1932

Abstract

Antarctica is enormous, cold, remote, and particularly sensitive to climate change. Most biological research below 60°S has focused on the isolated nature of the biota and how organisms have adapted to the cold and ice. However, biogeographic patterns in Antarctica and the Southern Ocean, and the processes explaining how those patterns came about, still await adequate explanation. Both terrestrial and marine organisms have been influenced by climatic change (e.g., glaciation), physical phenomena (e.g., oceanic currents), and/or potential barriers to gene flow (e.g., steep thermal gradients). Whereas the Antarctic region contains diverse and complex marine communities, terrestrial systems tend to be comparatively simple with limited diversity. Here, we challenge the current dogma used to explain the diversity and biogeographic patterns present in the Antarctic. We assert that relatively modern processes within the last few million years, rather than geo-logical events that occurred in the Eocene and Miocene, account for present patterns of biodiversity in the region. Additionally, reproductive life history stages appear to have little influence in structuring genetic patterns in the Antarctic, as currents and glacial patterns are noted to be more important drivers of organismal patterns of distribution. Finally, we highlight the need for additional sampling, high-throughput genomic approaches, and broad, multinational cooperation for addressing outstanding questions of Antarctic biogeography and biodiversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-121415-032139
2018-11-02
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-121415-032139.html?itemId=/content/journals/10.1146/annurev-ecolsys-121415-032139&mimeType=html&fmt=ahah

Literature Cited

  1. Allcock AL, Barratt I, Eleaume M, Linse K, Norman MD et al. 2011. Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res. Part II 58:242–49
    [Google Scholar]
  2. Allcock AL, Strugnell JM 2012. Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol. Evol. 27:520–28
    [Google Scholar]
  3. Arango CP, Soler-Membrives A, Miller KJ 2011. Genetic differentiation in the circum—Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep-Sea Res. Part II 58:212–19
    [Google Scholar]
  4. Arntz WE, Gutt J, Klages M 1997. Antarctic marine biodiversity: an overview. Antarctic Communities: Species, Structure and Survival B Battaglia, J Valencia, D Walton 3–14 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  5. Baird HP, Miller KJ, Stark JS 2011. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Mol. Ecol. 20:3439–54
    [Google Scholar]
  6. Bargelloni L, Marcato S, Zane L, Patarnello T 2000a. Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst. Biol. 49:114–29
    [Google Scholar]
  7. Bargelloni L, Zane L, Derome N, Lecointre G, Patarnello T 2000b. Molecular zoogeography of Antarctic euphausiids and notothenioids: from species phylogenies to intraspecific patterns of genetic variation. Antarct. Sci. 12:259–68
    [Google Scholar]
  8. Barnes DKA, Hillenbrand C-D 2010. Faunal evidence for a late Quaternary trans‐Antarctic seaway. Glob. Change Biol. 16:3297–303
    [Google Scholar]
  9. Barnes DKA, Hodgson DA, Convey P, Allen CS, Clarke A 2006. Incursion and excursion of Antarctic biota: past, present and future. Glob. Ecol. Biogeogr. 15:121–42
    [Google Scholar]
  10. Brandão SN, Sauer J, Schön I 2010. Circumantarctic distribution in Southern Ocean benthos? A genetic test using the genus Macroscapha (Crustacea, Ostracoda) as a model. Mol. Phylogenet. Evol. 55:1055–69
    [Google Scholar]
  11. Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ et al. 2007. The biodiversity of the deep Southern Ocean benthos. Philos. Trans. R. Soc. B 362:39–66
    [Google Scholar]
  12. Brannock PM, Learman DR, Mahon AR, Santos SR, Halanych KM 2018. Meiobenthic community composition and biodiversity along a 5500 km transect of Western Antarctica: a metabarcoding analysis. Mar. Ecol. Prog. Ser. 603:47–60
    [Google Scholar]
  13. Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA 2015. The changing form of Antarctic biodiversity. Nature 522:431–38
    [Google Scholar]
  14. Clark AH, Clark AM 1967. A monograph of the existing crinoids. U.S. Natl. Mus. Bull. 82:1–860
    [Google Scholar]
  15. Clarke A. 2008. Antarctic marine benthic diversity: patterns and processes. J. Exp. Mar. Biol. Ecol. 366:48–55
    [Google Scholar]
  16. Clarke A, Aronson RB, Crame JA, Gili JM, Blake DB 2004. Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct. Sci. 16:559–68
    [Google Scholar]
  17. Clarke A, Crame JA 1992. The Southern Ocean benthic fauna and climate change: a historical perspective. Philos. Trans. R. Soc. B 339:299–309
    [Google Scholar]
  18. Clarke A, Griffiths HJ, Linse K, Barnes DKA, Crame JA 2007. How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs. Divers. Distrib. 13:620–32
    [Google Scholar]
  19. Collins EE, Galasksa MP, Halanych KM, Mahon AR 2018. Population genomics of Nymphon austral Hodgson, 1902 (Pycnogonida, Nymphonidae) in the Western Antarctic. Biol. Bull. 234:180–91
    [Google Scholar]
  20. Convey P, Gibson JA, Hillenbrand C-D, Hodgson DA, Pugh PJ et al. 2008. Antarctic terrestrial life–challenging the history of the frozen continent. Biol. Rev. 83:103–17
    [Google Scholar]
  21. Convey P, McInnes SJ 2005. Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology 86:519–27
    [Google Scholar]
  22. Convey P, Stevens MI 2007. Antarctic biodiversity. Science 317:1877–78
    [Google Scholar]
  23. Crame JA. 1999. An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci. Mar. 63:1–14
    [Google Scholar]
  24. Dayton PK, Robilliard GA, Paine RT, Dayton LB 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44:105–28
    [Google Scholar]
  25. Díaz A, Féral JP, David B, Saucède T, Poulin E 2011. Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Res. Part II 58:205–11
    [Google Scholar]
  26. Díaz A, Gérard K, González-Wevar C, Maturana C, Féral JP et al. 2018. Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: the role of the last glaciation. PLOS ONE 13:e0197611
    [Google Scholar]
  27. Dietz L, Arango CP, Dömel JS, Halanych KM, Harder AM et al. 2015. Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx. R. Soc. Open Sci 2:140424
    [Google Scholar]
  28. Dömel JS, Convey P Leese F 2015. Genetic data support independent glacial refugia and open ocean barriers to dispersal for the Southern Ocean sea spider Austropallene cornigera (Möbius, 1902). J. Crustac. Biol. 35:480–90
    [Google Scholar]
  29. Dömel JS, Melzer RR, Harder AM, Mahon AR, Leese F 2016. Nuclear and mitochondrial gene data support recent radiation within the sea spider species complex Pallenopsis patagonica. Front. Ecol. Evol. 4:139
    [Google Scholar]
  30. Ekman S. 1953. Zoogeography of the Sea London: Sidgwick and Jackson
  31. Fanciulli PP, Summa D, Dallai R, Frati F 2001. High levels of genetic variability and population differentiation in Gressittacantha terranova (Collembola, Hexapoda) from Victoria Land, Antarctica. Antarct. Sci. 13:246–54
    [Google Scholar]
  32. Feldmann J, Levermann A 2015. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. PNAS 112:14191–96
    [Google Scholar]
  33. Fonseca VG, Sinniger F, Gaspar JM, Quince C, Creer S et al. 2017. Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Sci. Rep. 7:6094
    [Google Scholar]
  34. Fraser CI, Nikula R, Spencer HG, Waters JM 2009. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. PNAS 106:3249–53
    [Google Scholar]
  35. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL 2014. Geothermal activity helps life survive glacial cycles. PNAS 111:5634–39
    [Google Scholar]
  36. Fry WG, Hedgpeth JW 1969. The Fauna of the Ross Sea. Part 7. Pycnogonida. Colossendeidae, Pycnogonidae, Endeidae, Ammotheidae. N.Z. Dep. Sci. Ind. Res. Bull.1–139
    [Google Scholar]
  37. Galaska MP, Sands CJ, Santos SR, Mahon AR, Halanych KM 2017a. Geographic structure in the Southern Ocean circumpolar brittle star Ophionotus victoriae (Ophiuridae) revealed from mtDNA and single-nucleotide polymorphism data. Ecol. Evol. 7:475–85
    [Google Scholar]
  38. Galaska MP, Sands CJ, Santos SR, Mahon AR, Halanych KM 2017b. Crossing the divide: admixture across the Antarctic Polar Front revealed by the brittle star Astrotoma agassizii. Biol. Bull. 232:198–211
    [Google Scholar]
  39. González-Wevar CA, Hüne M, Segovia NI, Nakano T, Spencer HG et al. 2016. Following the Antarctic Circumpolar Current: patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean. J. Biogeogr. 44:861–74
    [Google Scholar]
  40. Griffiths HJ. 2010. Antarctic marine biodiversity–what do we know about the distribution of life in the Southern Ocean. PLOS ONE 5:e11683
    [Google Scholar]
  41. Griffiths HJ, Barnes DKA, Linse K 2009. Towards a generalized biogeography of the Southern Ocean benthos. J. Biogeogr. 36:162–77
    [Google Scholar]
  42. Hall BL. 2003. An overview of late Pleistocene glaciation in the South Shetland Islands. Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives E Domack, A Leventer, A Burnett, R Bindschadler, P Convey, M Kirby 103–13 Washington, DC: Amer. Geophys. Union
    [Google Scholar]
  43. Harder AM, Halanych KM, Mahon AR 2016. Diversity and distribution within the sea spider genus Pallenopsis (Chelicerata: Pycnogonida) in the Western Antarctic as revealed by mitochondrial DNA. Polar Biol 39:677–88
    [Google Scholar]
  44. Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P 2011. DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep-Sea Res. Part II 58:230–41
    [Google Scholar]
  45. Hawes TC, Torricelli G, Stevens MI 2010. Haplotype diversity in the Antarctic springtail Gressittacantha terranova at fine spatial scales—a Holocene twist to a Pliocene tale. Antarct. Sci. 22:766–73
    [Google Scholar]
  46. Heimeier D, Lavery S, Sewell M 2010. Molecular species identification of Astrotoma agassizii from planktonic embryos: further evidence for a cryptic species complex. J. Hered. 101:775–79
    [Google Scholar]
  47. Held C. 2003. Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). Antarctic Biology in a Global Context AHL Huiskes, WWC Gieskes, J Rozema, RML Schorno, SM van der Vies, WJ Wolff 135–39 Leiden, Neth.: Backhuys
    [Google Scholar]
  48. Held C, Leese F 2007. The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30:513–21
    [Google Scholar]
  49. Held C, Wägele JW 2005. Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci. Mar. 69:Suppl. 2175–81
    [Google Scholar]
  50. Hemery LG, Eleaume M, Roussel V, Ameziane N, Gallut C et al. 2012. Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol. Ecol. 21:2502–18
    [Google Scholar]
  51. Hempel G. 1985. On the biology of polar seas, particularly the Southern Ocean. Marine Biology of Polar Regions and Effects of Stress on Marine Organisms JS Gray, ME Christiansen 3–33 New York: Wiley and Sons
    [Google Scholar]
  52. Hjort C, Ingólfsson Ó, Bentley MJ, Björck S 2003. The Late Pleistocene and Holocene Glacial and climate history of the Antarctic Peninsula region as documented by the land and lake sediment records—a review. Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives E Domack, A Leventer, A Burnett, RA Bindschadler, P Convey, M Kirby 95–102 Washington, DC: Amer. Geophys. Union
    [Google Scholar]
  53. Hoffman JI, Boyd IL, Amos W 2004. Exploring the relationship between parental relatedness and male reproductive success in the Antarctic fur seal Arctocephalus gazella. Evolution 58:2087–99
    [Google Scholar]
  54. Hoffman JI, Clarke A, Linse K, Peck LS 2011. Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar. Biol. 158:287–96
    [Google Scholar]
  55. Holtom A, Greene SW 1967. The growth and reproduction of Antarctic flowering plants. Philos. Trans. R. Soc. B 252:323–37
    [Google Scholar]
  56. Hunter RL, Halanych KM 2008. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J. Hered. 99:137–48
    [Google Scholar]
  57. Hunter RL, Halanych KM 2010. Phylogeography of the Antarctic planktotrophic brittle star Ophionotus victoriae reveals genetic structure inconsistent with early life history. Mar. Biol. 157:1693–704
    [Google Scholar]
  58. Janosik AM, Halanych KM 2010. Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr. Comp. Biol. 50:981–92
    [Google Scholar]
  59. John DD. 1938. Crinoidea. Discovery Rep 18:121–222
    [Google Scholar]
  60. Jouventin P, Cuthbert RJ, Ottvall R 2006. Genetic isolation and divergence in sexual traits: evidence for the northern rockhopper penguin Eudyptes moseleyi being a sibling species. Mol. Ecol. 15:3413–23
    [Google Scholar]
  61. Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA et al. 2011. Marine Ecology: Processes, Systems, and Impacts Oxford, UK: Oxford Univ. Press, 2nd ed..
  62. Kaiser S, Brandão SN, Brix S, Barnes DKA, Bowden DA, Brenke N et al. 2013. Pattern, process and vulnerability of Antarctic and Southern Ocean benthos—a decadal leap in knowledge and understanding. Mar. Biol. 160:2295–317
    [Google Scholar]
  63. Kemp AES, Grigorov I, Pearce RB, Naveira Garabato AC 2010. Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications. Quat. Sci. Rev. 29:1993–2009
    [Google Scholar]
  64. Krabbe K, Leese F, Mayer C, Tollrian R, Held C 2010. Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–92
    [Google Scholar]
  65. Lawver LA, Gahagan LM 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198:11–37
    [Google Scholar]
  66. Learman DR, Henson MW, Thrash JC, Temperton B, Brannock PM et al. 2016. Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure. Front. Microbiol. 7:284
    [Google Scholar]
  67. Leese F, Agrawal S, Held C 2010. Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften 97:583–94
    [Google Scholar]
  68. Leese F, Held C 2008. Identification and characterization of microsatellites from the Antarctic isopod Ceratoserolis trilobitoides: nuclear evidence for cryptic species. Conserv. Genet. 9:1369–72
    [Google Scholar]
  69. Levy H, Clucas GV, Rogers AD, Leache AD 2016. Population structure and phylogeography of the Gentoo Penguin (Pygoscelis papua) across the Scotia Arc. Ecol. Evol. 66:1834–53
    [Google Scholar]
  70. Liebrand D, de Bakker AT, Beddow HM, Wilson PA, Bohaty AM et al. 2017. Evolution of the early Antarctic ice ages. PNAS 114:3867–72
    [Google Scholar]
  71. Linse K, Cope T, Lorz AN, Sands C 2007. Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30:1059–68
    [Google Scholar]
  72. Littlepage JL, Pearse JS 1962. Biological and oceanographic observations under an Antarctic ice shelf. Science 137:679–81
    [Google Scholar]
  73. Luo W, Li H, Gao S, Yu Y, Lin L, Zeng Y 2015. Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol 39:605–16
    [Google Scholar]
  74. Mahon AR, Arango CP, Halanych KM 2008. Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe Hodgson 1902. Mar. Biol. 155:315–23
    [Google Scholar]
  75. Mahon AR, Thornhill DJ, Norenburg JL, Halanych KM 2010. DNA uncovers Antarctic nemertean biodiversity and exposes a decades-old cold case of asymmetric inventory. Polar Biol 33:193–202
    [Google Scholar]
  76. Maslen NR, Convey P 2006. Nematode diversity and distribution in the southern maritime Antarctic—clues to history. Soil Biol. Biochem. 38:3141–51
    [Google Scholar]
  77. Mazaud A, Michel E, Dewilde F, Turon JL 2010. Variations of the Antarctic Circumpolar Current intensity during the past 500 ka. Geochem. Geophys. Geosyst. 11:Q08007
    [Google Scholar]
  78. McClintock JB, Pearse JS, Bosch I 1988. Population structure and energetics of the shallow-water Antarctic sea star Odontaster validus in contrasting habitats. Mar. Biol. 99:235–46
    [Google Scholar]
  79. McGaughran A, Stevens MI, Hogg ID, Carapelli A 2011. Extreme glacial legacies: a synthesis of the Antarctic springtail phylogeographic record. Insects 2:62–82
    [Google Scholar]
  80. McInnes SJ, Pugh PJ 1998. Biogeography of limno‐terrestrial Tardigrada, with particular reference to the Antarctic fauna. J. Biogeogr. 25:31–36
    [Google Scholar]
  81. Naish T, Powell R, Levy R, Wilson G, Scherer R et al. 2009. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–28
    [Google Scholar]
  82. Nybakken JW, Bertness MD 2005. Marine Biology: An Ecological Approach San Francisco: Pearson, 6th ed..
  83. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB et al. 2006. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–50
    [Google Scholar]
  84. Page TJ, Linse K 2002. More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–26
    [Google Scholar]
  85. Pardo PC, Pérez FF, Velo A, Gilcoto M 2012. Water masses distribution in the Southern Ocean: improvement of an extended OMP (eOMP) analysis. Prog. Oceanogr. 103:92–105
    [Google Scholar]
  86. Patarnello T, Bargelloni L, Varotto V, Battaglia B 1996. Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar. Biol. 126:603–8
    [Google Scholar]
  87. Pearse JS, McClintock JB, Bosch I 1991. Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Amer. Zool. 31:65–80
    [Google Scholar]
  88. Peat HJ, Clarke A, Convey P 2007. Diversity and biogeography of the Antarctic flora. J. Biogeogr. 34:132–46
    [Google Scholar]
  89. Pollard D, DeConto RM 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–32
    [Google Scholar]
  90. Prothero DR. 1994. The late Eocene-Oligocene extinctions. Annu. Rev. Earth Planet. Sci. 22:145–65
    [Google Scholar]
  91. Pugh PJA. 1997. Acarine colonisation of Antarctica and the islands of the Southern Ocean: the role of zoohoria. Polar Rec 33:113–22
    [Google Scholar]
  92. Riehl T, Kaiser S 2012. Conquered from the deep sea? A new deep-sea isopod species from the Antarctic shelf shows pattern of recent colonization. PLOS ONE 7:e49354
    [Google Scholar]
  93. Riesgo A, Taboada S, Avila C 2015. Evolutionary patterns in Antarctic marine invertebrates: an update on molecular studies. Mar. Genom. 23:1–13
    [Google Scholar]
  94. Riginos C, Victor BC 2001. Larval spatial distributions and other early life–history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proc. R. Soc. B 268:1931–36
    [Google Scholar]
  95. Rogers AD. 2007. Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philos. Trans. R. Soc. B 362:2191–2214
    [Google Scholar]
  96. Sabroux R, Corbari L, Krapp F, Bonillo C, Le Prieur S, Hassanin A 2017. Biodiversity and phylogeny of Ammotheidae (Arthropoda: Pycnogonida). Eur. J. Taxon. 286:1–33
    [Google Scholar]
  97. Sands CJ, O'Hara T, Barnes DK, Martín-Ledo R 2015. Against the flow: evidence of multiple recent invasions of warmer continental shelf waters by a Southern Ocean brittle star. Front. Ecol. Evol. 3:63
    [Google Scholar]
  98. Scherer RP, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H et al. 1998. Pleistocene collapse of the West Antarctic ice sheet. Science 281:82–85
    [Google Scholar]
  99. Shepherd A, Fricker HA, Farrell SL 2018. Trends and connections across the Antarctic cryosphere. Nature 588:223–32
    [Google Scholar]
  100. Soler-Membrives A, Linse K, Miller KJ, Arango CP 2017. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider. Open Sci 4:170615
    [Google Scholar]
  101. Speel JA, Dearborn JH 1983. Comatulid crinoids from R/V Eltanin cruises in the Southern Ocean. Biology of the Antarctic Seas XII LS Kornicker 1–60 Washington, DC: Amer. Geophys. Union
    [Google Scholar]
  102. Stankovic A, Spalik K, Kamler E, Borsuk P, Weglenski P 2002. Recent origin of sub-Antarctic notothenioids. Polar Biol 25:203–5
    [Google Scholar]
  103. Stevens MI, Frati F, McGaughran A, Spinsanti G, Hogg ID 2007. Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi (Collembola, Isotomidae). Zool. Scripta 36:201–12
    [Google Scholar]
  104. Stevens MI, Greenslade P, Hogg ID, Sunnucks P 2006. Southern hemisphere springtails: Could any have survived glaciation of Antarctica. Mol. Biol. Evol. 23:874–82
    [Google Scholar]
  105. Stevens MI, Hogg ID 2003. Long‐term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol. Ecol. 12:2357–69
    [Google Scholar]
  106. Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ et al. 2012. Conservation biogeography of the Antarctic. Divers. Distrib. 18:726–41
    [Google Scholar]
  107. Thatje S, Hillenbrand C-D, Larter R 2005. On the origin of Antarctic marine benthic community structure. Trends Ecol. Evol. 20:534–40
    [Google Scholar]
  108. Thomas ER, Hosking JS, Tuckwell RR, Warren RA, Ludlow EC 2015. Twentieth century increase in snowfall in coastal West Antarctica. Geophys. Res. Lett. 42:9387–93
    [Google Scholar]
  109. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM 2008. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17:5104–17
    [Google Scholar]
  110. Torricelli G, Carapelli A, Convey P, Nardi F, Boore JL, Frati F 2010a. High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: Evidence for cryptic species?. Gene 449:30–40
    [Google Scholar]
  111. Torricelli G, Frati F, Convey P, Telford M, Carapelli A 2010b. Population structure of Friesea grisea (Collembola, Neanuridae) in the Antarctic Peninsula and Victoria Land: evidence for local genetic differentiation of pre-Pleistocene origin. Antarct. Sci. 22:757–65
    [Google Scholar]
  112. Verheye ML, Backeljau T, d'Acoz CD 2017. Locked in the icehouse: evolution of an endemic Epimeria (Amphipoda, Crustacea) species flock on the Antarctic shelf. Mol. Phylogenetics Evol. 114:14–33
    [Google Scholar]
  113. Weber AT, Mérigot B, Valière S, Chenuil A 2015. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Mol. Ecol. 24:6080–94
    [Google Scholar]
  114. Wilson NG, Hunter RL, Lockhart SJ, Halanych KM 2007. Absence of panmixia in the Antarctic ‘circumpolar’ crinoid Promachocrinus kerguelensis Carpenter, 1888. Mar. Biol. 152:895–904
    [Google Scholar]
  115. Wilson NG, Schrödl M, Halanych KM 2009. Ocean barriers and glaciation: explosive radiation of Pleistocene lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 18:965–84
    [Google Scholar]
  116. Winkelmann R, Levermann A, Martin MA, Frieler K 2012. Increased future ice discharge from Antarctica owing to higher snowfall. Nature 492:239–42
    [Google Scholar]
  117. Wise KAJ. 1967. Collembola (springtails). Entomology of Antarctica JL Gressitt 123–48 Washington, DC: Amer. Geophys. Union
    [Google Scholar]
  118. Wynen LP, Goldsworthy SD, Guinet C, Bester MN, Boyd IL et al. 2000. Postsealing genetic variation and population structure of two species of fur seal (Arctocephalus gazella and A. tropicalis). Mol. Ecol. 9:299–314
    [Google Scholar]
  119. Young EF, Belchier M, Hauser L, Horsburgh GJ, Meredith MP et al. 2015. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species. Evol. App. 8:486–509
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-121415-032139
Loading
/content/journals/10.1146/annurev-ecolsys-121415-032139
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error