1932

Abstract

The terrestrial arthropod fauna of wetlands has been largely ignored by scientists compared to other ecological elements, yet these organisms are among the most important influences on the ecology of these systems, with the vast majority of the biodiversity in wetlands found among the terrestrial arthropods. Wetlands present a range of habitat for terrestrial arthropods, with unique faunas being associated with soils and ground litter, living-plant substrates, and peatlands. Myriapoda, Araneae, Collembola, Carabidae, Formicidae, and assorted herbivorous Coleoptera and Lepidoptera are the terrestrial arthropod groups that most influence the ecology of wetlands. Despite their success, most terrestrial arthropods possess fairly rudimentary adaptations for life in wetlands, with most simply moving to higher ground or up vegetation during floods, although some species can tolerate immersion. Many terrestrial arthropods are environmentally sensitive and show considerable promise as bioindicators of wetland ecological conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-024902
2020-01-07
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-024902.html?itemId=/content/journals/10.1146/annurev-ento-011019-024902&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adis J. 1992. How to survive 6 months in a flooded soil—strategies in Chilopoda and Symphyla. Stud. Neotrop. Fauna Environ. 27:2–3117–29
    [Google Scholar]
  2. 2. 
    Adis J, Junk WJ. 2002. Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshw. Biol. 47:711–31
    [Google Scholar]
  3. 3. 
    Antvogel H, Bonn A. 2001. Environmental parameters and microspatial distribution of insects: a case study of carabids in an alluvial forest. Ecography 24:470–82
    [Google Scholar]
  4. 4. 
    Aranda R, Aoki C. 2018. Diversity and effect of historical inundation on bee and wasp (Hymenoptera: Apoidea, Vespoidea) communities in the Brazilian Pantanal. J. Insect Conserv. 22:581–91
    [Google Scholar]
  5. 5. 
    Aschehoug ET, Sivakoff FS, Cayton HL, Morris WF, Haddad NM 2015. Habitat restoration affects immature stages of a wetland butterfly through indirect effects on predation. Ecology 96:1761–67
    [Google Scholar]
  6. 6. 
    Ballinger A, Lake PS, Mac Nally R 2007. Do terrestrial invertebrates experience floodplains as landscape mosaics? Immediate and longer-term effects of flooding on ant assemblages in a floodplain forest. Oecologia 152:227–38
    [Google Scholar]
  7. 7. 
    Ballinger A, Mac Nally R, Lake PS 2005. Immediate and longer-term effects of managed flooding on floodplain invertebrate assemblages in south-eastern Australia: generation and maintenance of a mosaic landscape. Freshw. Biol. 50:1190–205
    [Google Scholar]
  8. 8. 
    Barreto C, Lindo Z. 2018. Drivers of decomposition and the detrital invertebrate community differ across hummock-hollow microtopography in Boreal peatlands. EcoScience 25:39–48
    [Google Scholar]
  9. 9. 
    Bastow JL, Sabo JL, Finlay JC, Power ME 2002. A basal aquatic-terrestrial trophic link in rivers: algal subsidies via shore dwelling grasshoppers. Oecologia 131:261–68
    [Google Scholar]
  10. 10. 
    Battirola LD, Golovatch SI, Pinheiro TG, Batistella DA, Rosado-Neto GH et al. 2018. Myriapod (Arthropoda, Myriapoda) diversity and distribution in a floodplain forest of the Brazilian Pantanal. Stud. Neotrop. Fauna Environ. 53:62–74
    [Google Scholar]
  11. 11. 
    Battirola LD, Marques MI, Rosado-Neto GH, Pinheiro TG, Pinho NGC 2009. Vertical and time distribution of Diplopoda (Arthropoda: Myriapoda) in a monodominant forest in Pantanal of Mato Grosso, Brazil. Zoologia 26:479–87
    [Google Scholar]
  12. 12. 
    Batzer DP. 2004. Movements of upland invertebrates into drying seasonal woodland ponds in northern Minnesota, USA. Wetlands 24:904–7
    [Google Scholar]
  13. 13. 
    Batzer DP. 2013. The seemingly intractable ecological responses of invertebrates in wetlands: a review. Wetlands 33:1–15
    [Google Scholar]
  14. 14. 
    Batzer DP, Boix D, eds. 2016. Invertebrates in Freshwater Wetlands: An International Perspective on their Ecology Berlin: Springer
  15. 15. 
    Batzer DP, Cooper R, Wissinger SA 2014. Wetland animal ecology. Ecology of Freshwater and Estuarine Wetlands DP Batzer, RR Sharitz 151–83 Berkeley, CA: Univ. Calif. Press. , 2nd ed..
    [Google Scholar]
  16. 16. 
    Batzer DP, Wissinger SA. 1996. Ecology of insect communities in nontidal wetlands. Annu. Rev. Entomol. 41:75–100
    [Google Scholar]
  17. 17. 
    Batzer DP, Wu HT, Wheeler T, Eggert S 2016. Peatland invertebrates. Invertebrates in Freshwater Wetlands: An International Perspective on their Ecology DP Batzer, D Boix 219–50 Berlin: Springer
    [Google Scholar]
  18. 18. 
    Beaulieu F, Wheeler TA. 2005. Diptera diversity in a homogeneous habitats: Brachycera associated with sedge meadows (Cyperaceae: Carex) in Quebec, Canada. Proc. Entomol. Soc. Wash. 107:176–89
    [Google Scholar]
  19. 19. 
    Benson TJ, Dinsmore JJ, Hohman WL 2007. Response of plants and arthropods to burning and disking of riparian habitats. J. Wildl. Manag. 71:1949–57
    [Google Scholar]
  20. 20. 
    Bettacchioli G, Taormina M, Bernini F, Migliorini M 2012. Disturbance regimes in a wetland remnant: implications for trait-displacements and shifts in the assemblage structure of carabid beetles (Coleoptera: Carabidae). J. Insect Conserv. 16:249–61
    [Google Scholar]
  21. 21. 
    Boix D, Batzer D. 2016. Invertebrate assemblages and their ecological controls across the world's freshwater wetlands. Invertebrates in Freshwater Wetlands: An International Perspective on their Ecology DP Batzer, D Boix 601–42 Berlin: Springer
    [Google Scholar]
  22. 22. 
    Bonada N, Prat N, Resh VH, Statzner B 2006. Development in aquatic insect monitoring: a comparative analysis of different approaches. Annu. Rev. Entomol. 51:495–523
    [Google Scholar]
  23. 23. 
    Braccia A, Batzer DP. 2001. Invertebrates associated with woody debris in a southeastern forested floodplain wetland. Wetlands 21:18–31
    [Google Scholar]
  24. 24. 
    Braccia A, Batzer DP. 2008. Breakdown and invertebrate colonization of dead wood in wetland, upland, and river habitats. Can. J. For. Res. 38:2697–704
    [Google Scholar]
  25. 25. 
    Briers RA, Cariss HM, Geoghegan R, Gee JH 2005. The lateral extent of the subsidy from an upland stream to riparian lycosid spiders. Ecography 28:165–70
    [Google Scholar]
  26. 26. 
    Bright EG, Batzer DP, Garnett JA 2010. Variation in invertebrate and fish communities across floodplain ecotones of the Altamaha and Savannah Rivers. Wetlands 30:1117–28
    [Google Scholar]
  27. 27. 
    Brigić A, Bujan J, Alegro A, Šegota V, Ternjej I 2017. Spatial distribution of insect indicator taxa as a basis for peat bog conservation planning. Ecol. Indic. 80:344–53
    [Google Scholar]
  28. 28. 
    Brigić A, Vujčić S, Kepčija RM, Stančić Z, Alegro A, Ternjej I 2014. Taxon specific response of carabids (Coleoptera, Carabidae) and other soil invertebrate taxa on invasive plant Amorpha fruticosa in wetlands. Biol. Invasions 16:1497–514
    [Google Scholar]
  29. 29. 
    Brose U. 2003. Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity?. Oecologia 135:407–13
    [Google Scholar]
  30. 30. 
    Buchholz S. 2016. Natural peat bog remnants promote distinct spider assemblages and habitat specific traits. Ecol. Indic. 60:774–80
    [Google Scholar]
  31. 31. 
    Buckton ST, Ormerod SJ. 1996. Effects of liming on the Coleoptera, Hemiptera, Araneae and Opiliones of catchment wetlands in Wales. Biol. Conserv. 79:43–57
    [Google Scholar]
  32. 32. 
    Burdon FJ, Harding JS. 2008. The linkage between riparian predators and aquatic insects across a stream-resource spectrum. Freshw. Biol. 53:330–46
    [Google Scholar]
  33. 33. 
    Bush BM, Hutchens JJ Jr., Gulis V, Godwin KS 2017. Impact of macroconsumers on leaf breakdown and detritivores in wetlands on a Southeastern US Coastal Plain floodplain during drought. Wetlands 371169–79
  34. 34. 
    Cattin MF, Blandenier G, Banašek-Richter Bersier LF 2003. The impact of mowing as a management strategy for wet meadows on spider (Araneae) communities. Biol. Conserv. 113:179–88
    [Google Scholar]
  35. 35. 
    Center TD, Dray FA Jr., Jubinsky GP, Grodowitz MJ 1999. Insects and other arthropods that feed on aquatic and wetland plants Tech. Bull. 1870, Agric. Res. Serv., US Dep. Agric. Washington, DC:
  36. 36. 
    Center TD, Purcell MF, Pratt PD, Rayamajhi MB, Tipping PW et al. 2012. Biological control of Melaleuca quinquenervia: an Everglades invader. Biocontrol 57:151–65
    [Google Scholar]
  37. 37. 
    Chen X, Adams B, Layne M, Swarzenski C, Norris D, Hooper-Bùi L 2017. Effects of isolation on ant assemblages depend on microhabitat. Ecosphere 8:12e02049
    [Google Scholar]
  38. 38. 
    Chen X, Adams B, Sabo A, Crupi T, Hooper-Bùi L 2016. Ant assemblages and co-occurrence patterns in cypress-tupelo swamp. Wetlands 36:1–13
    [Google Scholar]
  39. 39. 
    Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ et al. 2014. Changes in the global value of ecosystem services. Glob. Environ. Change Hum. Policy Dimens. 26:152–58
    [Google Scholar]
  40. 40. 
    Crawford LA, Keyghobadi N. 2018. Flight morphology corresponds to both surrounding landscape structure and local patch conditions in a highly specialized peatland butterfly (Lycaena epixanthe). Ecol. Entomol. 43:629–39
    [Google Scholar]
  41. 41. 
    Davis CA, Austin JE, Buhl DA 2006. Factors influencing soil invertebrate communities in riparian grasslands of the Central Platte River floodplain. Wetlands 26:438–54
    [Google Scholar]
  42. 42. 
    Deans AM, Smith SM, Malcolm JR, Crins WJ, Bellocq MI 2007. Hoverfly (Syrphidae) communities respond to varying structural retention after harvesting in Canadian peatland black spruce forests. Environ. Entomol. 36:308–18
    [Google Scholar]
  43. 43. 
    Deharveng L, D'Haese CA, Bedos A 2008. Global diversity of springtails (Collembola; Hexapoda) in freshwater. Hydrobiologia 595:329–38
    [Google Scholar]
  44. 44. 
    Delgado C, Couturier G, Fine PVA 2014. Survival of seasonal flooding in the Amazon by the terrestrial insect Conotrachelus dubiae O'Brien & Couturier (Coleoptera: Curculionidae), a pest of the camu-camu plant, Myrciaria dubia (Myrtacae). Neotrop. Entomol. 43:380–84
    [Google Scholar]
  45. 45. 
    Drahovzal SA, Loftin CS, Rhymer J 2015. Environmental predictors of shrubby cinquefoil (Dasiphora fruticosa) habitat and quality as host for Maine's endangered Clayton's copper butterfly (Lycaena dorcas claytoni). Wetl. Ecol. Manag. 23:891–908
    [Google Scholar]
  46. 46. 
    Effler R, Goyer RA, Lenhard GJ 2006. Baldcypress and water tupelo responses to insect defoliation and nutrient augmentation in Maurepas Swamp, Louisiana, USA. Forest Ecol. Manag. 236:295–304
    [Google Scholar]
  47. 47. 
    Folgarait PJ. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7:1221–44
    [Google Scholar]
  48. 48. 
    Gerisch M, Agostinelli V, Henle K, Dziock F 2012. More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121:508–15
    [Google Scholar]
  49. 49. 
    Gerisch M, Schanowski A, Figura W, Gerken B, Dziock F, Henle K 2006. Carabid beetles (Coleoptera, Carabidae) as indicators of hydrological site conditions in floodplain grasslands. Int. Rev. Hydrobiol. 91:326–40
    [Google Scholar]
  50. 50. 
    Giordano R, Weber E, Darby BJ, Soto-Adames FN, Murray RE, Drizo A 2014. Invertebrates associated with a horizontal-flow, subsurface constructed wetland in a northern climate. Environ. Entomol. 43:283–90
    [Google Scholar]
  51. 51. 
    Golovatch SI, Hoffman RL, Adis J, Marques MI, Raizer J et al. 2005. Millipedes (Diplopoda) of the Brazilian Pantanal. Amazoniana 18:3/4273–88
    [Google Scholar]
  52. 52. 
    Gotelli NJ, Ellison AM. 2002. Biogeography at a regional scale: determinants of ant species density in New England bogs and forests. Ecology 83:1604–9
    [Google Scholar]
  53. 53. 
    Greenwood MT, Bickerton MA, Petts GE 1995. Spatial distribution of spiders on the floodplain of the River Trent, UK: the role of hydrologic setting. Regul. Rivers Res. Manag. 10:303–13
    [Google Scholar]
  54. 54. 
    Günther J, Assmann T. 2005. Restoration ecology meets carabidology: effects of floodplain restitution on ground beetles (Coleoptera, Carabidae). Biodivers. Conserv. 14:1583–606
    [Google Scholar]
  55. 55. 
    Haefliger P, Schwarzlaender M, Blossey B 2006. Impact of Archanara geminipuncta (Lepidoptera: Noctuidae) on aboveground biomass production of Phragmites australis. Biol. Control 38:413–21
    [Google Scholar]
  56. 56. 
    Hairston NG, Smith FE, Slobodkin LB 1960. Community structure, population control and competition. Am. Nat. 44:421–25
    [Google Scholar]
  57. 57. 
    Hardman CJ, Harris DB, Sears J, Droy N 2012. Habitat associations of invertebrates in reedbeds, with implications for management. Aquat. Conserv. Mar. Freshw. Ecosyst. 22:813–26
    [Google Scholar]
  58. 58. 
    Harms NE, Grodowitz MJ. 2009. Insect herbivores of aquatic and wetland plants in the United States: a checklist from literature. J. Aquat. Plant Manag. 47:73–96
    [Google Scholar]
  59. 59. 
    Hering D, Gerhard M, Manderbach R, Reich M 2004. Impact of a 100-year flood on vegetation, benthic invertebrates, riparian fauna and large woody debris standing stock in an alpine floodplain. River Res. Appl. 20:445–57
    [Google Scholar]
  60. 60. 
    Hering D, Platcher H. 1997. Riparian ground beetles (Coleoptera, Carabidae) preying on aquatic invertebrates; a feeding strategy in alpine floodplains. Oecologia 111:261–70
    [Google Scholar]
  61. 61. 
    Hobbelen PHF, van den Brink PJ, Hobbelen JF, van Gestel CAM 2006. Effects of heavy metals on the structure and functioning of detritivore communities in a contaminated floodplain area. Soil Biol. Biochem. 38:1596–607
    [Google Scholar]
  62. 62. 
    Hochkirch A, Adorf F. 2007. Effects of prescribed burning and wildfires on Orthoptera in central European peat bogs. Environ. Conserv. 34:225–35
    [Google Scholar]
  63. 63. 
    Holec M, Frouz J. 2006. The effect of two ant species Lasius niger and Lasius flavus on soil properties in two contrasting habitats. Eur. J. Soil Biol. 42:213–17
    [Google Scholar]
  64. 64. 
    Holmquist JG, Jones JR, Schmidt-Gengenback J, Pierotti LF, Love JP 2011. Terrestrial and aquatic macroinvertebrate assemblages as a function of wetland type across a mountain landscape. Arct. Antarct. Alp. Res. 43:568–84
    [Google Scholar]
  65. 65. 
    Hore U, Uniyal VP. 2008. Diversity and composition of spider assemblages in five vegetation types of the Terai Conservation Area, India. J. Arachnol. 36:251–58
    [Google Scholar]
  66. 66. 
    Hunt-Joshi TR, Blossey B, Root RB 2004. Root and leaf herbivory on Lythrum salicaria: implications for plant performance and communities. Ecol. Appl. 14:1574–89
    [Google Scholar]
  67. 67. 
    Januschke K, Verdonschot RCM. 2016. Effects of river restoration on riparian ground beetles (Coleoptera: Carabidae) in Europe. Hydrobiologia 769:93–104
    [Google Scholar]
  68. 68. 
    Junk WJ, Bailey PB, Sparks RE 1989. The flood-pulse concept in river-floodplain systems. Spec. Publ. Can. J. Fish. Aquat. Sci. 106:110–27
    [Google Scholar]
  69. 69. 
    Junk WJ, da Cunha CN, Wantzen KM, Petermann P, Strüssmann C et al. 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat. Sci. 68:278–309
    [Google Scholar]
  70. 70. 
    Kaluz S. 1994. Contribution to the knowledge of soil mites (Acarina) in Morava River floodplain and Borska-Nizina (lowland). Ekol. Bratislava 13:Suppl. 1135–44
    [Google Scholar]
  71. 71. 
    Kappes H, Lay R, Topp W 2007. Changes in different trophic levels of litter-dwelling macrofauna associated with Giant Knotweed invasion. Ecosystems 10:734–44
    [Google Scholar]
  72. 72. 
    Kati V, Zografou K, Tzirkalli E, Chitos T, Willemse L 2012. Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: the roles of disturbance and environmental factors. J. Insect Conserv. 16:807–18
    [Google Scholar]
  73. 73. 
    Keiper JB, Walton WE, Foote BA 2002. Biology and ecology of higher Diptera from freshwater wetlands. Annu. Rev. Entomol. 47:207–32
    [Google Scholar]
  74. 74. 
    Kolesnikov FN, Karamyan AN, Hoback WW 2012. Survival of ground beetles (Coleoptera: Carabidae) submerged during floods: field and laboratory studies. Eur. J. Entomol. 109:71–76
    [Google Scholar]
  75. 75. 
    Kolka RK, D'Amato AW, Wagenbrenner JW, Slesak RA, Pypker TG et al. 2018. Review of ecosystem level impacts of emerald ash borer on black ash wetlands: What does the future hold?. Forests 9:179
    [Google Scholar]
  76. 76. 
    Koren T, Vukotic K, Crne M 2015. Diversity of the moth fauna (Lepidoptera: Heterocera) of a wetland forest: a case study from Motovun forest, Istria, Croatia. Period. Biol. 117:399–414
    [Google Scholar]
  77. 77. 
    Krab EJ, Aerts R, Berg MP, van Hal J, Keuper F 2014. Northern peatland Collembola communities unaffected by three summers of simulated extreme precipitation. Appl. Soil Ecol. 79:70–76
    [Google Scholar]
  78. 78. 
    Lafage D, Sibelle C, Secondi J, Canard A, Pétillon J 2015. Short-term resilience of arthropod assemblages after spring flood, with focus on spiders (Arachnida: Araneae) and carabids (Coleoptera: Carabidae). Ecohydrology 8:1584–99
    [Google Scholar]
  79. 79. 
    Landis DA, Fiedler AK, Hamm CA, Cuthrell DL, Schools EH et al. 2012. Insect conservation in Michigan prairie fen: addressing the challenge of global change. J. Insect Conserv. 16:131–42
    [Google Scholar]
  80. 80. 
    Lessel T, Marx MT, Eisenbeis G 2011. Effects of ecological flooding on the temporal and spatial dynamics of carabid beetles (Coleoptera, Carabidae) and springtails (Collembola) in a polder habitat. ZooKeys 100:421–46
    [Google Scholar]
  81. 81. 
    Liebherr JK, Song H. 2002. Distinct ground beetle (Coleoptera: Carabidae) assemblages within a New York State wetland complex. J. N. Y. Entomol. Soc. 110:127–41
    [Google Scholar]
  82. 82. 
    Maceda-Veiga A, Basas H, Lanzaco G, Sala M, de Sostoa A, Serra A 2016. Impacts of the invader giant reed (Arundo donax) on riparian habitats and ground arthropod communities. Biol. Invas. 18:731–49
    [Google Scholar]
  83. 83. 
    Malumbres-Olarte J, Vink CJ, Ross JG, Cruickshank RH, Paterson AM 2013. The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv. Divers. 6:124–34
    [Google Scholar]
  84. 84. 
    Marshall SA, Finnamore AT, Blades DCA 1999. Canadian peatlands: diversity and habitat specialization of the arthropod fauna. Invertebrates in Freshwater Wetlands of North America: Ecology and Management DP Batzer, RB Rader, SA Wissinger 383–400 New York: Wiley
    [Google Scholar]
  85. 85. 
    Martay B, Hughes F, Doberski J 2012. A comparison of created and ancient fenland using ground beetles as a measure of conservation value. Insect Conserv. Divers. 5:251–63
    [Google Scholar]
  86. 86. 
    Martay B, Robertshaw T, Doberski J, Thomas A 2014. Does dispersal limit beetle re-colonization of restored fenland? A case study using direct measurements of dispersal and genetic analysis. Restor. Ecol. 22:590–97
    [Google Scholar]
  87. 87. 
    Martínez FS, Franceschini C. 2018. Invertebrate herbivory on floating-leaf macrophytes at the northeast of Argentina: Should the damage be taken into account in estimations of plant biomass?. Ann. Brazil. Acad. Sci. 90:155–67
    [Google Scholar]
  88. 88. 
    Marx MT, Yan X, Wang X, Song L, Wang K et al. 2016. Soil fauna abundance, feeding and decomposition in different reclaimed and natural sites in the Sanjiang Plain wetland, Northeast China. Wetlands 36:445–55
    [Google Scholar]
  89. 89. 
    Matern A, Drees C, Meyer H, Assman T 2008. Population ecology of the rare carabid beetle Carabus variolosus (Coleoptera: Carabidae) in north-west Germany. J. Insect Conserv. 12:591–601
    [Google Scholar]
  90. 90. 
    Mendelssohn IA, Batzer DP, Holt CR, Graham SA 2014. Abiotic constraints for wetland plants and animals. Ecology of Freshwater and Estuarine Wetlands DP Batzer, RR Sharitz 61–86 Berkeley, CA: Univ. Calif. Press. , 2nd ed..
    [Google Scholar]
  91. 91. 
    Mescher MC, Ross KG, Shoemaker DD, Keller L, Krieger MJB 2003. Distribution of the two social forms of the fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the native South American range. Ann. Entomol. Soc. Am. 96:810–17
    [Google Scholar]
  92. 92. 
    Nakano S, Murakami M. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. PNAS 98:166–70
    [Google Scholar]
  93. 93. 
    Noreika N, Kotze DJ, Loukola OJ, Sormunen N, Vuori A et al. 2016. Specialist butterflies benefit most from the ecological restoration of mires. Biol. Conserv. 196:103–14
    [Google Scholar]
  94. 94. 
    Notzold R, Blossey B, Newton E 1998. The influence of below ground herbivory and plant competition on growth and biomass allocation of purple loosestrife. Oecologia 113:82–93
    [Google Scholar]
  95. 95. 
    NWWG (Natl. Wetlands Work. Group) 1988. Wetlands of Canada Ecol. Land Classif. Ser. 24. Ottawa, Ontario/Montreal, Quebec: Sustain. Dev. Branch, Env. Can./Polysci. Publ .
  96. 96. 
    O'Malley RE. 1999. Agricultural wetland management for conservation goals: invertebrates in California ricelands. Invertebrates in Freshwater Wetlands of North America: Ecology and Management DP Batzer, RB Rader, SA Wissinger 857–85 New York: Wiley
    [Google Scholar]
  97. 97. 
    Paetzold A, Bernet JF, Tockner K 2006. Consumer-specific responses to riverine subsidy pulses in a riparian arthropod assemblage. Freshw. Biol. 51:1103–15
    [Google Scholar]
  98. 98. 
    Paetzold A, Schubert CJ, Tockner K 2005. Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8:748–59
    [Google Scholar]
  99. 99. 
    Penko JM, Pratt DC. 1987. Insect herbivory in Minnesota Typha stands. J. Freshw. Ecol. 4:235–44
    [Google Scholar]
  100. 100. 
    Pequeno PACL, Franklin E. 2014. What drives the dynamics of a soil mite population under seasonal flooding? A null model analysis. Exp. Appl. Acarol. 62:215–24
    [Google Scholar]
  101. 101. 
    Plum H. 2005. Terrestrial invertebrates in flooded grassland: a literature review. Wetlands 25:721–37
    [Google Scholar]
  102. 102. 
    Pratt PD, Rayamajhi MB, Van TK, Center TD, Tipping PW 2005. Herbivory alters resource allocation and compensation in the invasive tree Melaleuca quiquenervia. Ecol. Entomol 30:316–26
    [Google Scholar]
  103. 103. 
    Ramey TL, Richardson JS. 2017. Terrestrial invertebrates in the riparian zone: mechanisms underlying their unique diversity. BioScience 67:808–19
    [Google Scholar]
  104. 104. 
    Reeder RH, Bacon ETG, Caiden MJ, Bullock RJ, Gonzalez-Moreno P 2018. Effect of population density of the Azolla weevil (Stenopelmus rufiasus) on the surface cover of the water fern (Azolla filiculoides) in the UK. Biocontrol 63:185–92
    [Google Scholar]
  105. 105. 
    Ribas CR, Schoereder JH. 2007. Ant communities, environmental characteristics and their implications for conservation in the Brazilian Pantanal. Biodivers. Conserv. 16:1511–20
    [Google Scholar]
  106. 106. 
    Rothenbücher J, Schaefer M. 2006. Submersion tolerance in floodplain arthropod communities. Basic Appl. Ecol. 7:398–408
    [Google Scholar]
  107. 107. 
    Sasakawa K. 2016. Notes on the reproductive ecology and description of the preimaginal morphology of Elaphrus sugai Nakane, the most endangered species of Elaphrus Fabricius (Coleoptera: Carabidae) ground beetle worldwide. PLOS ONE 11:7e0159164
    [Google Scholar]
  108. 108. 
    Savage J, Wheeler TA, Moores AMA, Taillefer AG 2011. Effects of habitat size, vegetation cover, and surrounding land use on Diptera diversity in temperate Nearctic bogs. Wetlands 31:125–34
    [Google Scholar]
  109. 109. 
    Schipper AM, Hendriks AJ, Ragas AMJ, Leuven RSEW 2014. Disentangling and ranking the influences of multiple environmental factors on plant and soil-dwelling arthropod assemblages in a river Rhine floodplain area. Hydrobiologia 729:133–42
    [Google Scholar]
  110. 110. 
    Schipper AM, Lottermanh K, Geertsma M, Leuven RSEW, Hendriks AJ 2010. Using datasets of different taxonomic detail to assess the influence of floodplain characteristics on terrestrial arthropod assemblages. Biodivers. Conserv. 19:2087–110
    [Google Scholar]
  111. 111. 
    Schmidt MH, Lefebvre G, Poulin B, Tscharntke T 2005. Reed cutting affects arthropod communities, potentially reducing food for passerine birds. Biol. Conserv. 121:157–66
    [Google Scholar]
  112. 112. 
    Schmidt MH, Rocker S, Hanafi J, Gigon A 2008. Rotational fallows as overwintering habitat for grassland arthropods: the case of spiders in fen meadows. Biodivers. Conserv. 17:3003–12
    [Google Scholar]
  113. 113. 
    Schooler SS, McEvoy PB, Hammond P, Coombs EM 2009. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities. Bull. Entomol. Res. 99:229–43
    [Google Scholar]
  114. 114. 
    Scott AG, Oxford GS, Selden PA 2006. Epigeic spiders as ecological indicators of conservation value for peat bogs. Biol. Conserv. 127:420–28
    [Google Scholar]
  115. 115. 
    Sharitz RR, Batzer DP, Pennings SC 2014. Ecology of freshwater and estuarine wetlands: an introduction. Ecology of Freshwater and Estuarine Wetlands DP Batzer, RR Sharitz 1–22 Berkeley, CA: Univ. Calif. Press. , 2nd ed..
    [Google Scholar]
  116. 116. 
    Sienkiewicz P, Żmihorski M. 2012. The effect of disturbance caused by rivers flooding on ground beetles (Coleoptera, Carabidae). Eur. J. Entomol. 109:535–41
    [Google Scholar]
  117. 117. 
    Sipura M, Ikonen A, Tahvanainen J, Roininen H 2002. Why does the leaf beetle Galerucella lineola F. attack wetland willows?. Ecology 83:3393–407
    [Google Scholar]
  118. 118. 
    Song L, Liu J, Yan X, Chang L, Wu D 2016. Euedaphic and hemiedaphic Collembola suffer larger damages than edaphic species to nitrogen input. Environ. Pollut. 208:413–15
    [Google Scholar]
  119. 119. 
    Spitzer K, Bezděk A, Jaroš J 1999. Ecological succession of a relict Central European peat bog and variability of its insect biodiversity. J. Insect Conserv. 3:97–106
    [Google Scholar]
  120. 120. 
    Spitzer K, Danks HV. 2006. Insect biodiversity of boreal peat bogs. Annu. Rev. Entomol. 51:137–61
    [Google Scholar]
  121. 121. 
    Stephens JD, Santos SR, Folkerts DR 2011. Genetic differentiation, structure, and a transition zone among populations of the pitcher plant moth Exyra semicrocea: implications for conservation. PLOS ONE 6:7e22658
    [Google Scholar]
  122. 122. 
    Sterzyńska M, Pižl V, Tajovský K, Stelmaszczyk M, Okruszho T 2015a. Soil fauna of peat-forming wetlands in a natural river floodplain. Wetlands 35:815–29
    [Google Scholar]
  123. 123. 
    Sterzyńska M, Tajovský K, Nicia P 2015b. Contrasting responses of millipedes and terrestrial isopods to hydrologic regime changed in forested montane wetlands. Eur. J. Soil Biol. 68:33–41
    [Google Scholar]
  124. 124. 
    Taillefer AG, Wheeler TA. 2018. Tracking wetland community evolution using Diptera taxonomic, functional and phylogenetic structure. Insect Conserv. Divers. 11:276–93
    [Google Scholar]
  125. 125. 
    Tajovský K. 1999. Impact of inundations on terrestrial arthropod assemblages in Southern Moravian floodplain forests, the Czech Republic. Ekol. Bratislava 18:Suppl. 1177–85
    [Google Scholar]
  126. 126. 
    Tipping PW, Martin MR, Rayamajhi MB, Pratt PD, Gettys LA 2018. Combining biological and mechanical tactics to suppress Melaleuca quinquenervia. Biol. Control 121:229–33
    [Google Scholar]
  127. 127. 
    Topp W, Kappes H, Rogers F 2008. Response of ground-dwelling beetle (Coleoptera) assemblages to giant knotweed (Reynoutria spp.) invasion. Biol. Invas. 10:381–90
    [Google Scholar]
  128. 128. 
    Tronstad LM, Tronstad BP, Benke AC 2005. Invertebrate seedbanks: rehydration of soil from an unregulated river floodplain in the south-eastern U.S. Freshw. Biol. 50:646–55
    [Google Scholar]
  129. 129. 
    Truxa C, Fiedler K. 2012. Down in the flood? How moth communities are shaped in temperate floodplain forests. Insect Conserv. Divers. 5:389–97
    [Google Scholar]
  130. 130. 
    Tscharntke T, Greiler H. 1995. Insect communities, grasses, and grasslands. Annu. Rev. Entomol. 40:535–58
    [Google Scholar]
  131. 131. 
    Ulyshen MD. 2014. Interacting effects of insects and flooding on wood decomposition. PLOS ONE 9:7e101867
    [Google Scholar]
  132. 132. 
    Valkama E, Lyytinen S, Koricheva J 2008. The impact of reed management on wildlife: a meta-analytical review of European studies. Biol. Conserv. 141:364–74
    [Google Scholar]
  133. 133. 
    van Dijk J, Didden WAM, Kuenen F, van Bodegom PM, Verhoef HA, Aerts R 2009. Can differences in soil community composition after peat meadow restoration lead to different decomposition and mineralization rates?. Soil Biol. Biochem. 41:1717–25
    [Google Scholar]
  134. 134. 
    Verschut TA, Hamback PA. 2018. A random survival forest illustrates the importance of natural enemies compared to host plant quality on leaf beetle survival rates. BMC Ecol 18:33
    [Google Scholar]
  135. 135. 
    Wallace JB, O'Hop J. 1985. Life on a fast pad: waterlily leaf beetle impact on water lilies. Ecology 66:1534–44
    [Google Scholar]
  136. 136. 
    Wantzen KM, Marchese MR, Marques MI, Battirola LD 2016. Invertebrates in neotropical floodplains. Invertebrates in Freshwater Wetlands: An International Perspective on their Ecology DP Batzer, D Boix 493–524 Berlin: Springer
    [Google Scholar]
  137. 137. 
    Watts CH, Didham RK. 2006. Rapid recovery of an insect-plant interaction following habitat loss and experimental wetland restoration. Oecologia 148:61–69
    [Google Scholar]
  138. 138. 
    Webb MR, Pullin AS. 1998. Effects of submergence by winter floods on diapausing caterpillars of a wetland butterfly, Lycaena dispar batavus. Ecol. Entomol 23:96–99
    [Google Scholar]
  139. 139. 
    Wei X, Cao R, Wu X, Eisenhauer N, Sun S 2018. Effect of water table decline on the abundances of soil mites, springtails, and nematodes in the Zoige peatland of eastern Tibetan Plateau. Appl. Soil Ecol. 129:77–83
    [Google Scholar]
  140. 140. 
    Wheeler GS, Hight SD, Wright SA 2017. Impact of field densities of the naturalized defoliator Caloptilia triadicae (Lepidoptera: Gracillariidae) on the invasive weed Chinese tallowtree. Environ. Entomol. 46:1304–12
    [Google Scholar]
  141. 141. 
    Williams CD, Hayes M, McDonnell RJ, Anderson R, Bleasdale A, Gormally MJ 2014. Factors affecting wetland ground beetle (Carabidae) assemblages: How important are habitats, conservation designations and management?. Insect Conserv. Divers. 7:206–22
    [Google Scholar]
  142. 142. 
    Wissinger SA. 1999. Ecology of wetland invertebrates: synthesis and applications for conservation and management. Invertebrates in Freshwater Wetlands of North America: Ecology and Management DP Batzer, RD Rader, SA Wissinger 1043–86 New York: Wiley
    [Google Scholar]
  143. 143. 
    Wu HT, Batzer DP, Yan XM, Lu XG, Wu DH 2013a. Contributions of ant mounds to soil carbon and nitrogen pools in a marsh wetland of Northeastern China. Appl. Soil Ecol. 70:9–15
    [Google Scholar]
  144. 144. 
    Wu HT, Lu XG, Jiang M, Bao X 2009. Impacts of soil fauna on litter decomposition at different succession stages of wetland in Sanjiang Plain, China. Chin. Geogr. Sci. 19:258–64
    [Google Scholar]
  145. 145. 
    Wu HT, Lu XG, Tong SZ, Batzer DP 2015. Soil engineering ants increase CO2 and N2O emissions by affecting mound soil physicochemical characteristics from a marsh soil: a laboratory study. Appl. Soil Ecol. 87:19–26
    [Google Scholar]
  146. 146. 
    Wu HT, Lu XG, Wu DH, Song LH, Yan XM, Liu J 2013b. Ant mounds alter spatial and temporal patterns of CO2, CH4 and N2O emissions from a marsh soil. Soil Biol. Biochem. 57:884–91
    [Google Scholar]
  147. 147. 
    Wu HT, Lu XG, Wu DH, Yin XM 2010. Biogenic structures of two ant species sanguinea and Lasius flavus altered soil C, N and P distribution in a meadow wetland of the Sanjiang Plain, China. Appl. Soil Ecol. 46:321–28
    [Google Scholar]
  148. 148. 
    Yamazaki L, Vindica VF, Brescovit AD, Marques MI, Battirola LD 2017. Temporal variation in the spider assemblage (Arachnida, Araneae) in canopies of Callisthene fasciculata (Vochysiaceae) in the Brazilian Pantanal biome. Iheringia Ser. Zool. 107:e2017019
    [Google Scholar]
  149. 149. 
    Zerm M, Adis J. 2003a. Exceptional anoxia resistance in larval tiger beetle, Phaeoxantha klugii (Coleoptera: Cicindelidae). Physiol. Entomol. 28:150–53
    [Google Scholar]
  150. 150. 
    Zerm M, Adis J. 2003b. Survival strategy of the bombardier beetle, Pheropsophus rivieri (Col.: Carabidae) in a Central Amazonian blackwater floodplain (Brazil). Amazoniana 17:503–8
    [Google Scholar]
  151. 151. 
    Zhang B, Chang L, Ni Z, Callaham MA Jr 2014. Effects of land use changes on winter-active Collembola in Sanjiang Plain of China. Appl. Soil Biol. 83:51–58
    [Google Scholar]
  152. 152. 
    Zimmerman K, Fric A, Filipova L, Konvicka M 2005. Adult demography, dispersal and behavior of Brenthis ino (Lepidoptera: Nymphalidae): how to be a successful wetland butterfly. Eur. J. Entomol. 1–2:699–706
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-024902
Loading
/content/journals/10.1146/annurev-ento-011019-024902
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error