1932

Abstract

Bony fishes are the principal group of backboned animals in contemporary aquatic settings. Extant species are the focus of a vigorous program of macroevolutionary research, but paleontology offers important perspectives. Multiple fossil records bear on the evolution of bony fishes, each with its own strengths and weaknesses. Understanding of the interrelationships among living bony fishes has improved substantially in recent years, but confidence in the phylogenetic placement of fossils is highly variable. This reflects limitations in current understanding of both fossil anatomy and hard-tissue characters for extant clades. Patterns of taxonomic and morphological diversity over bony fish history remain incompletely known, with most studies restricted to particular clades or specific intervals of time. The wealth of anatomical data recorded by the fossil record could make an important addition to a growing body of work examining phenotypic evolution across living species, but incorporating this information requires the placement of fossils within phylogenetic trees.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-111720-010447
2022-11-02
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-111720-010447.html?itemId=/content/journals/10.1146/annurev-ecolsys-111720-010447&mimeType=html&fmt=ahah

Literature Cited

  1. Agassiz JLR. 1833–1843. Recherches sur les Poissons Fossiles Neuchâtel, Switz: Petitpierre
  2. Albert JS, Tagliacollo VA, Dagosta F. 2020. Diversification of Neotropical freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 51:27–53
    [Google Scholar]
  3. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A et al. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. PNAS 106:13410–14
    [Google Scholar]
  4. Alfaro ME, Santini F, Brock CD. 2007. Do reefs drive diversification in marine teleosts? Evidence from the pufferfish and their allies (order Tetraodontiformes). Evolution 61:2104–26
    [Google Scholar]
  5. Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H et al. 2013. The African coelacanth genome provides insights into tetrapod evolution. Nature 496:311–16
    [Google Scholar]
  6. Anderson PSL, Friedman M, Brazeau MD, Rayfield E. 2011. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476:206–9
    [Google Scholar]
  7. Arcila D, Tyler JC. 2017. Mass extinction in tetraodontiform fishes linked to Palaeocene–Eocene thermal maximum. Proc. R. Soc. B 284:20171771
    [Google Scholar]
  8. Arratia G 1999. The monophyly of Teleostei and stem-group teleosts. Mesozoic Fishes 2: Systematics and Fossil Record G Arratia, HP Schultze 265–334 Munich: Verlag Dr. Friedrich Pfeil
    [Google Scholar]
  9. Arratia G. 2000. Remarkable teleostean fishes from the Late Jurassic of southern Germany and their phylogenetic relationships. Foss. Rec. 3:137–79
    [Google Scholar]
  10. Arratia G. 2013. Morphology, taxonomy, and phylogeny of Triassic pholidophorid fishes. J. Vertebr. Paleontol. 33:1–138
    [Google Scholar]
  11. Bannikov AF. 2010. Fossil Acanthopterygian Fishes (Teleostei: Acanthopterygii) Moscow: GEOS
  12. Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  13. Behrensmeyer AK. 1988. Vertebrate preservation in fluvial channels. Palaeogeogr. Palaeoclimatol. Palaeoecol. 63:183–99
    [Google Scholar]
  14. Bellwood DR. 2003. Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29:71–83
    [Google Scholar]
  15. Bellwood DR, Goatley CHR, Bellwood O. 2017. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92:878–901
    [Google Scholar]
  16. Bellwood DR, Goatley CHR, Bellwood O, Delbarre DJ, Friedman M. 2015. The rise of jaw protrusion in spiny-rayed fishes closes the gap on elusive prey. Curr. Biol. 25:2696–700
    [Google Scholar]
  17. Bemis WE, Findeis EK, Grande L. 1997. An overview of Acipenseriformes. Environ. Biol. Fishes 48:25–71
    [Google Scholar]
  18. Benson RBJ, Butler RJ, Close RA, Saupe EE, Rabosky DL. 2021. Biodiversity across space and time in the fossil record. Curr. Biol. 31:R1225–36
    [Google Scholar]
  19. Benton MJD, Donoghue PCJ, Asher RJ, Friedman M, Near TJ, Vinther J. 2015. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18:18.1.1FC
    [Google Scholar]
  20. Betancur-R R, Ortí G, Pyron A 2015. Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes. Ecol. Lett. 18:441–50
    [Google Scholar]
  21. Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA et al. 2013. The tree of life and a new classification of bony fishes. PLOS Curr. 5: ecurrents.tol.53ba26640df0ccaee75bb165c8c288
    [Google Scholar]
  22. Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N et al. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17:162
    [Google Scholar]
  23. Brazeau MD, Friedman M. 2015. The origin and early phylogenetic history of jawed vertebrates. Nature 520:490–97
    [Google Scholar]
  24. Brito PM. 1997. Révision des Aspidorhynchidae (Pisces, Actinopterygii) du Mésozoïque: ostéologie, relations phylogénétiques, données environnementales et biogéographiques. Geodiversitas 19:681–772
    [Google Scholar]
  25. Britten GL, Sibert EC. 2020. Enhanced fish production during a period of extreme global warmth. Nat. Commun. 11:5636
    [Google Scholar]
  26. Broughton RE, Betancur-R R, Li C, Arratia G, Ortí G 2013. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS Curr 5: https://doi.org/10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e
    [Crossref] [Google Scholar]
  27. Burns MD, Bloom DD. 2020. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc. R. Soc. B 287:20192615
    [Google Scholar]
  28. Capobianco A, Friedman M. 2019. Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective. Biol. Rev. 94:662–99
    [Google Scholar]
  29. Carnevale G, Bannikov AF, Marramà G, Tyler JC, Zorzin R. 2014. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates. Rend. Soc. Paleontol. Ital. 4:37–63
    [Google Scholar]
  30. Carnevale G, Johnson GD. 2015. A Cretaceous cusk-eel (Teleostei, Ophidiiformes) from Italy and the Mesozoic diversification of percomorph fishes. Copeia 103:771–91
    [Google Scholar]
  31. Cavin L. 2010. The Late Jurassic ray-finned fish peak of diversity: biological radiation or preservational bias?. Origin and Phylogenetic Interrelationships of Teleosts JS Nelson, H-P Schultze, MVH Wilson 111–21 Munich: Verlag Dr. Friedrich Pfeil
    [Google Scholar]
  32. Cavin L, Forey PL. 2007. Using ghost lineages to identify diversification events in the fossil record. Biol. Lett. 3:201–4
    [Google Scholar]
  33. Cavin L, Forey PL, Lécuyer C. 2007. Correlation between environment and Late Mesozoic ray-finned fish evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 245:353–67
    [Google Scholar]
  34. Cawley JJ, Marramà G, Carnevale G, Villafaña JA, López-Romero FA, Kriwet J 2021. Rise and fall of †Pycnodontiformes: diversity, competition and extinction of a successful fish clade. Ecol. Evol. 11:1769–96
    [Google Scholar]
  35. Clarke JT. 2021. Evidence for general size-by-habitat rules in actinopterygian fishes across nine scales of observation. Ecol. Lett. 24:1569–81
    [Google Scholar]
  36. Clarke JT, Friedman M. 2018. Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety. Paleobiology 44:402–33
    [Google Scholar]
  37. Clarke JT, Lloyd GT, Friedman M. 2016. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. PNAS 113:11531–36
    [Google Scholar]
  38. Close RA, Benson RBJ, Alroy J, Carrano MT, Cleary TJ et al. 2020. The apparent exponential radiation of Phaneozoic land vertebrates is an artefact of spatial sampling biases. Proc. R. Soc. B 287:20200372
    [Google Scholar]
  39. Close RA, Johanson Z, Tyler JC, Harrington RC, Friedman M. 2016. Mosaicism in a new Eocene pufferfish highlights rapid morphological innovation near the origin of crown tetraodontiforms. Palaeontology 59:499–514
    [Google Scholar]
  40. Cloutier R. 1991. Patterns, trends, and rates of evolution within the Actinistia. Environ. Biol. Fishes 32:23–58
    [Google Scholar]
  41. Cramer KL, O'Dea A, Clark TR, Zhao JX, Norris RD. 2017. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish. Nat. Commun. 8:14160
    [Google Scholar]
  42. Cui X, Friedman M, Qiao T, Yu Y, Zhu M. 2022. The rapid evolution of lungfish durophagy. Nat. Commun. 13:2390
    [Google Scholar]
  43. Darwin C 1859. On the Origin of Species by Means of Natural Selection London: John Murray
  44. Davesne D, Gallut C, Barriel V, Janvier P, Lecointre G, Otero O. 2016. The phylogenetic intrarelationships of spiny-rayed fishes (Acanthomorpha, Teleostei, Actinopterygii): Fossil taxa increase the congruence of morphology with molecular data. Front. Ecol. Evol. 4:129
    [Google Scholar]
  45. de Brito V, Betancur-R R, Burns MD, Buser TJ, Conway KW et al. 2022. Patterns of phenotypic evolution associated with marine/freshwater transitions in fishes. Integr. Comp. Biol. https://doi.org/10.1093/icb/icac085
    [Crossref] [Google Scholar]
  46. Divay JD, Murray AM. 2017. An early Eocene fish fauna from the Bitter Creek area of the Wasatch Formation of southwestern Wyoming, U.S.A. J. Vertebr. Paleontol. 36:e1196211
    [Google Scholar]
  47. Dornburg A, Near TJ. 2021. The emerging phylogenetic perspective on the evolution of actinopterygian fishes. Annu. Rev. Ecol. Evol. Syst. 52:427–52
    [Google Scholar]
  48. Evans KM, Larouche O, Watson S-J, Farina S, Habegger ML, Friedman M. 2021. Integration drives rapid phenotypic evolution in flatfishes. PNAS 118:e2101330118
    [Google Scholar]
  49. Fletcher T, Altringham J, Peakall J, Wignall P, Dorrell R. 2014. Hydrodynamics of fossil fishes. Proc. R. Soc. B 281:20140703
    [Google Scholar]
  50. Foote M. 1996. Models of morphological diversification. Evolutionary Paleobiology D Jablonski, DH Erwin, JH Lipps 62–86 Chicago: Univ. Chicago Press
    [Google Scholar]
  51. Fricke R, Eschmeyer WN, Fong JD. 2022. Eschmeyer's Catalog of Fishes: Genera/Species by Family/Subfamily Calif. Acad. Sci. San Francisco, CA: updated April 5. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp
  52. Friedman M. 2010. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. R. Soc. B 277:1675–83
    [Google Scholar]
  53. Friedman M. 2015. The early evolution of ray-finned fishes. Palaeontology 58:213–28
    [Google Scholar]
  54. Friedman M, Beckett HT, Close RA, Johanson Z 2015. The English Chalk and London Clay: two remarkable British bony fish Lagerstätten. Arthur Smith Woodward: His Life and Influence on Modern Vertebrate Palaeontology Z Johanson, PM Barrett, M Richter, M Smith 165–200 London: Geol. Soc.
    [Google Scholar]
  55. Friedman M, Sallan LC. 2012. Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55:707–42
    [Google Scholar]
  56. Friedman ST, Collyer ML, Price SA, Wainwright PC. 2021. Divergent processes drive parallel evolution in marine and freshwater fishes. Syst. Biol. 2021:syab080
    [Google Scholar]
  57. Friedman ST, Price SA, Corn KA, Larouche O, Martinez CM, Wainwright PC. 2020. Body shape diversification along the benthic–pelagic axis in marine fishes. Proc. R. Soc. B 287:20201053
    [Google Scholar]
  58. Gardiner BG. 1984. The relationships of the palaeoniscid fishes, a review based on new species of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull. Br. Museum (Nat. Hist.) Geol. 37:173–428
    [Google Scholar]
  59. Ghezelayagh A, Harrington RC, Burress ED, Campbell MA, Buckner JC et al. 2022. Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nat. Ecol. Evol. 6:121120
    [Google Scholar]
  60. Gibson SZ. 2015. Evidence of a specialized feeding niche in a Late Triassic ray-finned fish: evolution of multidenticulate teeth and benthic scraping in †Hemicalypterus. Sci. Nat. 102:10
    [Google Scholar]
  61. Gierlowski-Kordesch EH, Park LE. 2004. Comparing species diversity in the modern and fossil record of lakes. J. Geol. 112:703–17
    [Google Scholar]
  62. Giles S, Xu G-H, Near TJ, Friedman M. 2017. Early members of a ‘living fossil’ lineage imply later origin of modern ray-finned fishes. Nature 549:265–68
    [Google Scholar]
  63. Gill EL. 1923. Permian fishes of the genus Acentrophorus. Proc. Zoolog. Soc. London 93:19–40
    [Google Scholar]
  64. Girard MG, Davis MP, Smith WL. 2020. The phylogeny of carangiform fishes: morphological and genomic investigations of a new fish clade. Copeia 108:265–98
    [Google Scholar]
  65. González-Rodríguez KA, Schultze H-P, Arratia G 2013. Miniature armored acanthomorph teleosts from the Albian/Cenomanian (Cretaceous) of Mexico. Mesozoic Fishes 5: Global Diversity and Evolution G Arratia, H-P Schultze, MVH Wilson 457–87 Munich: Verlag Dr. Friedrich Pfeil
    [Google Scholar]
  66. Goody PC. 1969. The relationships of certain Upper Cretaceous teleosts with special reference to the myctophoids. Bull. Br. Museum (Nat. Hist.) Geol. Suppl. 7:1–255
    [Google Scholar]
  67. Grande L. 2010. An Empirical and Systematic Pattern Study of Gars (Lepisosteiformes) and Closely Related Species, Based Mostly on Skeletal Anatomy. The Resurrection of Holostei Lawrence, KS: Allen Press
  68. Grande L. 2013. The Lost World of Fossil Lake: Snapshots from Deep Time Chicago: Univ. Chicago Press
  69. Guinot G, Cavin L. 2016. ‘Fish’ (Actinopterygii and Elasmobranchii) diversification patterns through deep time. Biol. Rev. 91:950–81
    [Google Scholar]
  70. Guinot G, Cavin L. 2018. Body size evolution and habitat colonization across 100 million years (Late Jurassic–Paleocene) of the actinopterygian evolutionary history. Fish Fish. 19:577–97
    [Google Scholar]
  71. Guinot G, Cavin L. 2020. Distinct responses of elasmobranchs and ray-finned fishes to long-term global change. Front. Ecol. Evol. 23:513
    [Google Scholar]
  72. Hannisdal B, Peters SE. 2011. Phanerozoic Earth system evolution and marine biodiversity. Science1121–24
    [Google Scholar]
  73. Henderson S, Dunne EM, Fasey S, Giles S 2022. The early diversification of ray-finned fishes (Actinopterygii): hypotheses, challenges and future prospects. EarthArXiv. https://doi.org/10.31223/X58D1D
    [Crossref]
  74. Holland SM, Loughney KM. 2020. The Stratigraphic Paleobiology of Nonmarine Ecosystems Cambridge, UK: Cambridge Univ. Press
  75. Hughes LC, Ortí G, Huang Y, Sun Y, Baldwin CC et al. 2018. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. PNAS 115:6249–54
    [Google Scholar]
  76. Hunt GE, Bell MA, Travis MP. 2007. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:700–10
    [Google Scholar]
  77. Hunt GE, Slater GJ. 2016. Integrating paleontological and phylogenetic approaches to macroevolution. Annu. Rev. Ecol. Evol. Syst. 47:189–213
    [Google Scholar]
  78. Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M et al. 2007. A new time-scale for ray-finned fish evolution. Proc. R. Soc. B 274:489–98
    [Google Scholar]
  79. Jones LA, Dean CD, Mannion PD, Farnsworth A, Allison PA. 2021. Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients. Proc. R. Soc. B 288:20202762
    [Google Scholar]
  80. Kiessling W, Simpson C, Foote M. 2010. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196–98
    [Google Scholar]
  81. Kogan I, Romano C. 2016. Redescription of Saurichthys madagascariensis Piveteau, 1945 (Actinopterygii, Early Triassic), with implications for the early saurichthyid morphotype. J. Vertebr. Paleontol. 34:e1151886
    [Google Scholar]
  82. Larouche O, Benton B, Corn KA, Friedman ST, Gross D et al. 2020. Reef-associated fishes have more maneuverable body shapes at a macroevolutionary scale. Coral Reefs 39:1427–39
    [Google Scholar]
  83. Lin C-H, Chiang Y-P, Tuset VM, Lombarte A, Girone A. 2018. Late Quaternary to recent diversity of fish otoliths from the Red Sea, central Mediterranean, and NE Atlantic sea bottoms. Geobios 51:335–58
    [Google Scholar]
  84. Lloyd GT, Friedman M. 2013. A survey of palaeontological sampling biases in fishes based on the Phanerozoic record of Great Britain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 372:5–17
    [Google Scholar]
  85. Lloyd GT, Wang SC, Brusatte SL. 2012. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66:330–48
    [Google Scholar]
  86. Maldanis L, Carvalho M, Almeida MR, Freitas FI, de Andrade JAFG et al. 2016. Heart fossilization is possible and informs the evolution of cardiac outflow in vertebrates. eLife 5:e14698
    [Google Scholar]
  87. Martinez CM, Friedman ST, Corn KA, Larouche O, Price SA, Wainwright PC. 2021. The deep sea is a hot spot of fish body shape evolution. Ecol. Lett. 24:1788–99
    [Google Scholar]
  88. Matschiner M, Böhne A, Ronco F, Salzburger W. 2020. The genomic timeline of cichlid fish diversification. Nat. Commun. 11:5895
    [Google Scholar]
  89. Miller EC. 2021. Comparing diversification rates in lakes, rivers, and the sea. Evolution 75:2055–73
    [Google Scholar]
  90. Miller EC, Román-Palacios C. 2021. Evolutionary time best explains the latitudinal diversity gradient of living freshwater fish diversity. Global Ecol. Biogeogr. 30:749–63
    [Google Scholar]
  91. Muscente AD, Schiffbauer JD, Broce J, Laflamme M, O'Donnell K et al. 2017. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48:164–88
    [Google Scholar]
  92. Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA et al. 2012. Resolution of ray-finned fish phylogeny and timing of diversification. PNAS 109:13698–703
    [Google Scholar]
  93. Nolf D. 2013. The Diversity of Fish Otoliths Past and Present Brussels: R. Belg. Inst. Nat. Sci.
  94. Pastana MNL, Johnson GD, Datovo A. 2021. Comprehensive phenotypic phylogenetic analysis supports the monophyly of stromateiform fishes (Teleostei: Percomorphacea). Zoolog. J. Linnean Soc. 2021:zlab058
    [Google Scholar]
  95. Patterson C 1973. Interrelationships of holosteans. Interrelationships of Fishes PH Greenwood, RS Miles, C Patterson 233–305 London: Academic
    [Google Scholar]
  96. Patterson C. 1993a. Osteichthyes: Teleostei. The Fossil Record 2 MJ Benton 621–56 Oxford, UK: Blackwell
    [Google Scholar]
  97. Patterson C. 1993b. An overview of the early fossil record of acanthomorphs. Bull. Mar. Sci. 52:29–59
    [Google Scholar]
  98. Payne JL, Heim NA. 2020. Body size, sampling completeness, and extinction risk in the marine fossil record. Paleobiology 46:23–40
    [Google Scholar]
  99. Peters SE, Foote M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583–601
    [Google Scholar]
  100. Price SA, Friedman ST, Corn KA, Martinez CM, Larouche O, Wainwright PC. 2019. Building a body shape morphospace of teleostean fishes. Integr. Comp. Biol. 3:716–30
    [Google Scholar]
  101. Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L et al. 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559:392–95
    [Google Scholar]
  102. Raja NB, Dunne EM, Matiwane A, Ming Kahn T, Nätscher PS et al. 2021. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6:145–54
    [Google Scholar]
  103. Raup D. 1979. Biases in the fossil record of species and genera. Bull. Carnegie Museum Nat. Hist. 13:85–91
    [Google Scholar]
  104. Revell LJ, Mahler DL, Reynolds RG, Slater GJ. 2015. Placing cryptic, recently extinct, or hypothesized taxa into an ultrametric phylogeny using continuous character data: a case study with the lizard Anolis roosevelti. Evolution 69:1027–35
    [Google Scholar]
  105. Romano C, Koot MB, Kogan I, Brayard A, Minikh AV et al. 2016. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91:106–47
    [Google Scholar]
  106. Rossi V, Unitt R, McNamara M, Zorzin R, Carnevale G. 2022. Skin patterning and internal anatomy in a fossil moonfish from the Eocene Bolca Lagerstätte illuminate the ecology of ancient reef fish communities. Palaeontology 65:e12600
    [Google Scholar]
  107. Sallan LC. 2014. Major issues in the origin of ray-finned fish (Actinopterygii) biodiversity. Biol. Rev. 89:950–71
    [Google Scholar]
  108. Sallan LC, Coates MI. 2010. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. PNAS 107:10131–35
    [Google Scholar]
  109. Sallan LC, Friedman M. 2012. Heads or tails: staged diversification in vertebrate evolutionary radiations. Proc. R. Soc. B 279:2025–32
    [Google Scholar]
  110. Sallan LC, Galimberti AK. 2015. Body-size reduction in vertebrates following the end-Devonian mass extinction. Science 350:812–15
    [Google Scholar]
  111. Salvatteci R, Schneider RR, Galbraith E, Field D, Blanz T et al. 2022. Smaller fish species in a warm and oxygen-poor Humboldt Current system. Science 375:101–4
    [Google Scholar]
  112. Santini F, Harmon LJ, Carnevale G, Alfaro ME. 2009. Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol. Biol. 9:194
    [Google Scholar]
  113. Schwarzhans W, Beckett HT, Schein JD, Friedman M. 2018. Computed tomography scanning as a tool for linking the skeletal and otolith-based fossil records of teleost fishes. Palaeontology 61:511–44
    [Google Scholar]
  114. Schwarzhans W, Schulz-Mirbach T, Lombarte A, Tuset VM. 2017. The origination and rise of teleost otolith diversity during the Mesozoic. Res. Knowledge 3:5–8
    [Google Scholar]
  115. Sepkoski JJ Jr 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. Global Events and Event Stratigraphy OH Walliser 35–52 Berlin: Springer
    [Google Scholar]
  116. Sibert EC, Friedman M, Hull P, Hunt G, Norris RD. 2018. Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous–Palaeogene mass extinction. Proc. R. Soc. B 285:20181194
    [Google Scholar]
  117. Signor PW, Brett CE. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229–45
    [Google Scholar]
  118. Siqueira AC, Bellwood DR, Cowman PF. 2019. The evolution of traits and functions in herbivorous coral reel fishes through space and time. Proc. R. Soc. B 286:20182672
    [Google Scholar]
  119. Slater GJ, Lloyd GT. 2021. A total-group phylogenetic metatree for Cetacea and the importance of fossil data in diversification analyses. Syst. Biol. 70:922–39
    [Google Scholar]
  120. Smith GR, Morgan N, Gustafson E. 2000. Fishes of the Mio-Pliocene Ringold Formation, Washington: Pliocene capture of the Snake River by the Columbia River. Univ. Michigan Papers Paleontol. 32:1–47
    [Google Scholar]
  121. Smith GR, Stearley RF, Badgley CE. 1988. Taphonomic bias in fish diversity from Cenozoic floodplain environments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 63:263–73
    [Google Scholar]
  122. Smithwick FM, Stubbs TL. 2018. Phanerozoic survivors: Actinopterygian evolution through the Permo-Triassic and Triassic-Jurassic mass extinction events. Evolution 72:348–62
    [Google Scholar]
  123. Sorenson L, Santini F, Alfaro ME. 2014. The effect of habitat on modern shark diversification. J. Evol. Biol. 27:1536–48
    [Google Scholar]
  124. Soul LC, Friedman M. 2015. Taxonomy and phylogeny can yield comparable results in comparative paleontological analyses. Syst. Biol. 64:608–20
    [Google Scholar]
  125. Taverne L, Gayet M 2004. Ostéologie et relations phylogénétiques des Protobramidae (Teleostei, Tselfatiiformes) du Cénomanien (Crétacé supérieur) du Liban. Cybium 28:285–314
    [Google Scholar]
  126. Tintori A, Hitij T, Jiang D, Lombardo C, Sun Z. 2014. Triassic actinopterygian fishes: the recovery after the end-Permian crisis. Integr. Zool. 9:394–411
    [Google Scholar]
  127. Trueman CN, Chung M-T, Shores D. 2016. Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study. Philos. Trans. R. Soc. B 371:20150223
    [Google Scholar]
  128. Tuset VM, Farré M, Otero-Ferrer JL, Vilar A, Morales-Nin B, Lombarte A. 2016. Testing otolith morphology for measuring marine fish biodiversity. Mar. Freshwater Res. 67:1037–48
    [Google Scholar]
  129. Tyler JC, Sorbini C. 1996. New Superfamily and Three New Families of Tetraodontiform Fishes from the Upper Cretaceous: The Earliest and Most Morphologically Primitive Plectognaths Washington, DC: Smithson. Inst.
  130. Vermeij GJ. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–58
    [Google Scholar]
  131. Viohl G. 1990. Piscivorous fishes of the Solnhofen lithographic limestone. Evolutionary Paleobiology of Behavior and Coevolution AJ Boucot 287–303 Amsterdam: Elsevier
    [Google Scholar]
  132. Wagner PJ. 2000. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Syst. Biol. 49:65–86
    [Google Scholar]
  133. Westoll TS. 1941. The Permian fishes Dorypterus and Lekanichthys. Proc. Zoolog. Soc. Lond. B111:39–58
    [Google Scholar]
  134. Westoll TS 1949. On the evolution of the Dipnoi. Genetics, Paleontology, and Evolution GL Jepsen, GG Simpson, E Mayr 121–84 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  135. Wiley EO, Johnson GD 2010. A teleost classification based on monophyletic groups. Origin and Phylogenetic Interrelationships of Teleosts JS Nelson, H-P Schultze, MVH Wilson 123–82 Munich: Verlag Dr. Friedrich Pfeil
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-111720-010447
Loading
/content/journals/10.1146/annurev-ecolsys-111720-010447
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error