years, focusing on biomes with significant tree diversity. We evaluate hypotheses for rain forest origins, intercontinental disjunctions, and models of Neotropical tree diversification. To assess the impact of biotic interchange on the Amazon tree flora, we examined biogeographic histories of trees in Ecuador's Yasuní Forest, which suggest that nearly 50% of its species descend from immigrant lineages that colonized South America during the Cenozoic. Long-distance and intercontinental dispersal, combined with trait filtering and niche evolution, are important factors in the community assembly of Neotropical forests. We evaluate the role of pre-Columbian people on Neotropical tree diversity and discuss the future of Neotropical forests in the Anthropocene.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062314
2019-11-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110617-062314.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062314&mimeType=html&fmt=ahah

Literature Cited

  1. Adeney JM, Christensen NL, Vicentini A, Cohn-Haft M 2016. White-sand ecosystems in Amazonia. Biotropica 48:7–23
    [Google Scholar]
  2. Antonelli A, Nylander JAA, Persson C, Sanmartin I 2009. Tracing the impact of the Andean uplift on Neotropical plant evolution. PNAS 106:9749–54
    [Google Scholar]
  3. Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL 2018. Amazonia is the primary source of Neotropical biodiversity. PNAS 115:236034–39
    [Google Scholar]
  4. Appelhans MS, Reichelt N, Groppo M, Paetzold C, Wen J 2018. Phylogeny and biogeography of the pantropical genus Zanthoxylum and its closest relatives in the proto-Rutaceae group (Rutaceae). Mol. Phylogenetics Evol. 126:31–44
    [Google Scholar]
  5. Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB et al. 2017. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355:385–88
    [Google Scholar]
  6. Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. PNAS 112:6110–15
    [Google Scholar]
  7. Baker PA, Fritz SC, Dick CW, Eckert AJ, Horton BK et al. 2014. The emerging field of geogenomics: constraining geological problems with genetic data. Earth-Sci. Rev. 135:38–47
    [Google Scholar]
  8. Baker WJ, Couvreur TLP. 2013. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J. Biogeogr. 40:274–85
    [Google Scholar]
  9. Bardon L, Chamagne J, Dexter KG, Sothers CA, Prance GT, Chave J 2013. Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics. Bot. J. Linn. Soc. 171:119–37
    [Google Scholar]
  10. Barthe S, Binelli G, Herault B, Scotti-Saintagne C, Sabatier D, Scotti I 2017. Tropical rainforests that persisted: inferences from the Quaternary demographic history of eight tree species in the Guiana Shield. Mol. Ecol. 26:1161–74
    [Google Scholar]
  11. Bebber DP, Carine MA, Wood JR, Wortley AH, Harris DJ et al. 2010. Herbaria are a major frontier for species discovery. PNAS 107:22169–71
    [Google Scholar]
  12. Bemmels JB, Wright SJ, Garwood NC, Queensborough SA, Valencia R, Dick CW 2018. Filter-dispersal assembly of lowland Neotropical rainforests across the Andes. Ecography 41:1763–75
    [Google Scholar]
  13. Bond WJ, Midgley GF. 2012. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B 367:601–12
    [Google Scholar]
  14. Boyce CK, Lee JE, Feild TS, Brodribb TJ, Zwieniecki MA 2010. Angiosperms helped put the rain in rainforests: the impact of physiological evolution on tropical biodiversity. Ann. Mo. Bot. Gard. 97:4527–40
    [Google Scholar]
  15. Burnham RJ, Johnson KR. 2004. South American palaeobotany and the origins of Neotropical rainforests. Philos. Trans. R. Soc. B. 359:1595–610
    [Google Scholar]
  16. Chanderbali AS, van der Werff H, Renner SS 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Mo. Bot. Gard. 88:104–34
    [Google Scholar]
  17. Cheng H, Sinha A, Cruz FW, Wang XF, Edwards RLA et al. 2013. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4:1411
    [Google Scholar]
  18. Clement CR. 1999. 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53:2188–202
    [Google Scholar]
  19. Clement CR, Denevan WM, Heckenberger MJ, Junqueira AB, Neves EG et al. 2015. The domestication of Amazonia before European conquest. Proc. R. Soc. B 282:32–40
    [Google Scholar]
  20. Cody S, Richardson JE, Rull V, Ellis C, Pennington RT 2010. The Great American Biotic Interchange revisited. Ecography 33:326–32
    [Google Scholar]
  21. Colinvaux PA, de Oliveira PE, Moreno JE, Miller MC, Bush MB 1996. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:85–88
    [Google Scholar]
  22. Coronado ENH, Dexter KG, Pennington RT, Chave J, Lewis SL et al. 2015. Phylogenetic diversity of Amazonian tree communities. Divers. Distrib. 21:1295–307
    [Google Scholar]
  23. Coronado ENH, Dexter KG, Poelchau MF, Hollingsworth PM, Phillips OL, Pennington RT 2014. Ficus insipida subsp. insipida (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species. J. Biogeogr. 41:91697–1709
    [Google Scholar]
  24. Couvreur TLP, Forest F, Baker WJ 2011a. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 9:44
    [Google Scholar]
  25. Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF et al. 2011b. Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. J. Biogeogr. 38:664–80
    [Google Scholar]
  26. Crisp M, Arroyo M, Cook L, Gandolfo MA, Jordan GJ et al. 2009. Phylogenetic biome conservatism on a global scale. Nature 458:754–56
    [Google Scholar]
  27. Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M et al. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66
    [Google Scholar]
  28. Damasceno R, Strangas ML, Carnaval AC, Rodrigues MT, Moritz C 2014. Revisiting the vanishing refuge model of diversification. Front. Genet. 5:353
    [Google Scholar]
  29. Davis CC, Bell CD, Mathews S, Donoghue M 2002. Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. PNAS 99:6833–37
    [Google Scholar]
  30. Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ 2005. Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Am. Nat. 165:E36–65
    [Google Scholar]
  31. Dexter KG, Lavin M, Torke BM, Twyford AD, Kursar TA et al. 2017. Dispersal assembly of rain forest tree communities across the Amazon basin. PNAS 114:2645–50
    [Google Scholar]
  32. Dick CW, Abdul-Salim K, Bermingham E 2003. Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Am. Nat. 162:691–703
    [Google Scholar]
  33. Dick CW, Bermingham E, Lemes M, Gribel R 2007. Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Mol. Ecol. 16:3039–49
    [Google Scholar]
  34. Dick CW, Lewis SL, Maslin M, Bermingham E 2013. Neogene origins and implied warmth tolerance of Amazon tree species. Ecol. Evol. 3:162–69
    [Google Scholar]
  35. Donoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant diversification. New Phytol 207:260–74
    [Google Scholar]
  36. Doughty CE, Wolf A, Morueta-Holme N, Jorgensen PM, Sandel B et al. 2016. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39:194–203
    [Google Scholar]
  37. Eiserhardt WL, Antonelli A, Bennett DJ, Botigue LR, Burleigh JG et al. 2018. A roadmap for global synthesis of the plant tree of life. Am. J. Bot. 105:614–22
    [Google Scholar]
  38. Eiserhardt WL, Couvreur TL, Baker WJ 2017. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. New Phytol 214:1408–22
    [Google Scholar]
  39. Esquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW et al. 2019. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25:39–56
    [Google Scholar]
  40. de la Estrella M, Buerki S, Vasconcelos T, Lucas EJ, Forest F 2018. The role of Antarctica in biogeographical reconstruction: a point of view. Int. J. Plant Sci. 180:163–71
    [Google Scholar]
  41. Fadrique B, Báez S, Duque Á, Malizia A, Blundo C et al. 2018. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564:7735207–12
    [Google Scholar]
  42. Feeley KJ, Stroud JT. 2018. Where on Earth are the “tropics”?. Front. Biogeogr. 10:e38649
    [Google Scholar]
  43. Feild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A et al. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. PNAS 108:8363–66
    [Google Scholar]
  44. Fiaschi P, Pirani JR. 2009. Review of plant biogeographic studies in Brazil. J. Syst. Evol. 47:477–96
    [Google Scholar]
  45. Fine PVA, Daly DC, Villa Muñoz G, Mesones I, Cameron KM 2005. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon. Evolution 59:1464–78
    [Google Scholar]
  46. Fine PVA, Mesones I, Coley PD 2004. Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–65
    [Google Scholar]
  47. Fine PVA, Ree RH. 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168:796–804
    [Google Scholar]
  48. Gentry A. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America. Pleistocene climatic fluctuations or an accident of Andean orogeny?. Ann. Mo. Bot. Gard. 69:557–93
    [Google Scholar]
  49. Givnish TJ, Renner SS. 2004. Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. Int. J. Plant Sci. 165:S1–6
    [Google Scholar]
  50. Graham A. 2010. A Natural History of the New World: The Ecology and Evolution of Plants in the Americas Chicago: Univ. Chicago Press
  51. Graham A. 2011. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. Am. J. Bot. 98:336–51
    [Google Scholar]
  52. Graham A. 2018. Land Bridges: Ancient Environments, Plant Migrations, and New World Connections Chicago: Univ. Chicago Press
  53. Haberle SG. 1999. Late Quaternary vegetation and climate change in the Amazon basin based on a 50,000 year pollen record from the Amazon fan, ODP site 932. Quat. Res. 51:27–38
    [Google Scholar]
  54. Haffer J. 1969. Speciation in Amazonian forest birds. Science 165:131–37
    [Google Scholar]
  55. Harris AJ, Chen PT, Xu XW, Zhang JQ, Yang X, Wen J 2017. A molecular phylogeny of Staphyleaceae: implications for generic delimitation and classical biogeographic disjunctions in the family. J. Syst. Evol. 55:124–41
    [Google Scholar]
  56. Hoorn C, Wesselingh F 2011. Amazonia, Landscape and Species Evolution: A Look into the Past Chichester, UK: Wiley-Blackwell
  57. Huang JF, Li L, van der Werff H, Li HW, Rohwer JG et al. 2016. Origins and evolution of cinnamon and camphor: a phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Mol. Phylogenetics Evol. 96:33–44
    [Google Scholar]
  58. Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography Princeton, NJ: Princeton Univ. Press
  59. Hughes C, Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. PNAS 103:10334–39
    [Google Scholar]
  60. Hughes CE, Pennington RT, Antonelli A 2013. Neotropical plant evolution: assembling the big picture. Bot. J. Linn. Soc. 171:1–18
    [Google Scholar]
  61. Iturralde-Vinent MA, MacPhee RDE. 1999. Paleogeography of the Caribbean Region: Implications for Cenozoic Biogeography New York: Bull. Amer. Mus. Nat. Hist.
  62. Jaramillo C, Cárdenas A. 2013. Global warming and Neotropical rainforests: a historical perspective. Annu. Rev. Earth Planet. Sci. 41:741–66
    [Google Scholar]
  63. Jaramillo C, Ochoa D, Contreras L, Pagani M, Carvajal-Ortiz H et al. 2010. Effects of rapid global warming at the Paleocene-Eocene boundary on Neotropical vegetation. Science 330:957–61
    [Google Scholar]
  64. Johnson KR, Ellis B. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science 296:2379–83
    [Google Scholar]
  65. Jørgensen PM, León-Yánez S. 1999. Catalogue of the Vascular Plants of Ecuador St. Louis: Mo. Bot. Gard.
  66. Kappelle M. 2004. Tropical montane forests. Encyclopedia of Forest Sciences ed. J Burley, J Evans, JA Youngquist 1782–93 Oxford, UK: Elsevier
    [Google Scholar]
  67. Kerkhoff AJ, Moriarty PE, Weiser MD 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. PNAS 111:8125–30
    [Google Scholar]
  68. Koenen EJM, Clarkson JJ, Pennington TD, Chatrou LW 2015. Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytol 207:327–39
    [Google Scholar]
  69. Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE et al. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. PNAS 106:18073–78
    [Google Scholar]
  70. Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC 2016. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol 210:1430–42
    [Google Scholar]
  71. Latham RE, Ricklefs RE. 1993. Continental comparisons of temperate-zone tree species diversity. Species Diversity in Ecological Communities ed. RE Ricklefs, D Schluter 294–314 Chicago: Univ. Chicago Press
    [Google Scholar]
  72. Lavin M, Luckow M. 1993. Origins and relationships of tropical North America in the context of the boreotropics hypothesis. Am. J. Bot. 80:1–14
    [Google Scholar]
  73. Lavin M, Schrire BP, Lewis G, Pennington RT, Delgado-Salinas A et al. 2004. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philos. Trans. R. Soc. B 359:1509–22
    [Google Scholar]
  74. Leigh EGJ. 2007. Neutral theory: a historical perspective. J. Evol. Biol. 20:2075–91
    [Google Scholar]
  75. Levis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR et al. 2017. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355:925–31
    [Google Scholar]
  76. Luebert F, Wiegend W. 2014. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2:27
    [Google Scholar]
  77. Manns U, Wikstrom N, Taylor CM, Bremer B 2012. Historical biogeography of the predominantly Neotropical subfamily Cinchonoideae (Rubaceae): Into or out of America?. Int. J. Plant Sci. 173:261–89
    [Google Scholar]
  78. McMichael CNH, Feeley KJ, Dick CW, Piperno DR, Bush MB 2017a. Comment on “Persistent effects of pre-Columbian plant domestication on Amazonian forest composition.”. Science 358:6361eaan8347
    [Google Scholar]
  79. McMichael CNH, Matthews-Bird F, Farfan-Rios W, Feeley KJ 2017b. Ancient human disturbances may be skewing our understanding of Amazonian forests. PNAS 114:522–27
    [Google Scholar]
  80. McNicol IM, Ryan CM, Mitchard ETA 2018. Carbon losses from deforestation and widespread degradation offset by extensive growth in African woodlands. Nat. Commun. 9:3045
    [Google Scholar]
  81. Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC et al. 2015. Middle Miocene closure of the Central American Seaway. Science 348:226–29
    [Google Scholar]
  82. Morley RJ. 2000. Origin and Evolution of Tropical Rain Forests Chichester, UK: John Wiley and Sons
  83. Muellner AN, Savolainen V, Samuel R, Chase MW 2006. The mahogany family “out-of-Africa”: divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Mol. Phylogenetics Evol. 40:236–50
    [Google Scholar]
  84. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J 2000. Biodiversity hotspots for conservation priorities. Nature 403:6772853–58
    [Google Scholar]
  85. Nazareno AG, Bemmels JB, Dick CW, Lohmann LG 2017a. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol. Ecol. 17:1136–47
    [Google Scholar]
  86. Nazareno AG, Dick CW, Lohmann LG 2017b. Wide but not impermeable: testing the riverine barrier hypothesis for an Amazonian plant species. Mol. Ecol. 26:3636–48
    [Google Scholar]
  87. Nelson BW, Ferreira CAC, Dasilva MF, Kawasaki ML 1990. Endemism centers, refugia and botanical collection density in Brazilian Amazonia. Nature 345:714–16
    [Google Scholar]
  88. O'Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA et al. 2016. Formation of the Isthmus of Panama. Sci. Adv. 2:8e1600883
    [Google Scholar]
  89. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:11933–38
    [Google Scholar]
  90. Pennington RT, Dick CW. 2004. The role of immigrants in the assembly of the South American rainforest tree flora. Philos. Trans. R. Soc. B 359:1611–22
    [Google Scholar]
  91. Pennington RT, Lavin M. 2016. The contrasting nature of woody plant species in different Neotropical forest biomes reflects differences in ecological stability. New Phytol 210:25–37
    [Google Scholar]
  92. Pennington RT, Lavin M, Oliveira-Filho A 2009. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40:437–57
    [Google Scholar]
  93. Pennington RT, Lehmann CER, Rowland LM 2018. Tropical savannas and dry forests. Curr. Biol. 28:R541–45
    [Google Scholar]
  94. Pennington RT, Prado DE, Pendry CA 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. J. Biogeogr. 27:261–73
    [Google Scholar]
  95. Pennington RT, Richardson JE, Lavin M 2006. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol 172:605–16
    [Google Scholar]
  96. Prado DE, Gibbs PE. 1993. Patterns of species distributions in the dry seasonal forests of South America. Ann. Mo. Bot. Gard. 80:902–27
    [Google Scholar]
  97. Prates I, Xue AT, Brown JL, Alvarado-Serrano DF, Rodrigues MT et al. 2016. Inferring responses to climate dynamics from historical demography in Neotropical forest lizards. PNAS 113:7978–85
    [Google Scholar]
  98. Quintana C, Pennington RT, Ulloa CU, Balslev H 2017. Biogeographic barriers in the Andes: Is the Amotape–Huancabamba Zone a dispersal barrier for dry forest plants?. Ann. Mo. Bot. Gard. 102:542–50
    [Google Scholar]
  99. Raven PH, Axelrod DI. 1974. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61:539–673
    [Google Scholar]
  100. Renner SS. 2004. Plant dispersal across the tropical Atlantic by wind and sea currents. Int. J. Plant Sci. 165:S23–33
    [Google Scholar]
  101. Renner SS, Clausing G, Meyer K 2001. Historical biogeography of Melastomataceae: the roles of tertiary migration and long-distance dispersal. Am. J. Bot. 88:1290–300
    [Google Scholar]
  102. Rezende VL, Dexter KG, Pennington RT, Oliveira AT 2017. Geographical variation in the evolutionary diversity of tree communities across southern South America. J. Biogeogr. 44:2365–75
    [Google Scholar]
  103. Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM 2001. Rapid diversification of a species-rich genus of Neotropical rain forest trees. Science 293:2242–45
    [Google Scholar]
  104. Rose JP, Kleist TJ, Lofstrand SD, Drew BT, Schonenberger J, Sytsma KJ 2018. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Mol. Phylogenetics Evol. 122:59–79
    [Google Scholar]
  105. Ross NJ. 2011. Modern tree species composition reflects ancient Maya “forest gardens” in northwest Belize. Ecol. Appl. 21:75–84
    [Google Scholar]
  106. Rull V, Montoya E. 2014. Mauritia flexuosa palm swamp communities: natural or human-made? A palynological study of the Gran Sabana region (northern South America) within a Neotropical context. Quat. Sci. Rev. 99:17–33
    [Google Scholar]
  107. Särkinen T, Pennington RT, Lavin M, Simon MF, Hughes CE 2012. Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. J. Biogeogr. 39:884–900
    [Google Scholar]
  108. Schley RJ, de la Estrella M, Pérez-Escobar OA, Bruneau A, Barraclough T et al. 2018. Is Amazonia a ‘museum’ for Neotropical trees? The evolution of the Brownea clade (Detarioideae, Laguminosae). Mol. Phylogenetics Evol. 126:279–92
    [Google Scholar]
  109. Schrire BD, Lavin M, Lewis GP 2005. Global distribution patterns of the Leguminosae: insights from recent phylogenies. Biologiske Skrifter 55:375–422
    [Google Scholar]
  110. Scotese CR. 2001. Atlas of Earth History Paleogeography Arlington, Tex.: PALEOMAP Project https://www.researchgate.net/publication/264741875_Atlas_of_Earth_History
  111. Sedio BE, Paul JR, Taylor CM, Dick CW 2013. Fine-scale niche structure of Neotropical forests reflects a legacy of the Great American Biotic Interchange. Nat. Commun. 4:2317
    [Google Scholar]
  112. Sedio BE, Wright SJ, Dick CW 2012. Trait evolution and the coexistence of a species swarm in the tropical forest understorey. J. Ecol. 100:1183–93
    [Google Scholar]
  113. Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE 2009. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS 106:20359–64
    [Google Scholar]
  114. Slik JWF, Arroyo-Rodríguez V, Aiba S-I, Alvarez-Loayza P, Alves LF et al. 2015. An estimate of the number of tropical tree species. PNAS 112:247472–77
    [Google Scholar]
  115. Slik JWF, Franklin J, Arroyo-Rodríguez V, Field R, Aguilar S et al. 2018. Phylogenetic classification of the world's tropical forests. PNAS 115:81837–42
    [Google Scholar]
  116. Stebbins GL. 1974. Flowering Plants: Evolution Above the Species Level Cambridge, MA: Belknap
  117. Stevens N, Lehmann CER, Murphy BP, Durigan G 2017. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23:235–44
    [Google Scholar]
  118. ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D et al. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–47
    [Google Scholar]
  119. ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomao RP et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342:1243092
    [Google Scholar]
  120. Valencia R, Condit R, Foster RB, Romoleroux K, Villa Muñoz G et al. 2004. Yasuní Forest dynamics plot, Ecuador. Tropical Forest Diversity and Dynamism ed. E Losos, EG Leigh Jr. 609–20 Chicago: Univ. Chicago Press
    [Google Scholar]
  121. Vanzolini PE, Williams EE. 1981. The vanishing refuge: a mechanism for ecogeographic speciation. Pap. Avulsos de Zool. 34:251–55
    [Google Scholar]
  122. Wallace AR. 1878. Tropical Nature and Other Essays New York: Macmillan
  123. Watling J, Iriarte J, Mayle FE, Schaan D, Pessenda LCR et al. 2017. Impact of pre-Columbian “geoglyph” builders on Amazonian forests. PNAS 114:1868–73
    [Google Scholar]
  124. Weeks A, Daly DC, Simpson BB 2005. The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Mol. Phylogenetics Evol. 35:85–101
    [Google Scholar]
  125. Wendt T. 1993. Composition, floristic affinities, and origins of the canopy tree flora of the Mexican Atlantic slope rain forests. Biological Diversity of Mexico: Origins and Distribution ed. TP Ramamoorthy, R Bye, A Lot, J Fa 595–680 New York: Oxford Univ. Press
    [Google Scholar]
  126. Wilf P, Cúneo NR, Escapa IH, Pol D, Woodburne MO 2013. Splendid and seldom isolated: the paleobiogeography of Patagonia. Annu. Rev. Earth Planet. Sci. 41:561–603
    [Google Scholar]
  127. Wing SL, Herrera F, Jaramillo CA, Gomez-Navarro C, Wilf P, Labandeira CC 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. PNAS 106:18627–32
    [Google Scholar]
  128. Wolfe JA. 1975. Some aspects of plant geography of the northern hemisphere during the Late Cretaceous and Tertiary. Ann. Mo. Bot. Gard. 62:264–79
    [Google Scholar]
  129. Wu ZY, Liu J, Provan J, Wang H, Chen CJ et al. 2018. Testing Darwin's transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecol. Lett. 21:1515–29
    [Google Scholar]
  130. Zerega NJC, Clement WL, Datwyler SL, Weiblen GD 2005. Biogeography and divergence times in the mulberry family (Moraceae). Mol. Phylogenetics Evol. 37:402–16
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062314
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error