1932

Abstract

Rapid adaptive radiation poses two distinct questions apart from speciation and adaptation: What happens after one speciation event and how do some lineages continue speciating through a rapid burst? We review major features of rapid radiations and their mismatch with theoretical models and speciation mechanisms. The paradox is that the hallmark rapid burst pattern of adaptive radiation is contradicted by most speciation models, which predict continuously decelerating diversification and niche subdivision. Furthermore, it is unclear if and how speciation-promoting mechanisms such as magic traits, phenotype matching, and physical linkage of coadapted alleles promote rapid bursts of speciation. We review additional mechanisms beyond ecological opportunity to explain rapid radiations: () ancient adaptive alleles and the transporter hypothesis, () sexual signal complexity, () fitness landscape connectivity, () diversity begets diversity, and () plasticity first. We propose new questions and predictions connecting microevolutionary processes to macroevolutionary patterns through the study of rapid radiations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062443
2019-11-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110617-062443.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062443&mimeType=html&fmt=ahah

Literature Cited

  1. Abouheif E. 2008. Parallelism as the pattern and process of mesoevolution. Evol. Dev. 10:13–5
    [Google Scholar]
  2. Alexandrou MA, Oliveira C, Maillard M, McGill RAR, Newton J et al. 2011. Competition and phylogeny determine community structure in Müllerian co-mimics. Nature 469:732884–89
    [Google Scholar]
  3. Alfaro ME, Brock CD, Banbury BL, Wainwright PC 2009a. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes?. BMC Evol. Biol. 9:1255
    [Google Scholar]
  4. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A et al. 2009b. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. PNAS 106:3213410–14
    [Google Scholar]
  5. Arbogast BS, Drovetski SV, Curry RL, Boag PT, Seutin G et al. 2006. The origin and diversification of Galapagos mockingbirds. Evolution 60:2370
    [Google Scholar]
  6. Arnegard ME, McGee MD, Matthews B, Marchinko KB, Conte GL et al. 2014. Genetics of ecological divergence during speciation. Nature 511:307–11
    [Google Scholar]
  7. Arnegard ME, McIntyre PB, Harmon LJ, Zelditch ML, Crampton WGR et al. 2010. Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am. Nat. 176:3335–56
    [Google Scholar]
  8. Arnold SJ, Pfrender ME, Jones AG 2001. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112:29–32
    [Google Scholar]
  9. Benkman CW. 2003. Divergent selection drives the adaptive radiation of crossbills. Evolution 57:51176–81
    [Google Scholar]
  10. Bento G, Ogawa A, Sommer RJ 2010. Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466:7305494–97
    [Google Scholar]
  11. Blount ZD, Barrick JE, Davidson CJ, Lenski RE 2012. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:7417513–18
    [Google Scholar]
  12. Bolnick DI. 2006. Multi-species outcomes in a common model of sympatric speciation. J. Theor. Biol. 241:4734–44
    [Google Scholar]
  13. Bolnick DI. 2011. Sympatric speciation in threespine stickleback: why not. Int. J. Ecol. 2011:942847
    [Google Scholar]
  14. Bolnick DI, Barrett RDH, Oke KB, Rennison DJ, Stuart YE 2018. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49:303–30
    [Google Scholar]
  15. Bolnick DI, Lau OL. 2008. Predictable patterns of disruptive selection in stickleback in postglacial lakes. Am. Nat. 172:11–11
    [Google Scholar]
  16. Bolnick DI, Stutz WE. 2017. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546:7657285–88
    [Google Scholar]
  17. Brodersen J, Post DM, Seehausen O 2018. Upward adaptive radiation cascades: predator diversification induced by prey diversification. Trends Ecol. Evol. 33:159–70
    [Google Scholar]
  18. Brown NMO, Summers BR, Jones FC, Brady SD, Kingsley DM 2015. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA. eLife 4:e05290
    [Google Scholar]
  19. Burress ED, Piálek L, Casciotta JR, Almirón A, Tan M et al. 2018. Island- and lake-like parallel adaptive radiations replicated in rivers. Proc. R. Soc. B 285:18701762
    [Google Scholar]
  20. Bushdid C, Magnasco MO, Vosshall LB, Keller A 2016. Humans can discriminate more than 1 trillion olfactory stimuli. Science 343:1370–72
    [Google Scholar]
  21. Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, Arnegard ME 2011. Brain evolution triggers increased diversification of electric fishes. Science 332:6029583–86
    [Google Scholar]
  22. Caves EM, Green PA, Zipple MN, Peters S, Johnsen S, Nowicki S 2018. Categorical perception of colour signals in a songbird. Nature 560:365–67
    [Google Scholar]
  23. Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson M et al. 2005. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:57171928–33
    [Google Scholar]
  24. Coyne JA, Orr HA. 2004. Speciation Sunderland, MA: Sinauer Associates
  25. Crawford NG, Kelly DE, Hansen MEB, Beltrame MH, Fan S et al. 2017. Loci associated with skin pigmentation identified in African populations. Science 358:6365eaan8433
    [Google Scholar]
  26. Dieckmann U, Doebeli M. 1999. On the origin of species by sympatric speciation. Nature 400:6742354–57
    [Google Scholar]
  27. Dobzhansky T. 1954. Evolution as a creative process. Caryologica 6:435–49
    [Google Scholar]
  28. Doebeli M, Dieckmann U. 2005. Adaptive dynamics as a mathematical tool for studying the ecology of speciation processes. J. Evol. Biol. 18:51194–200
    [Google Scholar]
  29. Doebeli M, Dieckmann U, Metz JA, Tautz D 2005. What we have also learned: adaptive speciation is theoretically plausible. Evolution 59:3691–99
    [Google Scholar]
  30. Eberhard WG, Huber BA, Rodriguez RL, Daniel Briceno R, Salas I, Rodriguez V 1998. One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52:2415–31
    [Google Scholar]
  31. Echelle A, Kornfield I. 1984. Evolution of Fish Species Flocks Orono: Univ. Maine Press
  32. Erwin DH. 2015. Novelty and innovation in the history of life. Curr. Biol. 25:19R930–40
    [Google Scholar]
  33. Erwin DH. 2017. The topology of evolutionary novelty and innovation in macroevolution. Philos. Trans. R. Soc. B 372:173520160422
    [Google Scholar]
  34. Estes S, Arnold SJ. 2007. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am. Nat. 169:2227–44
    [Google Scholar]
  35. Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ et al. 2003. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. PNAS 100:1810314–19
    [Google Scholar]
  36. Felsenstein J. 1981. Skepticism towards Santa-Rosalia, or why are there so few kinds of animals?. Evolution 35:1124–38
    [Google Scholar]
  37. Fishman L, Stathos A, Beardsley PM, Williams CF, Hill JP 2013. Chromosomal rearrangements and the genetics of reproductive barriers in Mimulus (monkey flowers). Evolution 67:92547–60
    [Google Scholar]
  38. Forbes AA, Powell THQ, Stelinski LL, Smith JJ, Feder JL 2009. Sequential sympatric speciation across trophic levels. Science 323:5915776–79
    [Google Scholar]
  39. Fryer G, Iles TD. 1972. The Cichlid Fishes of the Great Lakes of Africa: Their Biology and Evolution 23 Neptune, NJ: Oliver & Boyd, Croythron House
  40. Fuller RC. 2008. Genetic incompatibilities in killifish and the role of environment. Evolution 62:123056–68
    [Google Scholar]
  41. Fuller Z, Leonard C, Young R, Schaeffer S, Phadnis N 2017. The role of chromosomal inversions in speciation. bioRxiv 211771. https://doi.org/10.1101/211771
    [Crossref]
  42. Futuyma DJ. 1998. Evolutionary Biology Sunderland, MA: Sinauer Associates
  43. Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–33
    [Google Scholar]
  44. Gavrilets S. 2004. Fitness Landscapes and the Origin of Species Princeton, NJ: Princeton Univ. Press
  45. Gavrilets S. 2014. Models of speciation: Where are we now. J. Hered. 105:S1743–55
    [Google Scholar]
  46. Gavrilets S, Losos JB. 2009. Adaptive radiation: contrasting theory with data. Science 323:5915732–37
    [Google Scholar]
  47. Gavrilets S, Vose A. 2005. Dynamic patterns of adaptive radiation. PNAS 102:5018040–45
    [Google Scholar]
  48. Gavrilets S, Vose A, Barluenga M, Salzburger W, Meyer A 2007. Case studies and mathematical models of ecological speciation. 1. Cichlids in a crater lake. Mol. Ecol. 16:142893–909
    [Google Scholar]
  49. Gittenberger E. 1991. What about non-adaptive radiation?. Biol. J. Linn. Soc. 43:4263–72
    [Google Scholar]
  50. Givnish TJ. 2015. Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol 207:2297–303
    [Google Scholar]
  51. Givnish TJ, Sytsma KJ. 1997. Molecular Evolution and Adaptive Radiation Cambridge, UK: Cambridge Univ. Press
  52. Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ, Benzing DH, Burkhardt EM 1997. Molecular evolution and adaptive radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guyana Shield. Molecular Evolution and Adaptive Radiation TJ Givnish, KJ Sytsma 259–311 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  53. Glor RE. 2010. Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 41:251–70
    [Google Scholar]
  54. Grant P, Grant B. 2011. How and Why Species Multiply Princeton, NJ: Princeton Univ. Press
  55. Groot AT, Horovitz JL, Hamilton J, Santangelo RG, Schal C, Gould F 2006. Experimental evidence for interspecific directional selection on moth pheromone communication. PNAS 103:155858–63
    [Google Scholar]
  56. Guerrero RF, Hahn MW. 2017. Speciation as a sieve for ancestral polymorphism. Mol. Ecol. 26:55362–68
    [Google Scholar]
  57. Haller BC, Hendry AP. 2014. Solving the paradox of stasis: squashed stabilizing selection and the limits of detection. Evolution 68:2483–500
    [Google Scholar]
  58. Haller BC, Mazzucco R, Dieckmann U 2013. Evolutionary branching in complex landscapes. Am. Nat. 182:4E127–41
    [Google Scholar]
  59. Hansen TF, Pienaar J, Orzack SH 2008. A comparative method for studying adaptation to a randomly evolving environment. Evolution 62:81965–77
    [Google Scholar]
  60. Harmon LJ, Harrison S. 2015. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185:5584–93
    [Google Scholar]
  61. Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:82385–96
    [Google Scholar]
  62. Hebets EA, Papaj DR. 2004. Complex signal function: developing a framework of testable hypotheses. Behav. Ecol. Sociobiol. 57:3197–214
    [Google Scholar]
  63. Heliconius Genome Consortium 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:740594–98
    [Google Scholar]
  64. Hendry A. 2017. Eco-Evolutionary Dynamics Princeton, NJ: Princeton Univ. Press
  65. Hendry A, Kinnison M. 1999. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53:61637–53
    [Google Scholar]
  66. Higham TE, Rogers SM, Langerhans RB, Jamniczky HA, Lauder GV et al. 2016. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation. Proc. R. Soc. B 283:20161294
    [Google Scholar]
  67. Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J et al. 2011. Time-dependent rates of molecular evolution. Mol. Ecol. 20:153087–101
    [Google Scholar]
  68. Holt RD, Gaines MS. 1992. Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol. Ecol. 6:433–47
    [Google Scholar]
  69. Holzman R, Collar DC, Price SA, Darrin Hulsey C, Thomson RC, Wainwright PC 2012. Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes. Proc. R. Soc. B 279:17321287–92
    [Google Scholar]
  70. Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:7513194–97
    [Google Scholar]
  71. Hunt G, Bell MA, Travis MP 2008. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:3700–10
    [Google Scholar]
  72. Hurlbert AH, Stegen JC. 2014. When should species richness be energy limited, and how would we know?. Ecol. Lett. 17:4401–13
    [Google Scholar]
  73. Ito HC, Dieckmann U. 2007. A new mechanism for recurrent adaptive radiations. Am. Nat. 170:4E96–111
    [Google Scholar]
  74. Kagawa K, Takimoto G. 2017. Hybridization can promote adaptive radiation by means of transgressive segregation. Ecol. Lett. 21:2264–74
    [Google Scholar]
  75. Kaneshiro KY, Boake CRB. 1987. Sexual selection and speciation: issues raised by Hawaiian Drosophila. Trends Ecol. Evol 2:207–12
    [Google Scholar]
  76. Keagy J, Lettieri L, Boughman JW 2016. Male competition fitness landscapes predict both forward and reverse speciation. Ecol. Lett. 19:171–80
    [Google Scholar]
  77. Kirkpatrick M, Barton N. 2006. Chromosome inversions, local adaptation and speciation. Genetics 173:1419–34
    [Google Scholar]
  78. Kisel Y, Barraclough TG. 2010. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175:3316–34
    [Google Scholar]
  79. Koblmüller S, Egger B, Sturmbauer C, Sefc KM 2007. Evolutionary history of Lake Tanganyika's scale-eating cichlid fishes. Mol. Phylogenetics Evol. 44:31295–305
    [Google Scholar]
  80. Kocher TD. 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nat. Rev. Genet. 5:4288–98
    [Google Scholar]
  81. Kondrashov A, Kondrashov F. 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400:6742351–54
    [Google Scholar]
  82. Kopp M, Hermisson J. 2007. Adaptation of a quantitative trait to a moving optimum. Genetics 176:1715–19
    [Google Scholar]
  83. Kopp M, Matuszewski S. 2014. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 7:1169–91
    [Google Scholar]
  84. Kopp M, Servedio MR, Mendelson TC, Safran RJ, Rodríguez RL et al. 2018. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191:11–20
    [Google Scholar]
  85. Kozak KH, Larson A, Bonett RM, Harmon LJ 2005. Phylogenetic analysis of ecomorphological divergence, community structure, and diversification rates in dusky salamanders (Plethodontidae: Desmognathus). Evolution 59:92000–16
    [Google Scholar]
  86. Lande R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22:71435–46
    [Google Scholar]
  87. Lande R, Seehausen O, van Alphen JJM 2001. Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish. Genetica 112:435–43
    [Google Scholar]
  88. Landis MJ, Freyman WA, Baldwin BG 2018. Retracing the Hawaiian silversword radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. Evolution 72:2343–59
    [Google Scholar]
  89. Landis MJ, Schraiber JG. 2017. Pulsed evolution shaped modern vertebrate body sizes. PNAS 114:213224–29
    [Google Scholar]
  90. Landis MJ, Schraiber JG, Liang M 2013. Phylogenetic analysis using Lévy processes: finding jumps in the evolution of continuous traits. Syst. Biol. 62:2193–204
    [Google Scholar]
  91. Levis NA, Isdaner AJ, Pfennig DW 2018. Morphological novelty emerges from pre-existing phenotypic plasticity. Nat. Ecol. Evol. 2:81289–97
    [Google Scholar]
  92. Levis NA, Pfennig DW. 2016. Evaluating “plasticity-first” evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31:7563–74
    [Google Scholar]
  93. Losos JB. 2009. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles Berkeley: Univ. Calif. Press
  94. Losos JB. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson Award address. Am. Nat. 175:6623–39
    [Google Scholar]
  95. Losos JB, Creer DA, Glossip D, Goellner R, Hampton A et al. 2000. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54:1301–5
    [Google Scholar]
  96. Lovette IJ, Bermingham E, Ricklefs RE 2002. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. R. Soc. B 269:148637–42
    [Google Scholar]
  97. Lynch M. 2010. Evolution of the mutation rate. Trends Genet 26:8345–52
    [Google Scholar]
  98. Macdonald KS, Yampolsky L, Duffy JE 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenetics Evol. 35:2323–43
    [Google Scholar]
  99. Mack KL, Nachman MW. 2017. Gene regulation and speciation. Trends Genet 33:168–80
    [Google Scholar]
  100. Mahler DL, Lambert SM, Geneva AJ, Ng J, Hedges SB et al. 2016. Discovery of a giant chameleon-like lizard (Anolis) on Hispaniola and its significance to understanding replicated adaptive radiations. Am. Nat. 188:3357–64
    [Google Scholar]
  101. Marques DA, Meier JI, Seehausen O 2019. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34:531–44
    [Google Scholar]
  102. Martin CH. 2010. Unexploited females and unreliable signals of male quality in a Malawi cichlid bower polymorphism. Behav. Ecol. 21:61195–202
    [Google Scholar]
  103. Martin CH. 2012. Weak disruptive selection and incomplete phenotypic divergence in two classic examples of sympatric speciation: Cameroon crater lake cichlids. Am. Nat. 180:4E90–109
    [Google Scholar]
  104. Martin CH. 2013. Strong assortative mating by diet, color, size, and morphology but limited progress toward sympatric speciation in a classic example: Cameroon crater lake cichlids. Evolution 67:72114–23
    [Google Scholar]
  105. Martin CH. 2016a. The cryptic origins of evolutionary novelty: 1000-fold faster trophic diversification rates without increased ecological opportunity or hybrid swarm. Evolution 70:2504–19
    [Google Scholar]
  106. Martin CH. 2016b. Context dependence in complex adaptive landscapes: frequency and trait-dependent selection surfaces within an adaptive radiation of Caribbean pupfishes. Evolution 70:1265–82
    [Google Scholar]
  107. Martin CH, Crawford JE, Turner BJ, Simons LH 2016. Diabolical survival in Death Valley: recent pupfish colonization, gene flow, and genetic assimilation in the smallest species range on earth. Proc. R. Soc. B 283:23–34
    [Google Scholar]
  108. Martin CH, Cutler JS, Friel JP, Dening Touokong C, Coop G, Wainwright PC 2015. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 69:61406–22
    [Google Scholar]
  109. Martin CH, Erickson PA, Miller CT 2017a. The genetic architecture of novel trophic specialists: larger effect sizes are associated with exceptional oral jaw diversification in a pupfish adaptive radiation. Mol. Ecol. 26:2624–38
    [Google Scholar]
  110. Martin CH, Genner MJ. 2009a. A role for male bower size as an intrasexual signal in a Lake Malawi cichlid fish. Behaviour 146:7963–78
    [Google Scholar]
  111. Martin CH, Genner MJ. 2009b. High niche overlap between two successfully coexisting pairs of Lake Malawi cichlid fishes. Can. J. Fish. Aquat. Sci. 588:579–88
    [Google Scholar]
  112. Martin CH, Höhna S. 2017. New evidence for the recent divergence of Devil's Hole pupfish and the plausibility of elevated mutation rates in endangered taxa. Mol. Ecol. 27:831–38
    [Google Scholar]
  113. Martin CH, Höhna S, Crawford J, Turner B, Richards E, Simons L 2017b. The complex effects of demographic history on the estimation of substitution rate: concatenated gene analysis results in no more than twofold overestimation. Proc. R. Soc. B 284:20170537
    [Google Scholar]
  114. Martin CH, Wainwright PC. 2011. Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of Cyprinodon pupfishes. Evolution 65:82197–212
    [Google Scholar]
  115. Martin CH, Wainwright PC. 2013a. On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes. PLOS ONE 8:8e71164
    [Google Scholar]
  116. Martin CH, Wainwright PC. 2013b. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339:6116208–11
    [Google Scholar]
  117. Masta SE, Maddison WP. 2002. Sexual selection driving diversification in jumping spiders. PNAS 99:74442–47
    [Google Scholar]
  118. Matuszewski S, Hermisson J, Kopp M 2015. Catch me if you can: adaptation from standing genetic variation to a moving phenotypic optimum. Genetics 200:41255–74
    [Google Scholar]
  119. Matz MV. 2018. Fantastic beasts and how to sequence them: ecological genomics for obscure model organisms. Trends Genet 34:2121–32
    [Google Scholar]
  120. McGee MD, Borstein SR, Neches RY, Buescher HH, Seehausen O, Wainwright PC 2015. A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids. Science 350:62641077–79
    [Google Scholar]
  121. McGirr JA, Martin CH. 2017. Novel candidate genes underlying extreme trophic specialization in Caribbean pupfishes. Mol. Biol. Evol. 34:4873–88
    [Google Scholar]
  122. McGirr JA, Martin CH. 2018. Parallel evolution of gene expression between trophic specialists despite divergent genotypes and morphologies. Evol. Lett. 2:262–75
    [Google Scholar]
  123. McGirr JA, Martin CH. 2019. Hybrid misexpression in multiple developing tissues within a recent adaptive radiation of Cyprinodon pupfishes. bioRxiv 372912. https://doi.org/10.1101/372912
    [Crossref]
  124. McKaye KR, Marsh A. 1983. Food switching by two specialized algae-scraping cichlid fishes in Lake Malawi, Africa. Oecologia 56:2–3245–48
    [Google Scholar]
  125. McPeek MA, Shen L, Farid H 2009. The correlated evolution of three-dimensional reproductive structures between male and female damselflies. Evolution 63:173–83
    [Google Scholar]
  126. Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O 2017. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8:514363
    [Google Scholar]
  127. Meyer BS, Matschiner M, Salzburger W 2017. Disentangling incomplete lineage sorting and introgression to refine species-tree estimates for Lake Tanganyika cichlid fishes. Syst. Biol. 66:4531–50
    [Google Scholar]
  128. Miller CJJ, Matute DR. 2017. The effect of temperature on Drosophila hybrid fitness. G3 7:2377–85
    [Google Scholar]
  129. Miller CT, Glazer AM, Summers BR, Blackman BK, Norman AR et al. 2014. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait loci. Genetics 197:1405–20
    [Google Scholar]
  130. Muñoz MM, Langham GM, Brandley MC, Rosauer DF, Williams SE, Moritz C 2016. Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards. Evolution 70:112537–49
    [Google Scholar]
  131. Muschick M, Russell JM, Jemmi E, Walker J, Stewart KM et al. 2018. Arrival order and release from competition does not explain why haplochromine cichlids radiated in Lake Victoria. Proc. R. Soc. B 285:187820180462
    [Google Scholar]
  132. Nelson TC, Cresko WA. 2018. Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations. Evol. Lett. 2:19–21
    [Google Scholar]
  133. Norvaišas P, Kisdi E. 2012. Revisiting Santa Rosalia to unfold a degeneracy of classic models of speciation. Am. Nat. 180:3388–93
    [Google Scholar]
  134. Nosil PP. 2012. Ecological Speciation Oxford, UK: Oxford Univ. Press
  135. Olson ME, Arroyo-Santos A. 2009. Thinking in continua: beyond the “adaptive radiation” metaphor. BioEssays 31:121337–46
    [Google Scholar]
  136. O'Meara BC, Ané C, Sanderson MJ, Wainwright PC 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:5922–33
    [Google Scholar]
  137. Orr HA. 2005. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6:2119–27
    [Google Scholar]
  138. Papadopoulou A, Knowles LL. 2015. Genomic tests of the species-pump hypothesis: Recent island connectivity cycles drive population divergence but not speciation in Caribbean crickets across the Virgin Islands. Evolution 69:61501–17
    [Google Scholar]
  139. Parsons KJ, Concannon M, Navon D, Wang J, Ea I et al. 2016. Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes. Mol. Ecol. 25:246012–23
    [Google Scholar]
  140. Patchell FC, Shine R. 1986. Food habits and reproductive biology of the Australian legless lizards (Pygopodidae). Copeia 1986:130–39
    [Google Scholar]
  141. Pease JB, Haak DC, Hahn MW, Moyle LC 2016. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLOS Biol 14:2e1002379
    [Google Scholar]
  142. Pennell MW, Harmon LJ, Uyeda JC 2014. Is there room for punctuated equilibrium in macroevolution?. Trends Ecol. Evol. 29:123–32
    [Google Scholar]
  143. Pfennig DW, Pfennig KS. 2012. Evolution's Wedge: Competition and the Origins of Diversity Berkeley and Los Angeles: Univ. Calif. Press
  144. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP 2010. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol. Evol. 25:8459–67
    [Google Scholar]
  145. Poelstra JW, Richards EJ, Martin CH 2018. Speciation in sympatry with ongoing secondary gene flow and a potential olfactory trigger in a radiation of Cameroon cichlids. Mol. Ecol. 27:4270–88
    [Google Scholar]
  146. Polechová J, Barton NH. 2005. Speciation through competition: a critical review. Evolution 59:61194–210
    [Google Scholar]
  147. Puebla O, Bermingham E, Guichard F 2012. Pairing dynamics and the origin of species. Proc. R. Soc. B 279:17311085–92
    [Google Scholar]
  148. Rabosky DL. 2010. Extinction rates should not be estimated from molecular phylogenies. Evolution 64:61816–24
    [Google Scholar]
  149. Rabosky DL. 2017. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Philos. Trans. R. Soc. B 372:173520160417
    [Google Scholar]
  150. Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L et al. 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559:7714392–95
    [Google Scholar]
  151. Rabosky DL, Lovette IJ. 2008. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time?. Evolution 62:81866–75
    [Google Scholar]
  152. Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B et al. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4:1958
    [Google Scholar]
  153. Rabosky DL, Slater GJ, Alfaro ME 2012. Clade age and species richness are decoupled across the eukaryotic tree of life. PLOS Biol 10:8e1001381
    [Google Scholar]
  154. Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E 2015. Evidence for archaic adaptive introgression in humans. Nat. Rev. Gen. 16:359–71
    [Google Scholar]
  155. Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N et al. 2017. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J. Evol. Biol. 30:81450–77
    [Google Scholar]
  156. Recknagel H, Elmer KR, Meyer A 2014. Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes. Evolution 68:72145–55
    [Google Scholar]
  157. Reynolds RG, Fitzpatrick BM. 2007. Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution 61:92253–59
    [Google Scholar]
  158. Richards EJ, Martin CH. 2017. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLOS Genet 13:8e1006919
    [Google Scholar]
  159. Richards EJ, Poelstra JW, Martin CH 2018. Don't throw out the sympatric speciation with the crater lake water: fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation. Evol. Lett 3:217984
    [Google Scholar]
  160. Richards EJ, Servedio M, Martin CH 2019. Searching for sympatric speciation in the genomic era. bioRxiv 367623. https://doi.org/10.1101/367623
    [Crossref]
  161. Rockman MV. 2012. The QTN program and the alleles that matter for evolution: All that's gold does not glitter. Evolution 66:1–17
    [Google Scholar]
  162. Roderick GK, Gillespie RG. 1998. Speciation and phylogeography of Hawaiian terrestrial arthropods. Mol. Ecol. 7:4519–31
    [Google Scholar]
  163. Rosenblum EB, Sarver BAJ, Brown JW, Des Roches S, Hardwick KM et al. 2012. Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39:2255–61
    [Google Scholar]
  164. Rundell RJ, Price TD. 2009. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24:7394–99
    [Google Scholar]
  165. Schluter D. 2000. Ecology of Adaptive Radiation Oxford, UK: Oxford Univ. Press
  166. Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323:5915737–41
    [Google Scholar]
  167. Schluter D, Conte GL. 2009. Genetics and ecological speciation. PNAS 106:Suppl. 19955–62
    [Google Scholar]
  168. Schluter D, Grant P. 1984a. Determinants of morphological patterns in communities of Darwin's finches. Am. Nat. 123:2175–96
    [Google Scholar]
  169. Schluter D, Grant P. 1984b. Ecological correlates of morphological evolution in a Darwin's finch, Geospiza difficilis. Evolution 38:4856–69
    [Google Scholar]
  170. Seehausen O. 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19:4198–207
    [Google Scholar]
  171. Seehausen O. 2006. African cichlid fish: a model system in adaptive radiation research. Proc. R. Soc. B 273:15971987–98
    [Google Scholar]
  172. Seehausen O. 2013. Conditions when hybridization might predispose populations for adaptive radiation. J. Evol. Biol. 26:2279–81
    [Google Scholar]
  173. Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW et al. 2014. Genomics and the origin of species. Nat. Rev. Genet. 15:3176–92
    [Google Scholar]
  174. Servedio MR, Burger R. 2014. The counterintuitive role of sexual selection in species maintenance and speciation. PNAS 111:228113–18
    [Google Scholar]
  175. Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P 2011. Magic traits in speciation: “magic” but not rare?. Trends Ecol. Evol. 26:8389–97
    [Google Scholar]
  176. Shaffer HB, McKnight ML. 1996. The polytypic species revisited: genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 50:1417–33
    [Google Scholar]
  177. Sibbing FA, Nagelkerke LAJ. 2000. Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Rev. Fish Biol. Fish. 10:393–437
    [Google Scholar]
  178. Sidlauskas B. 2008. Continuous and arrested morphological diversification in sister clades of Characiform fishes: a phylomorphospace approach. Evolution 62:123135–56
    [Google Scholar]
  179. Simpson GG. 1944. Tempo and Mode in Evolution New York: Columbia Univ. Press
  180. Sobel JM, Chen GF, Watt LR, Schemske DW 2010. The biology of speciation. Evolution 64:2295–315
    [Google Scholar]
  181. Stacy E, Johansen J, Sakishima T 2014. Incipient radiation within the dominant Hawaiian tree Metrosideros polymorpha. Heredity 113:334–42
    [Google Scholar]
  182. Stayton C. 2019. Performance in three shell functions predicts the phenotypic distribution of hard-shelled turtles. Evolution 73:4720–34
    [Google Scholar]
  183. St. John ME, McGirr JA, Martin CH. 2019. The behavioral origins of novelty: Did increased aggression lead to scale-eating in pupfishes?. Behav. Ecol. 30:2557–69
    [Google Scholar]
  184. Stroud JT, Losos JB. 2016. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47:507–32
    [Google Scholar]
  185. Susoy V, Herrmann M, Kanzaki N, Kruger M, Nguyen CN et al. 2016. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci. Adv. 2:1e1501031
    [Google Scholar]
  186. Svensson EI, Calsbeek R. 2012. The Adaptive Landscape Oxford, UK: Oxford Univ. Press
  187. Uyeda JC, Hansen TF, Arnold SJ, Pienaar J 2011. The million-year wait for macroevolutionary bursts. PNAS 108:3815908–13
    [Google Scholar]
  188. Uyeda JC, Zenil-Ferguson R, Pennell MW 2018. Rethinking phylogenetic comparative methods. Syst. Biol. 67:61091–109
    [Google Scholar]
  189. van Doorn GS, Weissing FJ 2002. Ecological versus sexual selection models of sympatric speciation: a synthesis. Selection 2:1–217–40
    [Google Scholar]
  190. Verzijden MN, Lachlan RF, Servedio MR 2005. Female mate-choice behavior and sympatric speciation. Evolution 59:102097–108
    [Google Scholar]
  191. von Rintelen K, Glaubrecht M, Schubart CD, Wessel A, von Rintelen T 2010. Adaptive radiation and ecological diversification of Sulawesi's ancient lake shrimps. Evolution 64:113287–99
    [Google Scholar]
  192. Wagner CE, Harmon LJ, Seehausen O 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:7407366–69
    [Google Scholar]
  193. Wagner CE, Harmon LJ, Seehausen O 2014. Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecol. Lett. 17:5583–92
    [Google Scholar]
  194. Weissing FJ, Edelaar P, van Doorn GS 2011. Adaptive speciation theory: a conceptual review. Behav. Ecol. Sociobiol. 65:3461–80
    [Google Scholar]
  195. Wellborn GA, Langerhans RB. 2015. Ecological opportunity and the adaptive diversification of lineages. Ecol. Evol. 5:1176–95
    [Google Scholar]
  196. Wilson DS, Turelli M. 1986. Stable underdominance and the evolutionary invasion of empty niches. Am. Nat. 127:6835
    [Google Scholar]
  197. Wray G, Hoekstra H, Futuyma D, Lenski R, Mackay T et al. 2014. Does evolutionary theory need a rethink? Counterpoint: No, all is well. Nature 514:7521161–64
    [Google Scholar]
  198. Wright KM, Lloyd D, Lowry DB, Macnair MR, Willis JH 2013. Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus. PLOS Biol 11:2e1001497
    [Google Scholar]
  199. Wund MA, Baker JA, Clancy B, Golub JL, Foster SA 2008. A test of the “flexible stem” model of evolution: ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am. Nat. 172:4449–62
    [Google Scholar]
  200. Yeaman S. 2013. Genomic rearrangements and the evolution of clusters of locally adaptive loci. PNAS 110:19E1743–51
    [Google Scholar]
  201. Yeaman S, Whitlock MC. 2011. The genetic architecture of adaptation under migration-selection balance. Evolution 65:71897–911
    [Google Scholar]
  202. Yeh DJ, Boughman JW, Sætre GP, Servedio MR 2018. The evolution of sexual imprinting through reinforcement. Evolution 72:71136–49
    [Google Scholar]
  203. Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L et al. 2010. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23:81581–96
    [Google Scholar]
  204. Zeh DW, Zeh JA, Ishida Y 2009. Transposable elements and an epigenetic basis for punctuated equilibria. BioEssays 31:7715–26
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062443
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062443
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error