1932

Abstract

The woodwasp, , and its fungal mutualist, , together constitute one of the most damaging invasive pests of pine. Despite a century of research and well-established management programs, control remains unpredictable and spread continues to new areas. Variable success in managing this pest has been influenced by complex invasion patterns, the multilayered nature of biological interactions, the varying local ecologies, and microevolutionary population processes in both the biocontrol organisms and in the wasps. Recent research findings are challenging the historical perspectives on methods to manage the woodwasp, calling for management programs to incorporate the variable local dynamics affecting this pest complex. In this regard, the woodwasp provides a superb model to illustrate the need for a different approach to develop efficient and sustainable management tools to deal with the growing and global nature of pest invasions in forests and plantations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010814-021118
2015-01-07
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ento/60/1/annurev-ento-010814-021118.html?itemId=/content/journals/10.1146/annurev-ento-010814-021118&mimeType=html&fmt=ahah

Literature Cited

  1. Abdel-Rahman EM, Mutanga O, Adam E, Ismail R. 1.  2014. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS J. Photogramm. Remote Sens. 88:48–59 [Google Scholar]
  2. Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA. 2.  et al. 2011. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 5:1323–31 [Google Scholar]
  3. Aparacio JP, Corley JC, Rabinovich J. 3.  2013. Life history traits of Sirex noctilio F. (Hymenoptera: Siricidae) can explain outbreaks independently of environmental factors. Math. Biosci. Eng. 10:1265–79 [Google Scholar]
  4. Ayres MP, Pena R, Lombardo JA, Lombardero MJ. 4.  2014. Host use patterns by the European woodwasp, Sirex noctilio, in its native and invaded range. PLoS ONE 9:e90321Gives a powerful example of a cross-continental comparative study of the Sirex system. [Google Scholar]
  5. Bashford R, Madden JL. 5.  2012. The use of kairomone lures for the detection of Sirex noctilio in susceptible Pinus radiata plantations in Australia. See Ref. 99 159–66
  6. Bedding RA. 6.  1972. Biology of Deladenus siricidicola (Neotylenchidae) an entomophagous-mycetophagous nematode parasitic in siricid woodwasps. Nematologica 18:482–93 [Google Scholar]
  7. Bedding RA, Akhurst RJ. 7.  1978. Geographical distribution and host preferences of Deladenus species (Nematoda: Neotylenchidae) parasitic in siricid woodwasps and associated hymenopterous parasitoids. Nematologica 24:286–94 [Google Scholar]
  8. Bedding RA, Iede ET. 8.  2005. Application of Beddingia siricidicola for Sirex woodwasp control. Nematodes as Biocontrol Agents PS Grewal, R-U Ehlers, DI Shapiro-Ilan 385–99 London: CABI [Google Scholar]
  9. Bergeron MJ, Leal I, Foord B, Ross G, Davis C. 9.  et al. 2011. Putative origin of clonal lineages of Amylostereum areolatum, the fungal symbiont associated with Sirex noctilio, retrieved from Pinus sylvestris, in eastern Canada. Fungal Biol. 115:750–58 [Google Scholar]
  10. Boissin E, Hurley B, Wingfield MJ, Vasaitis R, Stenlid J. 10.  et al. 2012. Retracing the routes of introduction of invasive species: the case of the Sirex noctilio woodwasp. Mol. Ecol. 21:5728–44Provides the most comprehensive study of the global spread of Sirex noctilio. [Google Scholar]
  11. Bordeaux JM. 11.  2014. Isolation and structural characterization of the active molecule from Sirex noctilio woodwasp venom inducing primary physiological symptoms in attacked pine species. PhD thesis. Univ. Georgia, Athens Discusses landmark studies on the biochemistry and host response to the phytotoxic Sirex noctilio “mucus”/venom. [Google Scholar]
  12. Bordeaux JM, Dean JFD. 12.  2012. Susceptibility and response of pines to Sirex noctilio. See Ref. 99 31–50
  13. Bordeaux JM, Lorenz WW, Dean JFD. 13.  2012. Biomarker genes highlight intraspecific and interspecific variations in the responses of Pinus taeda L. and Pinus radiata D. Don to Sirex noctilio F. acid gland secretions. Tree Physiol. 32:1302–12 [Google Scholar]
  14. Böröczky K, Crook DJ, Jones TH, Kenny JC, Zylstra KE. 14.  et al. 2009. Monoalkenes as contact sex pheromone components of the woodwasp Sirex noctilio. J. Chem. Ecol. 35:1202–11 [Google Scholar]
  15. Böröczky K, Zylstra KE, McCartney NB, Mastro VC, Tumlinson JH. 15.  2012. Volatile profile differences and the associated Sirex noctilio activity in two host tree species in the Northeastern United States. J. Chem. Ecol. 38:213–21 [Google Scholar]
  16. Bruzzone OA, Villacide JM, Bernstein C, Corley JC. 16.  2009. Flight variability in the woodwasp Sirex noctilio (Hymenoptera: Siricidae): an analysis of flight data using wavelets. J. Exp. Biol. 212:731–37 [Google Scholar]
  17. Bryant PB. 17.  2010. Kairomonal attraction of the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae) to volatiles of the fungus Amylostereum areolatum, an obligate symbiont of the European woodwasp Sirex noctilio. MSc thesis. State Univ. New York, Syracuse [Google Scholar]
  18. Burnip GM, Voice D, Brockerhoff EG. 18.  2010. Interceptions and incursions of exotic Sirex species and other siricids (Hymenoptera: Siricidae). N.Z. J. For. Sci. 40:133–40 [Google Scholar]
  19. Cameron EA. 19.  2012. Parasitoids in the management of Sirex noctilio: looking back and looking ahead. See Ref. 99 103–18
  20. Carnegie AJ, Bashford R. 20.  2012. Sirex woodwasp in Australia: current management strategies, research and emerging issues. See Ref. 99 175–201
  21. Carnegie AJ, Matsuki M, Haugen DA, Hurley BP, Ahumada R. 21.  et al. 2006. Predicting the potential distribution of Sirex noctilio (Hymenoptera: Siricidae), a significant exotic pest of Pinus plantations. Ann. Forest Sci. 63:119–28Discusses ways in which many currently uninfested areas would be suitable for S. noctilio invasion. [Google Scholar]
  22. Clark TA, Anderson JB. 22.  2004. Dikaryons of the basidiomycete fungus Schizophyllum commune: evolution in long-term culture. Genetics 167:1663–75 [Google Scholar]
  23. Cooperband MF, Böröczky K, Hartness A, Jones TH, Zylstra KE. 23.  et al. 2012. Male-produced pheromone in the European woodwasp, Sirex noctilio. J. Chem. Ecol. 38:52–62 [Google Scholar]
  24. Corley JC, Villacide JM. 24.  2012. Population dynamics of Sirex noctilio: influence of diapause, spatial aggregation and flight potential on outbreaks and spread. See Ref. 99 51–64
  25. Corley JC, Villacide JM, Bruzzone OA. 25.  2007. Spatial dynamics of a Sirex noctilio woodwasp population within a pine plantation in Patagonia, Argentina. Entomol. Exp. Appl. 125:231–36 [Google Scholar]
  26. Corley JC, Villacide JM, van Nouhuys S. 26.  2010. Patch time allocation by a parasitoid: the influence of con-specifics, host abundance and distance to the patch. J. Insect Behav. 23:431–40 [Google Scholar]
  27. Coyle DR, Gandhi KJK. 27.  2012. The ecology, behavior, and biological control potential of Hymenopteran parasitoids of woodwasps (Hymenoptera: Siricidae) in North America. Environ. Entomol. 41:731–49 [Google Scholar]
  28. Coyle DR, Pfammatter JA, Journey AM, Pahs TL, Cervenka VJ, Koch RL. 28.  2012. Community composition and phenology of native Siricidae (Hymenoptera) attracted to semiochemicals in Minnesota. Environ. Entomol. 41:91–97 [Google Scholar]
  29. Crook DJ, Böröczky K, Zylstra KE, Mastro VC, Tumlinson JH. 29.  2012. The chemical ecology of Sirex noctilio. See Ref. 99 149–58
  30. Crook DJ, Kerr LM, Mastro VC. 30.  2008. Sensilla on the antennal flagellum of Sirex noctilio (Hymenoptera: Siricidae). Ann. Entomol. Soc. Am. 101:1094–102 [Google Scholar]
  31. Dodds KI, Cooke RR, Gilmore DW. 31.  2007. Silvicultural options to reduce pine susceptibility to attack by a newly detected invasive species, Sirex noctilio. North. J. Appl. For. 24:165–67 [Google Scholar]
  32. Dodds K, de Groot P. 32.  2012. Sirex, surveys and management: challenges of having Sirex noctilio in North America. See Ref. 99 265–86
  33. Dodds K, de Groot P, Orwig DA. 33.  2010. The impact of Sirex noctilio in Pinus resinosa and Pinus sylvestris stands in New York and Ontario. Can. J. For. Res. 40:212–23 [Google Scholar]
  34. Dodds KJ, Miller DR. 34.  2010. Test of nonhost angiosperm volatiles and verbenone to protect trap trees for Sirex noctilio (Hymenoptera: Siricidae) from attacks by bark beetles (Coleoptera: Scolytidae) in the northeastern United States. J. Econ. Entomol. 103:2094–99 [Google Scholar]
  35. Dodds KJ, Zylstra KE, Dubois GD, Hoebeke ER. 35.  2012. Arboreal insects associated with herbicide-stressed Pinus resinosa and Pinus sylvestris used as Sirex noctilio trap trees in New York. Environ. Entomol. 41:1350–63 [Google Scholar]
  36. Douglas AE. 36.  2009. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23:38–47 [Google Scholar]
  37. Eager PT, Allen DC, Frair JL, Fierke MK. 37.  2011. Within-tree distributions of the Sirex noctilio fabricius (Hymenoptera: Siricidae): parasitoid complex and development of an optimal sampling scheme. Environ. Entomol. 40:1266–75 [Google Scholar]
  38. Fernandez-Arhex V, Corley JC. 38.  2005. The functional response of Ibalia leucospoides (Hymenoptera: Ibaliidae), a parasitoid of Sirex noctilio (Hymenoptera: Siricidae). Biocontrol Sci. Technol. 15:207–12 [Google Scholar]
  39. Fischbein D, Bernstein C, Corley JC. 39.  2012. Linking reproductive and feeding strategies in the parasitoid Ibalia leucospoides: Does feeding always imply profit?. Evol. Ecol. 27:619–34 [Google Scholar]
  40. Fischbein D, Bettinelli J, Bernstein C, Corley JC. 40.  2012. Patch choice from a distance and use of habitat information during foraging by the parasitoid Ibalia leucospoides. Ecol. Entomol. 37:161–68 [Google Scholar]
  41. Fisher MC, Henk D, Briggs CJ, Brownstein JS, Madoff LC. 41.  et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94 [Google Scholar]
  42. Fukuda H, Hijii N. 42.  1997. Reproductive strategy of a woodwasp with no fungal symbionts, Xeris spectrum (Hymenoptera: Siricidae). Oecologia 112:551–56 [Google Scholar]
  43. Garnas JR, Hurley BP, Slippers B, Wingfield MJ. 43.  2012. Biological control of forest plantation pests in an interconnected world requires greater international focus. Int. J. Pest Manag. 58:211–23Describes the need for more effective and globally structured pest biological control programs. [Google Scholar]
  44. Gitau CW, Bashford R, Carnegie AJ, Gurr GM. 44.  2013. A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: a focus on beetle interactions with other pests and their associates. For. Ecol. Manag. 297:1–14 [Google Scholar]
  45. Gitau CW, Carnegie AJ, Nicol HI, Bashford R, Poynter C, Gurr GM. 45.  2013. Incidence of Ips grandicollis (Coleoptera: Scolytinae) in trap trees prepared for biological control of Sirex noctilio (Hymenoptera: Siricidae) in Australia: influence of environment and silviculture. For. Ecol. Manag. 310:865–74 [Google Scholar]
  46. Grünwald S, Pilhofer M, Holl W. 46.  2010. Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles (Coleoptera: Cerambycidae). Syst. Appl. Microbiol. 33:25–34 [Google Scholar]
  47. Haavik LJ, Meeker JR, Johnson W, Ryan K, Turgeon JJ, Allison JD. 47.  2013. Predicting Sirex noctilio and S. nigricornis emergence using degree days. Entomol. Exp. Appl. 149:177–84 [Google Scholar]
  48. Hajek AE, Nielsen C, Kepler RM, Long SJ, Castrillo L. 48.  2013. Fidelity among Sirex woodwasps and their fungal symbionts. Microb. Ecol. 65:753–62 [Google Scholar]
  49. Herre EA, Knowlton N, Mueller UG, Rehner SA. 49.  1999. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14:49–53 [Google Scholar]
  50. Hoebeke ER, Haugen DA, Haack RA. 50.  2005. Sirex noctilio: discovery of a Palearctic siricid woodwasp in New York. Newsl. Mich. Entomol. Soc. 50:24–25 [Google Scholar]
  51. Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J. 51.  et al. 2014. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi. PLoS ONE 9:e88141 [Google Scholar]
  52. Hurley BP, Croft P, Verleur M, Wingfield MJ, Slippers B. 52.  2012. The control of the Sirex woodwasp in diverse environments: the South African experience. See Ref. 99 247–64
  53. Hurley BP, Garnas J, Cooperband M. 53.  2014. Assessing trap and lure effectiveness for the monitoring of Sirex noctilio. Agric. For. Entomol In press. doi: 10.1111/afe.12081
  54. Hurley BP, Hatting HJ, Wingfield MJ, Klepzig KD, Slippers B. 54.  2012. The influence of Amylostereum areolatum diversity and competitive interactions on the fitness of the Sirex parasitic nematode Deladenus siricidicola. Biol. Control 61:207–14 [Google Scholar]
  55. Hurley BP, Slippers B, Croft PK, Hatting HJ, van der Linde M. 55.  et al. 2008. Factors influencing parasitism of Sirex noctilio (Hymenoptera: Siricidae) by the nematode Deladenus siricidicola (Nematoda: Neotylenchidae) in summer rainfall areas of South Africa. Biol. Control 45:450–59 [Google Scholar]
  56. Hurley BP, Slippers B, Wingfield MJ. 56.  2007. A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere. Agr. Forest Entomol. 9:159–71Comprehensively compares pest management across the Southern Hemisphere. [Google Scholar]
  57. Ismail R, Mutanga O. 57.  2011. Discriminating the early stages of Sirex noctilio infestation using classification tree ensembles and shortwave infrared bands. Int. J. Remote Sens. 32:4249–66 [Google Scholar]
  58. Ismail R, Mutanga O, Bob U. 58.  2007. Forest health and vitality: the detection and monitoring of Pinus patula trees infected by Sirex noctilio using digital multispectral imagery. South. Hemisph. For. J. 69:39–47 [Google Scholar]
  59. Ismail R, Mutanga O, Kumar L. 59.  2010. Modeling the potential distribution of pine forests susceptible to Sirex noctilio infestations in Mpumalanga, South Africa. Trans. GIS 14:709–26 [Google Scholar]
  60. Korb J, Aanen DK. 60.  2003. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav. Ecol. Sociobiol. 53:65–71 [Google Scholar]
  61. Kroll SA, Hajek AE, Morris EE, Long SJ. 61.  2013. Parasitism of Sirex noctilio by non-sterilizing Deladenus siricidicola in northeastern North America. Biol. Control 67:203–11 [Google Scholar]
  62. Kukor JJ, Martin MM. 62.  1983. Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science 220:1161–63 [Google Scholar]
  63. Lantschner MV, Villacide JM, Garnas JR, Croft P, Carnegie AJ. 63.  et al. 2014. Temperature explains variable spread rates of the invasive woodwasp Sirex noctilio in the Southern Hemisphere. Biol. Invasions 16:329–39 [Google Scholar]
  64. Leal I, Foord B, Davis C, de Groot P, Mlonyeni XO, Slippers B. 64.  2012. Distinguishing isolates of Deladenus siricidicola, a biological control agent of Sirex noctilio, from North America and the Southern Hemisphere using PCR-RFLP. Can. J. For. Res. 42:1173–77 [Google Scholar]
  65. Long SJ, Williams DW, Hajek AE. 65.  2009. Sirex species (Hymenoptera: Siricidae) and their parasitoids in Pinus sylvestris in eastern North America. Can. Entomol. 141:153–57 [Google Scholar]
  66. Madden JL. 66.  1968. Behavioural responses of parasites to the symbiotic fungus associated with Sirex noctilio F. Nature 218:189–90 [Google Scholar]
  67. Madden JL. 67.  1968. Physiological aspects of host tree favourability for the woodwasp, Sirex noctilio F. Proc. Ecol. Soc. Aust. 3:147–49 [Google Scholar]
  68. Madden JL. 68.  1975. Bacteria and yeasts associated with Sirex noctilio. J. Invertebr. Pathol. 25:283–87 [Google Scholar]
  69. Madden JL. 69.  1981. Egg and larval development in the woodwasp, Sirex noctilio F. Aust. J. Zool. 29:493–506 [Google Scholar]
  70. Madden JL. 70.  1988. Sirex in Australasia. Dynamics of Forest Insect Populations AA Berryman 407–29 New York: Plenum [Google Scholar]
  71. Madden JL, Coutts MP. 71.  1979. The role of fungi in the biology and ecology of woodwasps (Hymenoptera: Siricidae). Insect-Fungus Symbiosis LR Batra 165–74 Montclair, NJ: Allanheld, Osmun & Co. [Google Scholar]
  72. Martinez AS, Fernandez-Arhex V, Corley JC. 72.  2006. Chemical information from the fungus Amylostereum areolatum and host-foraging behaviour in the parasitoid Ibalia leucospoides. Physiol. Entomol. 31:336–40 [Google Scholar]
  73. Martinez AS, Villacide J, Ajo AAF, Martinson SJ, Corley JC. 73.  2014. Sirex noctilio flight behavior: toward improving current monitoring techniques. Entomol. Exp. Appl 152:135–40 [Google Scholar]
  74. Morgan FD. 74.  1968. Bionomics of Siricidae. Annu. Rev. Entomol. 13:239–56 [Google Scholar]
  75. Morris EE, Hajek AE. 75.  2014. Eat or be eaten: fungus and nematode switch off as predator and prey. Fungal Ecol 11:114–21 [Google Scholar]
  76. Morris EE, Jimenez A, Long SJ, Williams DW, Hajek AE. 76.  2012. Variability in growth of Deladenus siricidicola on strains of the white rot fungus Amylostereum areolatum. Biocontrol 57:677–86 [Google Scholar]
  77. Morris EE, Kepler RM, Long SJ, Williams DW, Hajek AE. 77.  2013. Phylogenetic analysis of Deladenus nematodes parasitizing northeastern North American Sirex species. J. Invertebr. Pathol. 113:177–83 [Google Scholar]
  78. Mlonyeni XO, Wingfield BD, Wingfield MJ, Ahumada R, Klasmer P. 78.  et al. 2011. Extreme homozygosity in Southern Hemisphere populations of Deladenus siricidicola, a biological control agent of Sirex noctilio. Biol. Control 59:348–53Reveals the “clonality” in D. siricidicola populations across the Southern Hemisphere. [Google Scholar]
  79. Neumann FG, Morey JL, McKimm RJ. 79.  1987. The Sirex wasp in Victoria.. Bull. 29, Dep. Conserv. For. Lands, Melbourne
  80. Nielsen C, Williams DW, Hajek AE. 80.  2009. Putative source of the invasive Sirex noctilio fungal symbiont, Amylostereum areolatum, in the eastern United States and its association with native siricid woodwasps. Mycol. Res. 113:1242–53 [Google Scholar]
  81. Olatinwo R, Allison J, Meeker J, Johnson W, Streett D. 81.  et al. 2013. Detection and identification of Amylostereum areolatum (Russulales: Amylostereaceae) in the mycangia of Sirex nigricornis (Hymenoptera: Siricidae) in central Louisiana. Environ. Entomol. 42:1246–56 [Google Scholar]
  82. Pazoutova S, Srutka P, Holusa J, Chudickova M, Kolarik M. 82.  2010. Diversity of xylariaceous symbionts in Xiphydria woodwasps: role of vector and a host tree. Fungal Ecol. 3:392–401 [Google Scholar]
  83. Pietrantuono A, Fernandez-Arhex V, Jofre N, Corley J. 83.  2012. Food and host searching decisions made by Ibalia leucospoides (Hymenoptera: Ibaliidae), a parasitoid of Sirex noctilio (Hymenoptera: Siricidae). J. Insect Behav. 25:320–27 [Google Scholar]
  84. Rius M, Darling JA. 84.  2014. How important is intraspecific genetic admixture to the success of colonising populations?. Trends Ecol. Evol. 29:233–42 [Google Scholar]
  85. Roderick GK, Hufbauer R, Navajas M. 85.  2012. Evolution and biological control. Evol. Appl. 5:419–23 [Google Scholar]
  86. Roderick GK, Navajas M. 86.  2003. Genes in new environments: genetics and evolution in biological control. Nat. Rev. Genet. 4:889–99 [Google Scholar]
  87. Roman J, Darling JA. 87.  2007. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22:454–64 [Google Scholar]
  88. Ryan K, de Groot P, Smith SM. 88.  2011. Evidence of interaction between Sirex noctilio and other species inhabiting the bole of Pinus. Agric. For. Entomol. 14:187–95 [Google Scholar]
  89. Ryan K, de Groot P, Davis C, Smith S. 89.  2012. Effect of two bark beetle-vectored fungi on the on-host search and oviposition behavior of the introduced woodwasp Sirex noctilio (Hymenoptera: Siricidae) on Pinus sylvestris trees and logs. J. Insect Behav. 25:453–66 [Google Scholar]
  90. Ryan K, de Groot P, Nott RW, Drabble S, Ochoa I. 90.  et al. 2012. Natural enemies associated with Sirex noctilio (Hymenoptera: Siricidae) and S. nigricornis in Ontario, Canada. Environ. Entomol. 41:289–97 [Google Scholar]
  91. Ryan K, Hurley BP. 91.  2012. Life history and biology of Sirex noctilio. See Ref. 99 15–30
  92. Ryan K, Moncalvo JM, de Groot P, Smith SM. 92.  2011. Interactions between the fungal symbiont of Sirex noctilio (Hymenoptera: Siricidae) and two bark beetle-vectored fungi. Can. Entomol. 143:224–35 [Google Scholar]
  93. Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P. 93.  et al. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 197:238–50 [Google Scholar]
  94. Sarvary MA, Cooperband MF, Hajek AE. 94.  2014. The importance of olfactory and visual cues in developing better monitoring tools for Sirex noctilio (Hymenoptera: Siricidae). Agric. For. Entomol. In press. doi: 10.1111/afe.12077
  95. Simpson RF. 95.  1976. Bioassay of pine oil components as attractants for Sirex noctilio (Hymenoptera: Siricidae) using electroantennogram techniques. Entomol. Exp. Appl. 19:11–18 [Google Scholar]
  96. Simpson RF, McQuilkon RM. 96.  1976. Identification of volatiles from felled Pinus radiata and the electroantennograms they elicit in Sirex noctilio. Entomol. Exp. Appl. 19:205–13 [Google Scholar]
  97. Six DL, Poulsen M, Hansen AK, Wingfield MJ, Roux J. 97.  et al. 2011. Anthropogenic effects on interaction outcomes: examples from insect-microbial symbioses in forest and savanna ecosystems. Symbiosis 53:101–21 [Google Scholar]
  98. Slippers B, Coutinho TA, Wingfield BD, Wingfield MJ. 98.  2003. The genus Amylostereum and its association with woodwasps: a contemporary review. S. Afr. J. Sci. 99:70–74 [Google Scholar]
  99. Slippers B, de Groot P, Wingfield MJ. 99.  2012. The Sirex Woodwasp and Its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest Dordrecht: Springer Sci. Bus. Media301Includes a collection of papers summarizing all aspects of the natural history and history of global management of S. noctilio.
  100. Slippers B, Hurley BP, Mlonyeni OX, de Groot P, Wingfield MJ. 100.  2012. Factors affecting the efficacy of Deladenus siricidicola in biological control systems. See Ref. 99 119–34
  101. Slippers B, Wingfield BD, Coutinho TA, Wingfield MJ. 101.  2002. DNA sequence and RFLP data reflect geographical spread and relationships of Amylostereum areolatum and its insect vectors. Mol. Ecol. 11:1845–54 [Google Scholar]
  102. Slippers B, Wingfield MJ. 102.  2012. Sirex research and management: future prospects. See Ref. 99 287–95
  103. Slippers B, Wingfield MJ, Coutinho TA, Wingfield BD. 103.  2001. Population structure and possible origin of Amylostereum areolatum in South Africa. Plant Pathol. 50:206–10 [Google Scholar]
  104. Spradbery JP. 104.  1970. The biology of Ibalia drewseni Borries (Hymenoptera: Ibaliidae), a parasite of siricid woodwasps. Proc. R. Entomol. Soc. A 45:104–13 [Google Scholar]
  105. Spradbery JP. 105.  1974. The responses of Ibalia species (Hymenoptera: Ibaliidae) to the fungal symbionts of siricid woodwasp hosts. J. Entomol. Ser. A 48:217–22 [Google Scholar]
  106. Spradbery JP, Kirk AA. 106.  1978. Aspects of the ecology of siricid woodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of Sirex noctilio F. in Australia. Bull. Entomol. Res. 68:341–59 [Google Scholar]
  107. Tabata M, Harrington TC, Chen W, Abe Y. 107.  2000. Molecular phylogeny of species in the genera Amylostereum and Echinodontium. Mycoscience 41:585–93 [Google Scholar]
  108. Talbot PHB. 108.  1977. The Sirex-Amylostereum-Pinus association. Annu. Rev. Phytopathol. 15:41–54 [Google Scholar]
  109. Takasuka TE, Brook AJ, Lewin GR, Currie CR, Fox BG. 109.  2013. Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci. Rep. 3:1030 [Google Scholar]
  110. Thomsen IM, Koch J. 110.  1999. Somatic compatibility in Amylostereum areolatum and A. chailletii as a consequence of symbiosis with siricid woodwasps. Mycol. Res. 103:817–23 [Google Scholar]
  111. Thompson BM. 111.  2013. Community ecology and Sirex noctilio: interactions with microbial symbionts and native insects PhD thesis. Univ. Maryland, College Park [Google Scholar]
  112. Thompson BM, Grebenok RJ, Behmer ST, Gruner DS. 112.  2013. Microbial symbionts shape the sterol profile of the xylem-feeding woodwasp, Sirex noctilio. J. Chem. Ecol. 38:129–39 [Google Scholar]
  113. Thompson BM, Bodart J, Ewen CMC, Gruner DS. 113.  2014. Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann. Entomol. Soc. Am. 107:453–60 [Google Scholar]
  114. Van der Nest MA, Steenkamp ET, Wilken MP, Stenlid J, Wingfield MJ. 114.  et al. 2013. Mutualism and asexual reproduction influence recognition genes in a fungal symbiont. Fungal Biol. 117:439–50 [Google Scholar]
  115. Van der Nest MA, Wingfield BD, Wingfield MJ, Stenlid J, Vasaitis R, Slippers B. 115.  2012. Genetics of Amylostereum species associated with Siricidae woodwasps. See Ref. 99 81–94
  116. Vasiliauskas R, Stenlid J, Thomsen IM. 116.  1998. Clonality and genetic variation in Amylostereum areolatum and A. chailletii from Northern Europe. New Phytol. 139:751–58 [Google Scholar]
  117. Villacide JM, Corley JC. 117.  2012. Ecology of the woodwasp Sirex noctilio: tackling the challenge of successful pest management. Int. J. Pest Manag. 58:249–56Reviews the ecological considerations in Sirex management in nonnative regions. [Google Scholar]
  118. Wermelinger B, Rigling A, Mathis DS, Dobbertin M. 118.  2008. Assessing the role of bark- and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone Valley. Ecol. Entomol. 33:239–49 [Google Scholar]
  119. Williams DW, Zylstra KE, Mastro V. 119.  2012. Ecological considerations in using Deladenus (=Beddingia) siricidicola for the biological control of Sirex noctilio in North America. See Ref. 99 135–48
  120. Wooding AL, Wingfield MJ, Hurley BP, Garnas JR, de Groot P, Slippers B. 120.  2013. Lack of fidelity revealed in an insect-fungal mutualism after invasion. Biol. Lett. 9:20130342 [Google Scholar]
  121. Yek SH, Slippers B. 121.  2014. Biocontrol opportunities to study microevolution in invasive populations. Trends Ecol. Evol 29:429–30 [Google Scholar]
  122. Yemshanov D, Koch FH, Ben-Haim Y, Smith WD. 122.  2010. Detection capacity, information gaps and the design of surveillance programs for invasive forest pests. J. Environ. Manag. 91:2535–46 [Google Scholar]
  123. Yemshanov D, Koch FH, McKenney DW, Downing MC, Sapio F. 123.  2009. Mapping invasive species risks with stochastic models: a cross-border United States-Canada application for Sirex noctilio fabricius. Risk Anal. 29:868–84 [Google Scholar]
  124. Yemshanov D, McKenney DW, Pedlar JH, Koch FH, Cook D. 124.  2009. Towards an integrated approach to modeling the risks and impacts of invasive forest species. Environ. Rev. 17:163–78 [Google Scholar]
  125. Yousuf F, Gurr GM, Carnegie AJ, Bedding RA, Bashford R. 125.  et al. 2014. The bark beetle, Ips grandicollis, disrupts biological control of the woodwasp, Sirex noctilio, via fungal symbiont interactions. FEMS Microbiol. Ecol. 88:38–47 [Google Scholar]
  126. Yu Q, de Groot P, Leal I, Davis C, Ye W, Foord B. 126.  2009. Characterization of Deladenus siricidicola (Tylenchida: Neotylenchidae) associated with Sirex noctilio (Hymenoptera: Siricidae) in Canada. Int. J. Nematol. 19:23–32 [Google Scholar]
  127. Zondag R. 127.  1962. A nematode disease of Sirex noctilio. Interim Res. Rep., N.Z. For. Serv.
  128. Zylstra KE, Dodds KJ, Francese JA, Mastro V. 128.  2010. Sirex noctilio in North America: the effect of stem-injection timing on the attractiveness and suitability of trap trees. Agric. Forest Entomol. 12:243–50 [Google Scholar]
  129. Zylstra KE, Mastro VC. 129.  2012. Common mortality factors of woodwasp larvae in three northeastern United States host species. J. Insect Sci. 12:83 [Google Scholar]
/content/journals/10.1146/annurev-ento-010814-021118
Loading
/content/journals/10.1146/annurev-ento-010814-021118
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error