1932

Abstract

We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062339
2018-11-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062339.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062339&mimeType=html&fmt=ahah

Literature Cited

  1. Adam MP. 2012. The all-or-none phenomenon revisited. Birth Defects Res. A 94:664–69
    [Google Scholar]
  2. Afelik S, Rovira M 2017. Pancreatic β-cell regeneration: facultative or dedicated progenitors. Mol. Cell. Endocrinol. 445:85–94
    [Google Scholar]
  3. Akhshabi S, Sarda S, Dovrolis C, Yi S 2015. An explanatory evo-devo model for the developmental hourglass. F1000 Res 3:156
    [Google Scholar]
  4. Alieva IB, Vorobjev IA 2004. Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a “sleeping beauty” in cultured cells?. Cell Biol. Int. 28:139–50
    [Google Scholar]
  5. Amundson R. 1994. Two concepts of constraint: adaptationism and the challenge from developmental biology. Philos. Sci. 61:556–78
    [Google Scholar]
  6. Arthur W, Farrow M 1999. The pattern of variation in centipede segment number as an example of developmental constraint in evolution. J. Theor. Biol. 200:183–91
    [Google Scholar]
  7. Austin CJ. 2016. The ontology of organisms: Mechanistic modules or patterned processes. Biol. Philos. 31:639–62
    [Google Scholar]
  8. Azimzadeh J, Wong ML, Downhour DM, Sánchez Alvarado A, Marschall WF 2012. Centrosome loss in the evolution of planarians. Science 27:461–63
    [Google Scholar]
  9. Baguñà JSE, Auladell C 1989. Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86
    [Google Scholar]
  10. Barton NH, Turelli M 1989. Evolutionary quantitative genetics: How little do we know. Annu. Rev. Genet. 23:337–70
    [Google Scholar]
  11. Basten SG, Giles RH 2013. Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2:6
    [Google Scholar]
  12. Basto R, Brunk K, Vinogradova T, Peel N, Franz A et al. 2008. Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–42
    [Google Scholar]
  13. Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG et al. 2006. Flies without centrioles. Cell 125:1375–86
    [Google Scholar]
  14. Beamish CA, Strutt BJ, Arany EJ, Hill DJ 2016. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters. Islets 8:65–82
    [Google Scholar]
  15. Bejder L, Hall BL 2002. Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and development transformation and loss. Evol. Dev. 4:445–58
    [Google Scholar]
  16. Beukeboom LW, Vrijenhoek R 1998. Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J. Evol. Biol. 11:755–82
    [Google Scholar]
  17. Bell G. 1982. The Masterpiece of Nature: The Evolution and Genetics of Sexuality London: Croomhelm
    [Google Scholar]
  18. Bell G. 1989. Darwin and biology. J. Hered. 80:417–21
    [Google Scholar]
  19. Biesecker LG. 2011. Polydactyly: How many disorders and how many genes? 2010 update. Dev. Dyn. 240:931–42
    [Google Scholar]
  20. Bird AM, von Dassow G, Maslakova SA 2014. How the pilidum larva grows. EvoDevo 5:13
    [Google Scholar]
  21. Bogdanović SAH, de la Calle Musienes E, Tena JJ, Ford E, Williams R et al. 2016. Active DNA demethylation enhancers during the phylotypic period. Nat. Genet. 48:417–26
    [Google Scholar]
  22. Bonaccorsi S, Giansanti MG, Gatti M 2000. Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nat. Cell Biol. 2:54–56
    [Google Scholar]
  23. Bornens M. 2012. The centrosome in cells and organisms. Science 335:422–26
    [Google Scholar]
  24. Boveri T. 1901. Zellenstudien: Über die Natur der Centrosomen 4 Jena, Ger.: Fischer
  25. Boveri T. 1902. Concerning the origin of malignant tumours, transl. H. Harris, 2008, in. J. Cell Sci 121:Suppl. 11–84 (from German)
    [Google Scholar]
  26. Brennand K, Huangfu D, Melton D 2007. All β cells contribute equally to islet growth and maintenance. PLOS Biol 5:7e163
    [Google Scholar]
  27. Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AA et al. 2008. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. PNAS 105:13127–32
    [Google Scholar]
  28. Brinkley BR. 1985. Microtubule organizing centers. Annu. Rev. Cell Biol. 1:145–72
    [Google Scholar]
  29. Brockes JP. 1997. Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87
    [Google Scholar]
  30. Burute M, Prioux M, Blin G, Truchet S, Letort G et al. 2017. Polarity reversal by centrosome repositioning primes cell scattering during epithelial to mesenchymal transition. Dev. Cell 40:168–84
    [Google Scholar]
  31. Buss LW. 1987. The Evolution of Individuality Princeton, NJ: Princeton Univ. Press
  32. Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drecho A et al. 2001. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell 12:2047–60
    [Google Scholar]
  33. Chen JW, Zahid S, Shilts MH, Weaver SJ, Leskowitz RM et al. 2013. Hoxa-5 acts in segmented somites to regulate cervical vertebral morphology. Mech. Dev. 130:226–40
    [Google Scholar]
  34. Cheng X, Ho Jam Hui J, Lee YY, Tik Wan Law P, Shan Kwan H 2015. A “developmental hourglass” in fungi. Mol. Biol. Evol. 32:1556–66
    [Google Scholar]
  35. Cheng Y, Ma Z, Kim B-H, Wu W, Cayting P et al. 2014. Principles of regulatory information conservation between mouse and human. Nature 515:371–75
    [Google Scholar]
  36. Chipman A, Arthure W, Akam M 2004. A double segment periodicity underlies segment generation in centipede development. Curr. Biol. 14:1250–56
    [Google Scholar]
  37. Conduit PT, Wainman A, Raff JW 2015. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16:611–24
    [Google Scholar]
  38. Conner JK. 2012. Quantitative genetic approaches to evolutionary constraint: How useful. Evolution 66:3313–20
    [Google Scholar]
  39. Cordes R, Schuster-Gossler K, Serth K, Gossler A 2004. Specification of vertebral identity is coupled to Notch signalling and the segmentation clock. Development 131:1221–33
    [Google Scholar]
  40. Courtois A, Schuh M, Ellenberg J, Hiiragi T 2012. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J. Cell Biol. 198:357–70
    [Google Scholar]
  41. Cridge AG, Dearden PK, Brownfield LR 2016. The mid-developmental transition and the evolution of animal body plans. Ann. Bot. 117:833–43
    [Google Scholar]
  42. Das RM, Storey KG 2014. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science 343:200–4
    [Google Scholar]
  43. Davis JC, Brandman O, Petrov DA 2005. Protein evolution in the context of Drosophila development. J. Mol. Evol. 60:774–85
    [Google Scholar]
  44. Dawe HR, Farr H, Gull K 2007. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci. 120:7–15
    [Google Scholar]
  45. De Mendoza A, Sebé-Pedrós A, Šestak MS, Matejcic M, Torruella G et al. 2013. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. PNAS 110:E4858–66
    [Google Scholar]
  46. Deschamps J, Duboule D 2017. Embryonic timing, axial stem cells, chromatin dynamics and the Hox clock. Genes Dev 31:5–6
    [Google Scholar]
  47. Diez del Corral R, Olivera-Martinez AI, Goriely E, Gale M, Maden M, Storey K 2003. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40:65–79
    [Google Scholar]
  48. Dingemans KP. 1969. The relation between cilia and mitoses in the mouse. J. Cell Biol. 43:361–67
    [Google Scholar]
  49. Domazet-Lošo T, Tautz D 2010. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468:815
    [Google Scholar]
  50. Dor Y, Brown J, Martinez OI, Melton DA 2004. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 420:41–46
    [Google Scholar]
  51. Drost H-G, Gabel A, Grosse I, Quint M 2015. Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol. Biol. Evol. 32:1221–31
    [Google Scholar]
  52. Duboule D. 1994. Temporal colinearity and the phylogenetic progression: a basis for the stability of the vertebrate Bauplan and the evolution of morphologies through heterochrony. DevelopmentSuppl. 1994135–42
    [Google Scholar]
  53. Dubrulle J, McGrew MJ, Pourquié O 2001. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–32
    [Google Scholar]
  54. Dudka D, Meraldi P 2017. Symmetry does not come for free: cellular mechanisms to achieve a symmetric cell division. Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation 61 JP Tassan, J Kubiak 301–21 Cham, Switz.: Springer Nature
    [Google Scholar]
  55. Dufton M, Hall BK, Franz-Odendaal TA 2012. Early lens ablation causes dramatic long-term effects on the shape of bones in the craniofacial skeleton of Astyanax mexicanus. PLOS ONE 7:e50308
    [Google Scholar]
  56. Durston AJ, Jansen HJ, In der Rieden P, Hooiveld MHW 2011. Hox collinearity—a new perspective. Int. J. Dev. Biol. 55:899–908
    [Google Scholar]
  57. Dustin ML. 2014. T cells play the classics with a different spin. Mol. Biol. Cell. 25:1699–703
    [Google Scholar]
  58. Eisman RC, Kaufman TC 2007. Cytological investigation of the mechanism of parthenogenesis in Drosophila mercatorum. Fly 1:317–29
    [Google Scholar]
  59. Engelstädter J. 2008. Constraints on the evolution of asexual reproduction. BioEssays 30:1138–50
    [Google Scholar]
  60. Evans MJ, Shami SG, Cabral-Anderson LJ, Dekker NP 1986. Role of non-ciliated cells in renewal of the bronchial epithelium of rats exposed to NO2. Am. J. Pathol. 123:1226–133
    [Google Scholar]
  61. Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J et al. 2016. The centrosome is an actin-organizing center. Nat. Cell Biol. 18:65–75
    [Google Scholar]
  62. Ferree PM, McDonald K, Fasulo B, Sullivan W 2006. The origin of centrosomes in parthenogenetic hymenopteran insects. Curr. Biol. 16:801–7
    [Google Scholar]
  63. Finetti F, Rossi Paccani S, Riparbelli MG, Giacomello E, Perinetti G et al. 2009. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11:1332–39
    [Google Scholar]
  64. Fish A, Chen L, Capra LA 2017. Gene regulatory enhancers with evolutionarily conserved activity are more pleiotropic than those with species-specific activity. Genome Biol. Evol. 9:2615–25
    [Google Scholar]
  65. Fonte VG, Searls RL, Hilfer SR 1971. The relationship of cilia with cell division and differentiation. J. Cell Biol. 49:226–29
    [Google Scholar]
  66. Futuyma D. 2010. Evolutionary constraint and ecological consequences. Evolution 6:1865–84
    [Google Scholar]
  67. Futuyma DJ, Keese MC, Funk DJ 1995. Genetic constraints on macroevolution: the evolution of host affiliation in the leaf beetle genus Ophraella. Evolution 49:797–809
    [Google Scholar]
  68. Galis F. 1999. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J. Exp. Zool. B Mol. Dev. Evol. 285:19–26
    [Google Scholar]
  69. Galis F. 2001. Key innovations and radiations. The Character Concept in Evolutionary Biology GP Wagner 581–605 London: Academic
    [Google Scholar]
  70. Galis F, Arntzen JW, Lande R 2010. Dollo's law and the irreversibility of digit loss in Bachia. Evolution 64:2466–76
    [Google Scholar]
  71. Galis F, Metz JAJ 2001. Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J. Exp. Zool. B Mol. Dev. Evol. 291:195–204
    [Google Scholar]
  72. Galis F, Metz JAJ 2003. Anti-cancer selection as a source of developmental and evolutionary constraints. BioEssays 25:1035–39
    [Google Scholar]
  73. Galis F, Metz JAJ 2007. Evolutionary novelties: the making and breaking of pleiotropic constraints. Integr. Comp. Biol. 47:409–19
    [Google Scholar]
  74. Galis F, Sinervo B 2002. Divergence and convergence in early embryonic stages of metazoans. Contr. Zool. 71:101–13
    [Google Scholar]
  75. Galis F, van Alphen JJM, Metz JAJ 2001. Why five fingers? Evolutionary constraints on digit numbers. Trends Ecol. Evol. 16:637–46
    [Google Scholar]
  76. Galis F, van Alphen JJM, Metz JAJ 2002a. Digit reduction: via repatterning or developmental arrest. Evol. Dev. 4:249–51
    [Google Scholar]
  77. Galis F, Van Dooren TJM, Feuth H, Ruinard S, Witkam A et al. 2006. Extreme selection against homeotic transformations of cervical vertebrae in humans. Evolution 60:2643–54
    [Google Scholar]
  78. Galis F, Van Dooren TJM, Metz JAJ 2002b. Conservation of the segmented germband stage: robustness or pleiotropy. Trends Genet 18:504–9
    [Google Scholar]
  79. Galis F, Wagner GP, Jockusch EL 2003. Why is limb regeneration possible in amphibians but not in reptiles, birds and mammals. Evol. Dev. 5:208–20
    [Google Scholar]
  80. Gehrke AR, Shubin N 2016. Cis-regulatory processes in the development and evolution of paired appendages. Sem. Cell Dev. Biol. 57:31–39
    [Google Scholar]
  81. Gentile L, Cebria F, Bartscherer K 2011. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis. Models Mechan. 4:12–19
    [Google Scholar]
  82. Gibson G, Wagner GP 2000. Canalization in evolutionary genetics: a stabilizing theory. Bioessays 22:372–80
    [Google Scholar]
  83. Gilbert SF, Raunio AM 1997. Embryology: Constructing the Organism Sunderland, MA: Sinauer
  84. Glover AM. 1916. The Whalebone Whales of New England Boston: Soc. Nat. Hist.
  85. Godinho SA, Pelman D 2014. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. B 369:20130467
    [Google Scholar]
  86. Goldberg EE, Igič B 2008. On phylogenetic tests of irreversible evolution. Evolution 62:2727–41
    [Google Scholar]
  87. Gönczy P. 2015. Centrosomes and cancer: revisiting a long-standing relationship. Nat. Rev. 15:639–52
    [Google Scholar]
  88. Goto H, Inaba H, Inagaki M 2017. Mechanisms of ciliogenesis suppression in dividing cells. Cell. Mol. Life Sci. 74:881–90
    [Google Scholar]
  89. Grifone R, Kelly RG 2007. Heartening news for head muscle development. Trends Genet 23:365–69
    [Google Scholar]
  90. Grüneberg H. 1963. The Pathology of Development Oxford, UK: Blackwell Scientific
  91. Hadorn E. 1961. Developmental Genetics and Lethal Factors London: Methuen
  92. Hall BK. 1997. Phylotypic stage or phantom: Is there a highly conserved embryonic stage in vertebrates. Trends Ecol. Evol. 12:461–63
    [Google Scholar]
  93. Hall BK. 1999. Evolutionary Developmental Biology Dordrecht, Neth.: Kluwer Academic, 2nd ed..
  94. Hansen TF, Houle D 2008. Measuring and comparing evolvability and constraint in multivariate characters. J. Evol. Biol. 21:1201–91
    [Google Scholar]
  95. Haubensak W, Attardo A, Denk W, Huttner WB 2004. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. PNAS 101:3196–3201
    [Google Scholar]
  96. Henneguy LF. 1898. Sur les rapports des cils vibratiles avec les centrosomes. Arch. d'Anat. Micr. 1:481–96
    [Google Scholar]
  97. Hill WG, Zhang X-S 2012. On the pleiotropic structure of the genotype-phenotype map and the evolvability of complex organisms. Genetics 190:1131–37
    [Google Scholar]
  98. Hiruta C, Tochinai S 2012. Spindle assembly and spatial distribution of γ-tubulin during abortive meiosis and cleavage division in the parthenogenetic water flea Daphnia pulex. Zool. Sci 29:733–37
    [Google Scholar]
  99. Hofstetter R, Gasc J-P 1969. Vertebrae and ribs of modern reptiles. Biology of the Reptilia 1 C Gans 201–310 London: Academic
    [Google Scholar]
  100. Hu H, Uesaka M, Guo S, Shimai K, Lu S-M et al. 2017. Constrained vertebrate evolution by pleiotropic genes. Nature Ecol. Evol. 1:1722–30
    [Google Scholar]
  101. Irie N, Kuratani S 2011. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2:248
    [Google Scholar]
  102. Jacquet P. 2004. Sensitivity of germ cells and embryos to ionizing radiation. J. Biol. Regul. Homeost. Agents 18:106–14
    [Google Scholar]
  103. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL et al. 2010. Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–16
    [Google Scholar]
  104. Karsenti E. 2008. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9:255–62
    [Google Scholar]
  105. Ke Y-N, Yang W-X 2014. Primary cilium: an elaborate structure that blocks cell division. Gene 547:175–85
    [Google Scholar]
  106. Kelly RG. 2012. The second heart field. Curr. Top. Dev. Biol. 100:33–65
    [Google Scholar]
  107. Kemp TJ, Bachus KN, Nairn JA, Carrier DR 2005. Functional trade-offs in the limb bones of dogs selected for running versus fighting. J. Exp. Biol. 208:3475–82
    [Google Scholar]
  108. Keyte A, Hutson MR 2012. The neural crest in cardiac congenital anomalies. Differentiation 84:25–40
    [Google Scholar]
  109. Khera KS. 1984. Maternal toxicity–a possible factor in fetal malformations in mice. Teratology 29:411–16
    [Google Scholar]
  110. Kirkpatrick M, Lofsvold D 1992. Measuring selection and constraint in the evolution of growth. Evolution 46:954–71
    [Google Scholar]
  111. Klima M. 1990. Rudiments of the clavicle in the embryos of whales. Z. F. Saügetierkunde 55:202–12
    [Google Scholar]
  112. Lampert KP, Schartl 2010. A little bit is better than nothing: the incomplete parthenogenesis of salamanders, frogs and fish. BMC Biol. 8:78
    [Google Scholar]
  113. Lancaster MA, Schroth J, Gleeson JG 2011. Subcellular spatial regulation of canonical Wnt signaling at the primary cilium. Nat. Cell Biol. 13:700–7
    [Google Scholar]
  114. Lande R. 1978. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32:73–92
    [Google Scholar]
  115. Lande R. 1980. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94:203–15
    [Google Scholar]
  116. Lattao R, Kovács L, Glover DM 2017. The centrioles, centrosomes, basal bodies, and cilia of Drosophila melanogaster. Genetics 206:33–53
    [Google Scholar]
  117. Lenhossék MV. 1898. Ueber Flimmerzellen. Verh. Anat. Ges. Kiel 12:106–28
    [Google Scholar]
  118. Levin M, Anavy L, Cole AG, Winter E, Mostov N et al. 2016. The mid-developmental transition and the evolution of animal body plans. Nature 531:637–41
    [Google Scholar]
  119. Levin M, Hashimshony, Wanger F, Yanai I 2012. Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev. Cell 22:1101–8
    [Google Scholar]
  120. Lilje C, Finger LJ, Ascuitto RJ 2007. Complete unilateral leg duplication with ipsilateral renal agenesis. Acta Paediatr 96:461–71
    [Google Scholar]
  121. Ludeman DA, Farrar N, Riesgo A, Paps J, Leys SP 2014. Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evol. Biol. 14:3
    [Google Scholar]
  122. Maeso I, Acemel RD, Gomez-Skarmeta RD 2017. Cis-regulatory landscapes in development and evolution. Curr. Opin. Genet. Dev. 43:17–42
    [Google Scholar]
  123. Mahjoub M, Stearns T 2012. Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr. Biol. 22:1628–34
    [Google Scholar]
  124. Maia AR, Zhu X, Miller P, Gu G, Maiato H, Kaverina I 2013. Modulation of Golgi-associated microtubule nucleation throughout the cell cycle. Cytoskeleton 70:32–43
    [Google Scholar]
  125. Manandhar G, Schatten H, Sutovsky P 2005. Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72:2–13
    [Google Scholar]
  126. Margulis L. 1981. Symbiosis and Cell Evolution San Francisco: Freeman
  127. Martin-Durán JM, Egger B 2012. Developmental diversity in free-living flatworms. EvoDevo 3:7
    [Google Scholar]
  128. Masuda M, Sato H 1984. Asynchronization of cell division is concurrently related with ciliogenesis in sea urchin blastulae. Dev. Growth Differ. 26:281–94
    [Google Scholar]
  129. Maynard Smith J, Burian R, Kauffman S, Alberch P, Campbell J et al. 1985. Developmental constraints and evolution. Q. Rev. Biol. 60:265–87
    [Google Scholar]
  130. McCune AR. 1990. Morphological anomalies in the Semionotus complex: relaxed selection during colonization of an expanding lake. Evolution 44:71–85
    [Google Scholar]
  131. Melzer R, Theißen G 2016. The significance of developmental robustness for species diversity. Ann. Bot. 117:725–32
    [Google Scholar]
  132. Meraldi P. 2016. Centrosomes in spindle organization and chromosome segregation: a mechanistic view. Chromosome Res 24:19–34
    [Google Scholar]
  133. Metz JAJ. 2008. Fitness. Encyclopedia of Ecology, Vol 2: Evolutionary Ecology SE Jørgensen, BD Fath 1599–612 Oxford, UK: Elsevier
    [Google Scholar]
  134. Metz JAJ 2011. Thoughts on the geometry of meso-evolution: collecting mathematical elements for a post-modern synthesis. The Mathematics of Darwin's Legacy FACC Chalub and JF Rodrigues 197–234 Basel, Switz.: Birkhauser
    [Google Scholar]
  135. Metz JAJ. 2012. Adaptive dynamics. Encyclopedia of Theoretical Ecology A Hastings, LJ Gross 7–17 Berkeley: Univ. Calif. Press
    [Google Scholar]
  136. Minelli A, Bortoletto S 1988. Myriapod metamerism and arthropod segmentation. Biol. J. Linn. Soc. 33:323–43
    [Google Scholar]
  137. Müller GB, Wagner GP 1991. Novelty in evolution: restructuring the concept. Annu. Rev. Ecol. Syst. 22:229–56
    [Google Scholar]
  138. Newman SA. 2011. Animal egg as evolutionary innovation: a solution to the ‘embryonic hourglass’ puzzle. J. Exp. Zool. B Mol. Dev. Evol. 316:467–83
    [Google Scholar]
  139. Ninomiya H, Elinson RP, Winklbauer R 2004. Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature 430:364–67
    [Google Scholar]
  140. Ninova M, Ronshaugen M, Griffiths-Jones S 2014. Conserved temporal patterns of microRNA expression in Drosophila support a developmental hourglass model. Genome Biol. Evol. 6:2459–67
    [Google Scholar]
  141. Ohazama A, Haycraft CJ, Seppala M, Blackburn J, Ghafoor S et al. 2009. Primary cilia regulate Shh activity in the control of molar tooth number. Development 136:897–903
    [Google Scholar]
  142. Opitz JM, Fitzgerald JM, Reynolds JF, Lewin SO, Daniel A et al. 1987. The Montana fetal genetic pathology program and a review of prenatal death in humans. Am J. Med. Genet. 3:Suppl.93–112
    [Google Scholar]
  143. Opitz JM, Zanni G, Reynolds JF, Gilbert-Barness E 2002. Defects of blastogenesis. Am. J. Med. Genet. 115:269–86
    [Google Scholar]
  144. Oster G, Alberch P 1982. Evolution and bifurcation of developmental programs. Evolution 36:444–59
    [Google Scholar]
  145. Papakostas S, Vøllestad LA, Bruneaux M, Aykanat T, Vanoverbeke J et al. 2014. Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions. Nat. Commun. 5:4071
    [Google Scholar]
  146. Piasecka B, Lichocki P, Moretti S, Bergmann S, Robinson-Rechavi M 2013. The hourglass and the early conservation models—co-existing patterns of developmental constraints in vertebrates. PLOS Genet 9:e1003476
    [Google Scholar]
  147. Raff JW, Basto R 2017. Centrosome amplification and cancer: a question of sufficiency. Dev. Cell 40:217–18
    [Google Scholar]
  148. Raff RA. 1996. The Shape of Life Chicago: Univ. Chicago Press
  149. Razavi R., Najafabade HS, Abdullah S, Smukler S, Arntfield M, van der Kooy D. 2015. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more β-cell production. Diabetes 64:1311–23
    [Google Scholar]
  150. Rebollo E, Sampaio P, Januschke J, Llamazares S, Vermark H, González C 2007. Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev. Cell 12:467–74
    [Google Scholar]
  151. Reumer JWF, ten Broek CMA, Galis F 2014. Extraordinary incidence of cervical ribs indicates vulnerable condition in Late Pleistocene mammoths. PeerJ 2:e318
    [Google Scholar]
  152. Rios RM. 2014. The centrosome-Golgi apparatus nexus. Philos. Trans. R. Soc. B 369:20130462
    [Google Scholar]
  153. Riparbelli MG, Callaini G 2003. Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev. Biol. 260:298–313
    [Google Scholar]
  154. Riparbelli MG, Stouthamer R, Dallai R, Callaini G 1998. Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor. Dev. Biol. 195:89–99
    [Google Scholar]
  155. Roubinet C, Cabernard C 2014. Control of asymmetric cell division. Curr. Opin. Cell Biol. 31:84–91
    [Google Scholar]
  156. Russell LB. 1950. X-ray induced developmental abnormalities in the mouse and their use in the analysis of embryological patterns. J. Exp. Zool. B Mol. Dev. Evol. 114:545–602
    [Google Scholar]
  157. Sadler TW. 2010. Birth defects and prenatal diagnosis. Langman's Medical Embryology TW Sadler 113–15 Baltimore, MD: Lippincott, 11th ed..
    [Google Scholar]
  158. Sakata T, Chen JK 2011. Chemical ‘Jekyll and Hyde's: small-molecule inhibitors of developmental signaling pathways. Chem. Soc. Rev. 40:4318–31
    [Google Scholar]
  159. Salazar-Ciudad I, Jernvall J 2010. A computational model of teeth and the developmental origins of morphological variation. Nature 464:583–86
    [Google Scholar]
  160. Sanchez AD, Feldman JL 2017. Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Curr. Opin. Cell Biol. 44:93–101
    [Google Scholar]
  161. Sander K. 1983. The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. Development and Evolution BC Goodwin, N Holder, CC Wylie 137–59 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  162. Sander K, Schmidt-Ott U 2004. Evo-devo aspects of classical and molecular data in a historical perspective. J. Exp. Zool. B Mol. Dev. Evol. 15:69–91
    [Google Scholar]
  163. Schoch RR. 2013. How body size and development biased the direction of evolution in early amphibians. Hist. Biol. 25:155–65
    [Google Scholar]
  164. Scholtz G. 2000. Evolution of the Nauplius stage in malacostracan crustaceans. J. Zool. Syst. Evol. Res. 38:175–87
    [Google Scholar]
  165. Schwitalla S, Fingerle AA, Cammereri P, Nebelsiek T 2013. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38
    [Google Scholar]
  166. Seidel F. 1960. Körpergrundgestalt und Keimstruktur. Eine Erörterung über die Grundlagen der Vergleichenden und experimentellen Embryologie und deren Gültigkeit bei phylogenetischen Überlegungen. Zool. Anz. 164:245–305
    [Google Scholar]
  167. Senter P, Moch JG 2015. A critical survey of vestigial structures in the postcranial skeletons of extant mammals. PeerJ 3:e1439
    [Google Scholar]
  168. Shenefelt RE. 1972. Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment. Teratology 5:103–118
    [Google Scholar]
  169. Siegal ML, Leu J-Y 2014. On the nature and evolutionary impact of phenotypic robustness mechanisms. Annu. Rev. Ecol. Evol. Syst. 45:496–517
    [Google Scholar]
  170. Sir J-H, Pütz M, Daly O, Morrison GG, Dunning M et al. 2013. Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J. Cell Biol. 203:747–56
    [Google Scholar]
  171. Slack JMW, Holland PWH, Graham CF 1993. The zootype and the phylotypic stage. Nature 361:490–92
    [Google Scholar]
  172. Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P et al. 2011. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8:281–93
    [Google Scholar]
  173. Sorokin SP. 1968. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3:207–30
    [Google Scholar]
  174. Stergachis A, Neph S, Reynolds A, Humbert R, Miller B et al. 2013. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154:888–903
    [Google Scholar]
  175. Stiess M, Maghelli N, Kapitein LC, Gomis-Rüth S, Wilsch- Bräuninger M et al. 2010. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327:704–7
    [Google Scholar]
  176. Tanaka EM, Reddien PW 2011. The cellular basis for animal regeneration. Dev. Cell 21:172–85
    [Google Scholar]
  177. ten Broek CMA, Bakker AJ, Varela-Lasheras I, Bugiani M, Van Dongen S, Galis F 2012. Evo-devo of the human vertebral column: on homeotic transformations, pathologies and prenatal selection. Evol. Biol. 39:456–71
    [Google Scholar]
  178. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA 2007. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev. Cell 12:817–25
    [Google Scholar]
  179. Tournier F, Karsenti E, Bornens M 1989. Parthenogenesis in Xenopus eggs injected with centrosomes from synchronized human lymphoid cells. Dev. Biol. 136:321–29
    [Google Scholar]
  180. Tram U, Sullivan W 2000. Reciprocal inheritance of centrosomes in the parthenogenetic Hymenopteran Nasonia vitripennis. Curr. Biol. 10:1413–19
    [Google Scholar]
  181. Trestman M. 2013. The Cambrian explosion and the origins of embodied cognition. Biol. Theor. 8:80–92
    [Google Scholar]
  182. Tsou M-FB, Stearns T 2006. Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18:74–78
    [Google Scholar]
  183. Uchida J, Naganuma T, Machida Y, Kitamoto K, Yamazaki T et al. 2006. Modified extravesical ureteroneocystostomy for completely duplicated ureters in renal transplantation. Urol. Int. 77:104–6
    [Google Scholar]
  184. van der Geer AAE, Galis F 2017. High incidence of cervical ribs indicates vulnerable condition in Late Pleistocene woolly rhinoceroses. PeerJ 5:e3684
    [Google Scholar]
  185. van Wolfswinkel JC, Wagner DE, Reddien PW 2014. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15:326–39
    [Google Scholar]
  186. Varela-Lasheras I, Bakker AJ, van der Mije S, van Alphen J, Galis F 2011. Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations. EvoDevo 2:11
    [Google Scholar]
  187. Vermeij GJ. 2015. Forbidden phenotypes and the limits of evolution. Interface Focus 5:20150028
    [Google Scholar]
  188. Vermot J, Pourquié O 2005. Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature 435:215–20
    [Google Scholar]
  189. Vincent SD, Buckingham ME 2010. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr. Top. Dev. Biol. 90:1–41
    [Google Scholar]
  190. von Dassow G, Meir E, Munro EM, Odell GM 2000. The segment polarity network is a robust development module. Nature 406:188–92
    [Google Scholar]
  191. von Dassow G, Munro EM 1999. Modularity in animal development and evolution: elements of a conceptual framework for EvoDevo. J. Exp. Zool. B Mol. Dev. Evol. 285:307–25
    [Google Scholar]
  192. Wagner A. 2000. Robustness against mutations in genetic networks of yeast. Nat. Genet. 24:355–61
    [Google Scholar]
  193. Wagner A. 2012. The role of robustness in phenotypic adaptation and innovation. Proc. R. Soc. B 279:1249–58
    [Google Scholar]
  194. Walsh B, Blows MW 2009. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40:41–59
    [Google Scholar]
  195. Walz G. 2017. Role of primary cilia in non-dividing post-mitotic cells. Cell Tissue Res 369:11–25
    [Google Scholar]
  196. Wheatley DN. 1995. Primary cilia in normal and pathological tissues. Pathobiology 63:222–38
    [Google Scholar]
  197. Woolfenden GE. 1961. Postcranial morphology of the waterfowl. Bull. Fla. State Mus. Biol. Sci. 6:1–129
    [Google Scholar]
  198. Wu J, Akhmanova A 2017. Microtubule-organizing centers. Annu. Rev. Cell Dev. Biol. 33:51–75
    [Google Scholar]
  199. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT 2007. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–21
    [Google Scholar]
  200. Zakany J, Kmita M, Alarcon P, de la Pompa JL, Duboule D 2001. Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell 106:207–17
    [Google Scholar]
  201. Zalts H, Yanai I 2017. Developmental constraints shape the evolution of the nematode mid-developmental transition. Nat. Ecol. Evol. 1:5113
    [Google Scholar]
  202. Zenker J, White MD, Templin RM, Parton RG, Thorn-Seshold O et al. 2017. A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science 357:925–28
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062339
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error