1932

Abstract

Animals are distinguished by having guts—organs that must extract nutrients from food yet also bar invasion by pathogens. Most guts are colonized by nonpathogenic microorganisms, but the functions of these microbes, or even the reasons why they occur in the gut, vary widely among animals. Sometimes these microorganisms have codiversified with hosts; sometimes they live mostly elsewhere in the environment. Either way, gut microorganisms often benefit hosts. Benefits may reflect evolutionary addiction, whereby hosts incorporate gut microorganisms into normal developmental processes. But benefits often include novel ecological capabilities; for example, many metazoan clades exist by virtue of gut communities enabling new dietary niches. Animals vary immensely in their dependence on gut microorganisms, from lacking them entirely to using them as food or to obligate dependence for development, nutrition, or protection. Many consequences of gut microorganisms for hosts can be ascribed to microbial community processes and the host's ability to shape these processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062453
2019-11-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110617-062453.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062453&mimeType=html&fmt=ahah

Literature Cited

  1. Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL et al. 2019. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J 13:576–87
    [Google Scholar]
  2. Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE et al. 2012. Highly similar microbial communities are shared among related and trophically similar ant species. Mol. Ecol. 21:92282–96
    [Google Scholar]
  3. Antunes LCM, McDonald JAK, Schroeter K, Carlucci C, Ferreira RBR et al. 2014. Antivirulence activity of the human gut metabolome. mBio 5:4e01183–14
    [Google Scholar]
  4. Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ et al. 2018. Metaorganisms in extreme environments: Do microbes play a role in organismal adaptation?. Zoology 127:1–19
    [Google Scholar]
  5. Belzer C, Chia LW, Aalvink S, Chamlagain B, Piironen V et al. 2017. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio 8:5e00770–17
    [Google Scholar]
  6. Berg M, Stenuit B, Ho J, Wang A, Parke C et al. 2016. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 10:81998–2009
    [Google Scholar]
  7. Blaser MJ. 2018. Our missing microbes: Short-term antibiotic courses have long-term consequences. Clevel. Clin. J. Med. 85:12928–30
    [Google Scholar]
  8. Blaser MJ, Falkow S. 2009. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol. 7:12887–94
    [Google Scholar]
  9. Blum JE, Fischer CN, Miles J, Handelsman J 2013. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio 4:6e00860–13
    [Google Scholar]
  10. Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S et al. 2018. Rampant host switching shaped the termite gut microbiome. Curr. Biol. 28:4649–54.e2
    [Google Scholar]
  11. Broderick NA, Lemaitre B. 2012. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:4307–21
    [Google Scholar]
  12. Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR 2016. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLOS Biol 14:11e2000225 Erratum. 2017. PLOS Biol. 15(1):e1002587
    [Google Scholar]
  13. Brucker RM, Bordenstein SR. 2012. Speciation by symbiosis. Trends Ecol. Evol. 27:8443–51
    [Google Scholar]
  14. Brune A, Dietrich C. 2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69:1145–66
    [Google Scholar]
  15. Burns AR, Miller E, Agarwal M, Rolig AS, Milligan-Myhre K et al. 2017. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. PNAS 114:4211181–86
    [Google Scholar]
  16. Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ 2016. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5:1492
    [Google Scholar]
  17. Chandler JA, James PM, Jospin G, Lang JM 2014. The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2:e474
    [Google Scholar]
  18. Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13:4260–70
    [Google Scholar]
  19. Colston TJ, Jackson CR. 2016. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol. Ecol. 25:163776–800
    [Google Scholar]
  20. Contijoch EJ, Britton GJ, Yang C, Mogno I, Li Z et al. 2019. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8:e40553
    [Google Scholar]
  21. Coon KL, Brown MR, Strand MR 2016. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25:225806–26
    [Google Scholar]
  22. Coon KL, Vogel KJ, Brown MR, Strand MR 2014. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23:112727–39
    [Google Scholar]
  23. Coyte KZ, Schluter J, Foster KR 2015. The ecology of the microbiome: networks, competition, and stability. Science 350:6261663–66
    [Google Scholar]
  24. Dantas G, Sommer MOA, Degnan PH, Goodman AL 2013. Experimental approaches for defining functional roles of microbes in the human gut. Annu. Rev. Microbiol. 67:459–75
    [Google Scholar]
  25. Dillon RJ, Vennard CT, Buckling A, Charnley AK 2005. Diversity of locust gut bacteria protects against pathogen invasion. Ecol. Lett. 8:121291–98
    [Google Scholar]
  26. Douglas AE. 2010. The Symbiotic Habit Princeton, NJ: Princeton Univ. Press
  27. Douglas AE, Werren JH. 2016. Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7:2e02099–15
    [Google Scholar]
  28. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS 2019. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol 27:2105–17
    [Google Scholar]
  29. Engel P, Moran NA. 2013. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37:5699–735
    [Google Scholar]
  30. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:229066–71
    [Google Scholar]
  31. Feldhaar H, Strake J, Krischke M, Berthold K, Stoll S et al. 2007. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol 5:46
    [Google Scholar]
  32. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V et al. 2018. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:1133–35
    [Google Scholar]
  33. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6:2121–31
    [Google Scholar]
  34. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E et al. 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:7581262–66
    [Google Scholar]
  35. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S 2017. The evolution of the host microbiome as an ecosystem on a leash. Nature 548:766543–51
    [Google Scholar]
  36. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M et al. 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15:11962–68
    [Google Scholar]
  37. Freeland WJ, Janzen DH. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108:961269–89
    [Google Scholar]
  38. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y et al. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:7331543–47
    [Google Scholar]
  39. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV et al. 2018. Current understanding of the human microbiome. Nat. Med. 24:392–400
    [Google Scholar]
  40. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J et al. 2016. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535:761094–103
    [Google Scholar]
  41. Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S et al. 2017. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8:14319
    [Google Scholar]
  42. Guo W, Mishra S, Zhao J, Tang J, Zeng B et al. 2018. Metagenomic study suggests that the gut microbiota of the giant panda (Ailuropoda melanoleuca) may not be specialized for fiber fermentation. Front. Microbiol. 9:229
    [Google Scholar]
  43. Guo X, Li S, Zhang J, Wu F, Li X et al. 2017. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diversity, and global distribution in mammalian gut microbiotas. BMC Genom 18:1800
    [Google Scholar]
  44. Hammer TJ, Bowers MD. 2015. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:11–14
    [Google Scholar]
  45. Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N 2017. Caterpillars lack a resident gut microbiome. PNAS 114:369641–46
    [Google Scholar]
  46. Hammer TJ, Sanders JG, Fierer N 2019. Not all animals need a microbiome. FEMS Microbiol. Lett. 366:10fnz117
    [Google Scholar]
  47. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:7290908–12
    [Google Scholar]
  48. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T 2006. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLOS Biol 4:10e337
    [Google Scholar]
  49. Hu Y, Sanders JG, Łukasik P, D'Amelio CL, Millar JS et al. 2018. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 9:1964
    [Google Scholar]
  50. Hugenholtz P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol 3:2reviews0003.1
    [Google Scholar]
  51. Itoh H, Tago K, Hayatsu M, Kikuchi Y 2018. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Prod. Rep. 35:5434–54
    [Google Scholar]
  52. Jami E, Mizrahi I. 2012. Composition and similarity of bovine rumen microbiota across individual animals. PLOS ONE 7:e33306
    [Google Scholar]
  53. Johansson MEV, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A et al. 2015. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18:5582–92
    [Google Scholar]
  54. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T 2012. Symbiont-mediated insecticide resistance. PNAS 109:228618–22
    [Google Scholar]
  55. Kim S, Kim H, Yim YS, Ha S, Atarashi K et al. 2017. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549:7673528–32
    [Google Scholar]
  56. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C et al. 2018. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16:7410–22
    [Google Scholar]
  57. Koch H, Schmid-Hempel P. 2011. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. PNAS 108:4819288–92
    [Google Scholar]
  58. Koch H, Schmid-Hempel P. 2012. Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecol. Lett. 15:101095–103
    [Google Scholar]
  59. Kohl KD, Brun A, Magallanes M, Brinkerhoff J, Laspiur A et al. 2017. Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions and transmission. Mol. Ecol. 26:41175–89
    [Google Scholar]
  60. Kohl KD, Miller AW, Marvin JE, Mackie R, Dearing MD 2014. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota. Environ. Microbiol. 16:92869–78
    [Google Scholar]
  61. Kuo C-H, Ochman H. 2009. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol. Direct 4:135
    [Google Scholar]
  62. Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY et al. 2017. Dynamic microbiome evolution in social bees. Sci. Adv. 3:3e1600513
    [Google Scholar]
  63. Kwong WK, Moran NA. 2016. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14:6374–84
    [Google Scholar]
  64. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31:9814–21
    [Google Scholar]
  65. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS et al. 2014. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506:7489498–502
    [Google Scholar]
  66. Leftwich PT, Clarke NVE, Hutchings MI, Chapman T 2017. Gut microbiomes and reproductive isolation in Drosophila. PNAS 114:4812767–72 Erratum. 2018. PNAS 115(10):E2487
    [Google Scholar]
  67. Leftwich PT, Clarke NVE, Hutchings MI, Chapman T 2018. Reply to Rosenberg et al.: Diet, gut bacteria, and assortative mating in Drosophila melanogaster. PNAS 115:10E2154–55
    [Google Scholar]
  68. Leitäo-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M et al. 2017. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLOS Biol 15:4e2000862
    [Google Scholar]
  69. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. 2008. Evolution of mammals and their gut microbes. Science 320:58831647–51
    [Google Scholar]
  70. Ludvigsen J, Porcellato D, L'Abée-Lund TM, Amdam GV, Rudi K 2017. Geographically widespread honeybee-gut symbiont subgroups show locally distinct antibiotic-resistant patterns. Mol. Ecol. 26:236590–607
    [Google Scholar]
  71. Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS et al. 2017. The structured diversity of specialized gut symbionts of the New World army ants. Mol. Ecol. 26:143808–25
    [Google Scholar]
  72. Mackie RI, Aminov R, White B, McSweeney C 2000. Molecular ecology and diversity in gut microbial ecosystems. Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction P Cronjé 61–77 New York: CABI
    [Google Scholar]
  73. Maier L, Typas A. 2017. Systematically investigating the impact of medication on the gut microbiome. Curr. Opin. Microbiol. 39:128–35
    [Google Scholar]
  74. Martinson VG, Carpinteyro-Ponce J, Moran NA, Markow TA 2017a. A distinctive and host-restricted gut microbiota in populations of a cactophilic Drosophila species. Appl. Environ. Microbiol. 83:23e01551–17
    [Google Scholar]
  75. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA 2011. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20:3619–28
    [Google Scholar]
  76. Martinson VG, Douglas AE, Jaenike J 2017b. Community structure of the gut microbiota in sympatric species of wild Drosophila. Ecol. Lett 20:5629–39
    [Google Scholar]
  77. Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW 2018. Is host filtering the main driver of phylosymbiosis across the tree of life?. mSystems 3:5e00097–18
    [Google Scholar]
  78. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ et al. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:3610–18
    [Google Scholar]
  79. McDonald R, Zhang F, Watts JEM, Schreier HJ 2015. Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. ISME J 9:122712–24
    [Google Scholar]
  80. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. PNAS 110:93229–36
    [Google Scholar]
  81. McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG 2012. Environment or kin: Whence do bees obtain acidophilic bacteria?. Mol. Ecol. 21:71754–68
    [Google Scholar]
  82. Mockler BK, Kwong WK, Moran NA, Koch H 2018. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl. Environ. Microbiol. 84:7e02335–17
    [Google Scholar]
  83. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV et al. 2016a. Cospeciation of gut microbiota with hominids. Science 353:6297380–82
    [Google Scholar]
  84. Moeller AH, Degnan PH, Pusey AE, Wilson ML, Hahn BH, Ochman H 2012. Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun. 3:1179
    [Google Scholar]
  85. Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H 2016b. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2:1e1500997
    [Google Scholar]
  86. Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW 2018. Transmission modes of the mammalian gut microbiota. Science 362:6413453–57
    [Google Scholar]
  87. Moran NA. 2002. The ubiquitous and varied role of infection in the lives of animals and plants. Am. Nat. 160:Suppl. 4S1–8
    [Google Scholar]
  88. Moran NA, McCutcheon JP, Nakabachi A 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42:165–90
    [Google Scholar]
  89. Moran NA, Sloan DB. 2015. The hologenome concept: helpful or hollow?. PLOS Biol 13:12e1002311
    [Google Scholar]
  90. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A et al. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:6032970–74
    [Google Scholar]
  91. Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J 2014. Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLOS ONE 9:4e94249
    [Google Scholar]
  92. Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM et al. 2013. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77:3342–56
    [Google Scholar]
  93. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC et al. 2013. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:746996–99
    [Google Scholar]
  94. Nishida AH, Ochman H. 2018. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27:81884–97
    [Google Scholar]
  95. Obadia B, Guvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL et al. 2017. Probabilistic invasion underlies natural gut microbiome stability. Curr. Biol. 27:131999–2006
    [Google Scholar]
  96. Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M et al. 2010. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLOS Biol 8:11e1000546
    [Google Scholar]
  97. Ohbayashi T, Futahashi R, Terashima M, Barrière Q, Lamouche F et al. 2019. Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture. ISME J 13:1469–83
    [Google Scholar]
  98. Pais IS, Valente RS, Sporniak M, Teixeira L 2018. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLOS Biol 16:7e2005710
    [Google Scholar]
  99. Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW et al. 2012. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21:112617–27
    [Google Scholar]
  100. Powell JE, Martinson VG, Urban-Mead K, Moran NA 2014. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol 80:237378–87
    [Google Scholar]
  101. Raymann K, Shaffer Z, Moran NA 2017. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLOS Biol 15:3e2001861
    [Google Scholar]
  102. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM et al. 2011. Evidence for a core gut microbiota in the zebrafish. ISME J 5:101595–608
    [Google Scholar]
  103. Rolig AS, Sweeney EG, Kaye LE, DeSantis MD, Perkins A et al. 2018. A bacterial immunomodulatory protein with lipocalin-like domains facilitates host-bacteria mutualism in larval zebrafish. eLife 7:e37172
    [Google Scholar]
  104. Rosenberg E, Zilber-Rosenberg I. 2018. The hologenome concept of evolution after 10 years. Microbiome 6:178
    [Google Scholar]
  105. Russell AB, Peterson SB, Mougous JD 2014. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12:2137–48
    [Google Scholar]
  106. Salem H, Bauer E, Kirsch R, Berasategui A, Cripps M et al. 2017. Drastic genome reduction in an herbivore's pectinolytic symbiont. Cell 171:71520–31.e13
    [Google Scholar]
  107. Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M 2014. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc. R. Soc. B 281:179620141838
    [Google Scholar]
  108. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO et al. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:187
    [Google Scholar]
  109. Samuel BS, Rowedder H, Braendle C, Félix M-A, Ruvkun G 2016. Caenorhabditis elegans responses to bacteria from its natural habitats. PNAS 113:27E3941–49
    [Google Scholar]
  110. Sanders JG, Łukasik P, Frederickson ME, Russell JA, Koga R et al. 2017. Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants. Integr. Comp. Biol. 57:4705–22
    [Google Scholar]
  111. Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE 2014. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol. Ecol. 23:61268–83
    [Google Scholar]
  112. Schloss PD, Handelsman J. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14:3303–10
    [Google Scholar]
  113. Schmidt TSB, Raes J, Bork P 2018. The human gut microbiome: from association to modulation. Cell 172:61198–215
    [Google Scholar]
  114. Sender R, Fuchs S, Milo R 2016. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:3337–40
    [Google Scholar]
  115. Shelomi M, Lo W-S, Kimsey LS, Kuo C-H 2013. Analysis of the gut microbiota of walking sticks (Phasmatodea). BMC Res. Notes 6:368
    [Google Scholar]
  116. Shigenobu S, Wilson ACC. 2011. Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont. Cell. Mol. Life Sci. 68:81297–309
    [Google Scholar]
  117. Shin SC, Kim SH, You H, Kim B, Lee KA et al. 2011. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–74
    [Google Scholar]
  118. Shterzer N, Mizrahi I. 2015. The animal gut as a melting pot for horizontal gene transfer. Can. J. Microbiol. 61:9603–5
    [Google Scholar]
  119. Shukla SP, Plata C, Reichelt M, Steiger S, Heckel DG et al. 2018. Microbiome-assisted carrion preservation aids larval development in a burying beetle. PNAS 115:4411274–79
    [Google Scholar]
  120. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM et al. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.”. PNAS 103:3212115–20
    [Google Scholar]
  121. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P 2017. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15:10630–38
    [Google Scholar]
  122. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:7585212–15
    [Google Scholar]
  123. Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20:5779–86
    [Google Scholar]
  124. Sonnenburg JL, Bäckhed F. 2016. Diet-microbiota interactions as moderators of human metabolism. Nature 535:761056–64
    [Google Scholar]
  125. Stappenbeck TS, Hooper LV, Gordon JI 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. PNAS 99:2415451–55
    [Google Scholar]
  126. Stecher B, Maier L, Hardt W-D 2013. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 11:4277–84
    [Google Scholar]
  127. Steele MI, Kwong WK, Whiteley M, Moran NA 2017. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio 8:6e01630–17
    [Google Scholar]
  128. Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M et al. 2018. Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum. Cell Metab 27:2362–68
    [Google Scholar]
  129. Sullam KE, Rubin BER, Dalton CM, Kilham SS, Flecker AS, Russell JA 2015. Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. ISME J 9:71508–22
    [Google Scholar]
  130. Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ 2015. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl. Environ. Microbiol. 81:31059–70
    [Google Scholar]
  131. Takeshita K, Kikuchi Y. 2017. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res. Microbiol. 168:3175–87
    [Google Scholar]
  132. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. 2017. A communal catalogue reveals Earth's multiscale microbial diversity. Nature 551:457–63
    [Google Scholar]
  133. Tian B, Moran NA. 2016. Genome sequence of Hafnia alvei bta3_1, a bacterium with antimicrobial properties isolated from honey bee gut. Genome Announc 4:3e00439–16
    [Google Scholar]
  134. Tung J, Barreiro LB, Burns MB, Grenier J-C, Lynch J et al. 2015. Social networks predict gut microbiome composition in wild baboons. eLife 4:e1002358
    [Google Scholar]
  135. Ubeda C, Djukovic A, Isaac S 2017. Roles of the intestinal microbiota in pathogen protection. Clin. Transl. Immunol. 6:2e128
    [Google Scholar]
  136. Valzania L, Coon KL, Vogel KJ, Brown MR, Strand MR 2018. Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. PNAS 115:3457–65
    [Google Scholar]
  137. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG et al. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med 368:5407–15
    [Google Scholar]
  138. Vandeputte D, Kathagen G, D'hoe K, Vieira-Silva S, Valles-Colomer M et al. 2017. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551:7681507–11
    [Google Scholar]
  139. Verster AJ, Ross BD, Radey MC, Bao Y, Goodman AL et al. 2017. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22:3411–19
    [Google Scholar]
  140. Walter J, Ley R. 2011. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65:411–29
    [Google Scholar]
  141. Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R 2014. Tracking down the sources of experimental contamination in microbiome studies. Genome Biol 15:12564
    [Google Scholar]
  142. Wexler AG, Bao Y, Whitney JC, Bobay L-M, Xavier JB et al. 2016. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. PNAS 113:133639–44
    [Google Scholar]
  143. Whitaker M, Pierce N, Salzman S, Kaltenpoth M, Pierce NE 2016. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front. Microbiol. 7:1920
    [Google Scholar]
  144. Wolschin F, Hölldobler B, Gross R, Zientz E 2004. Replication of the endosymbiotic bacterium Blochmannia floridanus is correlated with the developmental and reproductive stages of its ant host. Appl. Environ. Microbiol. 70:4096–102
    [Google Scholar]
  145. Wong AC-N, Chaston JM, Douglas AE 2013. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:101922–32
    [Google Scholar]
  146. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R et al. 2017. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23:7850–58
    [Google Scholar]
  147. Xue Z, Zhang W, Wang L, Hou R, Zhang M et al. 2015. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. mBio 6:3e00022–15
    [Google Scholar]
  148. Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S et al. 2018. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24:1146–54.e4
    [Google Scholar]
  149. Zhang F, Berg M, Dierking K, Félix M-A, Shapira M et al. 2017. Caenorhabditis elegans as a model for microbiome research. Front. Microbiol. 8:485
    [Google Scholar]
  150. Zheng H, Dietrich C, Radek R, Brune A 2016a. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)—an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ. Microbiol. 18:1191–204
    [Google Scholar]
  151. Zheng H, Nishida A, Kwong WK, Koch H, Engel P et al. 2016b. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. mBio 7:6e01326–16
    [Google Scholar]
  152. Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA 2017. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. PNAS 114:184775–80
    [Google Scholar]
  153. Zhou J, Ning D. 2017. Stochastic community assembly: Does it matter in microbial ecology. Microbiol. Mol. Biol. Rev. 81:4e00002–17
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062453
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error