1932

Abstract

Tularemia is a Holarctic zoonosis caused by the gamma proteobacterium and is considered to be a vector-borne disease. In many regions, human risk is associated with the bites of flies, mosquitoes, or ticks. But the biology of the agent is such that risk may be fomite related, and large outbreaks can occur due to inhalation or ingestion of contaminated materials. Such well-documented human risk factors suggest a role for these risk factors in the enzootic cycle as well. Many arthropods support the growth or survival of the agent, but whether arthropods (ticks in particular) are obligately required for the perpetuation of remains to be demonstrated. As with most zoonoses, our knowledge of the ecology of has been driven with the objective of understanding human risk. In this review, we focus on the role of the arthropod in maintaining , particularly with respect to long-term enzootic persistence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-025134
2020-01-07
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-025134.html?itemId=/content/journals/10.1146/annurev-ento-011019-025134&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abd H, Johansson T, Golovliov I, Sandstrom G, Forsman M 2003. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol 69:600–6
    [Google Scholar]
  2. 2. 
    Allred DM, Stagg GN, Lavender JF 1956. Experimental transmission of Pasteurella tularensis by the tick, Dermacentor parumapertus. J. Infect. Dis. 99:143–45
    [Google Scholar]
  3. 3. 
    Allue M, Ruiz Sopeña C, Gallardo MT, Mateos L, Vian E et al. 2008. Tularemia outbreak in Castilla y Leon, Spain, 2007: an update. Eurosurveillance 13:18948
    [Google Scholar]
  4. 4. 
    Anda P, Segura del Pozo J, Díaz García JM, Escudero R, García Peña FJ et al. 2001. Waterborne outbreak of tularemia associated with crayfish fishing. Emerg. Infect. Dis. 7:575–82
    [Google Scholar]
  5. 5. 
    Anonymous 1941. Tularemia infection found in fleas from prairie dogs in Wyoming. Public Health Rep 56:301521
    [Google Scholar]
  6. 6. 
    Aperis G, Fuchs BB, Anderson CA, Warner JE, Calderwood SB, Mylonakis E 2007. Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect 9:729–34
    [Google Scholar]
  7. 7. 
    Ariza-Miguel J, Johansson A, Fernández-Natal M, Martínez-Nistal C, Orduña A et al. 2014. Molecular investigation of tularemia outbreaks, Spain, 1997–2008. Emerg. Infect. Dis. 20:754–61
    [Google Scholar]
  8. 8. 
    Avery FW, Barnett TB. 1967. Pulmonary tularemia: a report of five cases and consideration of pathogenesis and terminology. Am. Rev. Respir. Dis. 95:584–91
    [Google Scholar]
  9. 9. 
    Bäckman S, Näslund J, Forsman M, Thelaus J 2015. Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector. Sci. Rep. 5:7793
    [Google Scholar]
  10. 10. 
    Balashov YS. 1972. Bloodsucking ticks (Ixodoidea): vectors of disease in man and animals. Misc. Publ. Entomol. Soc. Am. 8:161–376
    [Google Scholar]
  11. 11. 
    Bell JF. 1945. The infection of ticks (Dermacentor variabilis) with Pasteurella tularensis. J. Infect. Dis 76:83–95
    [Google Scholar]
  12. 12. 
    Bell JF, Stewart SJ. 1975. Chronic shedding and tularemia nephritis in rodents: possible relation to occurrence of Francisella tularensis in lotic waters. J. Wildl. Dis. 11:421–30
    [Google Scholar]
  13. 13. 
    Bell JF, Stewart SJ, Wikel SK 1979. Resistance to tick-borne Francisella tularensis by tick-sensitized rabbits: allergic klendusity. Am. J. Trop. Med. Hyg. 28:876–80
    [Google Scholar]
  14. 14. 
    Berdal BP, Mehl R, Meidell NK, Lorentzen-Styr AM, Scheel O 1996. Field investigations of tularemia in Norway. FEMS Immunol. Med. Microbiol. 13:191–95
    [Google Scholar]
  15. 15. 
    Berrada ZL, Goethert HK, Telford SR 2006. Raccoons and skunks as sentinels for enzootic tularemia. Emerg. Infect. Dis. 12:1019–21
    [Google Scholar]
  16. 16. 
    Berrada ZL, Telford SR. 2011. Survival of Francisella tularensis in brackish water. Arch. Microbiol. 193:223–26
    [Google Scholar]
  17. 17. 
    Birdsell DN, Johansson A, Öhrman C, Kaufman E, Molins C et al. 2014. Francisellatularensis subsp. tularensis group A.I, United States. Emerg. Infect. Dis 20:861–65
    [Google Scholar]
  18. 18. 
    Boyce JM. 1975. Recent trends in the epidemiology of tularemia in the United States. J. Infect. Dis. 131:197–99
    [Google Scholar]
  19. 19. 
    Broman T, Thelaus J, Andersson AC, Bäckman S, Wikström P et al. 2011. Molecular detection of persistent Francisella tularensis subspecies holarctica in natural waters. Int. J. Microbiol. 2011:851946
    [Google Scholar]
  20. 20. 
    Burgdorfer W, Owen CR. 1956. Experimental studies on argasid ticks as possible vectors of tularemia. J. Infect. Dis. 98:67–74
    [Google Scholar]
  21. 21. 
    Burke DS. 1977. Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J. Infect. Dis. 135:55–60
    [Google Scholar]
  22. 22. 
    Burroughs AL, Holdenried R, Longanecker DS, Meyer KF 1945. A field study of latent tularemia in rodents with a list of all known naturally infected vertebrates. J. Infect. Dis. 76:115–19
    [Google Scholar]
  23. 23. 
    Calhoun EL, Alford HI. 1955. Incidence of tularemia and Rocky Mountain spotted fever among common ticks of Arkansas. Am. J. Trop. Med. Hyg. 4:310–17
    [Google Scholar]
  24. 24. 
    Challacombe JF, Petersen JM, Gallegos-Graves LV, Hodge D, Pillai S, Kuske CR 2017. Whole-genome relationships among Francisella bacteria of diverse origins define new species and provide specific regions for detection. Appl. Environ. Microbiol. 83:e02589–16
    [Google Scholar]
  25. 25. 
    Chernin E. 1983. Sir Patrick Manson's studies on the transmission and biology of filariasis. Rev. Infect. Dis. 5:148–66
    [Google Scholar]
  26. 26. 
    Conlan JW, Chen W, Shen H, Webb A, KuoLee R 2003. Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb. Pathog. 34:239–48
    [Google Scholar]
  27. 27. 
    Dahlstrand S, Ringertz O, Zetterberg B 1971. Airborne tularemia in Sweden. Scand. J. Infect. Dis. 3:7–16
    [Google Scholar]
  28. 28. 
    Danell K. 1978. Ecology of the Muskrat in Northern Sweden Solna, Swed.: Natl. Swed. Environ. Protect. Board
  29. 29. 
    Davis GE. 1940. Bacterium tularense: its persistence in the tissues of the argasid ticks Ornithodoros turicata and O. parkeri. Public Health Rep 55:676–80
    [Google Scholar]
  30. 30. 
    Downs CM, Buchele L, Edgar EP 1949. Studies on pathogenesis and immunity in tularemia. I. The pathogenesis of tularemia in the white rat. J. Immunol. 63:117–33
    [Google Scholar]
  31. 31. 
    Downs CM, Coriell LL, Pinchot GB, Maumenee E, Klauber A et al. 1947. Studies on tularemia. I. The comparative susceptibility of various laboratory animals. J. Immunol. 56:217–28
    [Google Scholar]
  32. 32. 
    Duron O, Binetruy F, Noël V, Cremaschi J, McCoy KD et al. 2017. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 26:2905–21
    [Google Scholar]
  33. 33. 
    Eden J-S, Rose K, Ng J, Shi M, Wang Q et al. 2017. Francisella tularensis ssp. holarctica in ringtail possums, Australia. Emerg. Infect. Dis 23:1198–201
    [Google Scholar]
  34. 34. 
    Eklund BE, Mahdi O, Huntley JF, Collins E, Martin C et al. 2017. The orange spotted cockroach (Blaptica dubia, Serville 1839) is a permissive experimental host for Francisella tularensis. Proc. W. Va. Acad. Sci 89:34–47
    [Google Scholar]
  35. 35. 
    El-Etr SH, Margolis JJ, Monack D, Robison RA, Cohen M et al. 2009. Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl. Environ. Microbiol. 75:7488–500
    [Google Scholar]
  36. 36. 
    Eliasson H, Bäck E. 2007. Tularaemia in an emergent area in Sweden: an analysis of 234 cases in five years. Scand. J. Infect. Dis. 39:880–89
    [Google Scholar]
  37. 37. 
    Faber M, Heuner K, Jacob D, Grunow R 2018. Tularemia in Germany—a re-emerging zoonosis. Front. Cell Infect. Microbiol. 8:40
    [Google Scholar]
  38. 38. 
    Feldman KA, Stiles-Enos D, Julian K, Matyas BT, Telford SR 3rd et al. 2003. Tularemia on Martha's Vineyard: seroprevalence and occupational risk. Emerg. Infect. Dis. 9:350–54
    [Google Scholar]
  39. 39. 
    Forsman M, Henningson EW, Larsson E, Johansson T, Sandstrom G 2000. Francisella tularensis does not manifest virulence in viable but non-culturable state. FEMS Microbiol. Ecol. 31:217–24
    [Google Scholar]
  40. 40. 
    Foshay L. 1940. Tularemia: a summary of certain aspects of the disease including methods for early diagnosis and the results of serum treatment. Medicine 19:1–84
    [Google Scholar]
  41. 41. 
    Foshay L. 1950. Tularemia. Annu. Rev. Microbiol. 4:313–30
    [Google Scholar]
  42. 42. 
    Francis E. 1921. The occurrence of tularemia in nature as a disease of man. Public Health Rep 36:1731–38
    [Google Scholar]
  43. 43. 
    Francis E. 1937. Sources of infection and seasonal incidence of tularaemia in man. Public Health Rep 52:103–13
    [Google Scholar]
  44. 44. 
    Francis E, Lake GC. 1921. Experimental transmission of tularaemia in rabbits by the rabbit louse, Haemodipsus ventricosm (Denny). Public Health Rep 36:1747–53
    [Google Scholar]
  45. 45. 
    Francis E, Lake GC. 1922. Transmission of tularaemia by the bedbug, Cimex lectularius. Public Health Rep. 37:83–115
    [Google Scholar]
  46. 46. 
    Francis E, Lake GC. 1922. Transmission of tularaemia by the mouse louse, Polyplax serratus (Burm.). Public Health Rep 37:96–101
    [Google Scholar]
  47. 47. 
    Francis E, Mayne B. 1921. Experimental transmission of tularemia by flies of the species Chrysops discalis. Public Health Rep 36:1731–92
    [Google Scholar]
  48. 48. 
    Francis E, Moore D. 1926. Identity of Ohara's disease and tularemia. J. Am. Med. Assoc. 86:1329–32
    [Google Scholar]
  49. 49. 
    Gelman AC. 1961. Ecology of tularemia. Studies in Disease Ecology JM May 89–108 New York: Hafner
    [Google Scholar]
  50. 50. 
    Genchi M, Prati P, Vicari N, Manfredini A, Sacchi L et al. 2015. Francisella tularensis: no evidence for transovarial transmission in the tularemia tick vectors Dermacentor reticulatus and Ixodes ricinus. PLOS ONE 10:8e013359
    [Google Scholar]
  51. 51. 
    Gerhart JG, Auguste Dutcher H, Brenner AE, Moses AS, Grubhoffer L, Raghavan R 2018. Multiple acquisitions of pathogen-derived Francisella endosymbionts in soft ticks. Genome Biol. Evol. 10:607–15
    [Google Scholar]
  52. 52. 
    Goethert HK, Saviet B, Telford SR 2009. Metapopulation structure for perpetuation of Francisella tularensis. BMC Microbiol 9:147
    [Google Scholar]
  53. 53. 
    Goethert HK, Shani I, Telford SR 2004. Genotypic diversity of Francisella tularensis infecting Dermacentor variabilis ticks on Martha's Vineyard, Massachusetts. J. Clin. Microbiol. 42:4968–73
    [Google Scholar]
  54. 54. 
    Goethert HK, Telford SR. 2005. A New Francisella (Beggiatiales: Francisellaceae) inquiline within Dermacentor variabilis Say (Acari: Ixodidae). J. Med. Entomol. 42:502–5
    [Google Scholar]
  55. 55. 
    Goethert HK, Telford SR. 2009. Nonrandom distribution of vector ticks (Dermacentor variabilis) infected by Francisella tularensis. PLOS Pathog 5:e1000319
    [Google Scholar]
  56. 56. 
    Goethert HK, Telford SR. 2011. Differential mortality of dog tick vectors due to infection by diverse Francisella tularensis haplotypes. Vector Borne Zoonotic Dis 11:1263–68
    [Google Scholar]
  57. 57. 
    Green RG. 1931. The occurence of Bacterium tularense in the eastern wood tick, Dermacenter variabilis. Am. J. Epidemiol. 14:600–13
    [Google Scholar]
  58. 58. 
    Green RG, Evans CA. 1938. Role of fleas in the natural transmission of tularemia. Minn. Wild Dis. Invest. April 25–28
    [Google Scholar]
  59. 59. 
    Henderson J, Craig EL. 1932. Economic Mammalogy Springfield, IL: Charles C. Thomas
  60. 60. 
    Hertig M. 1936. The Rickettsia, Wolbachia pipientis (gen. et sp.n.) and associated inclusions of the mosquito, Culex pipiens. Parasitology 28:453–86
    [Google Scholar]
  61. 61. 
    Hestvik G, Warns-Petit E, Smith LA, Fox NJ, Uhlhorn H et al. 2015. The status of tularemia in Europe in a one-health context: a review. Epidemiol. Infect. 143:2137–60
    [Google Scholar]
  62. 62. 
    Hood AM, Molyneux DH. 1970. Survival of Pasteurella tularensis in flea larvae. J. Med. Entomol. 7:609–11
    [Google Scholar]
  63. 63. 
    Hopla CE. 1951. Experimental transmission of tularemia by the tropical rat mite. Am. J. Trop. Med. Hyg. 1:768–83
    [Google Scholar]
  64. 64. 
    Hopla CE. 1953. Experimental studies on tick transmission of tularemia organisms. Am. J. Hyg. 58:101–18
    [Google Scholar]
  65. 65. 
    Hopla CE. 1955. The multiplication of tularemia organisms in the lone star tick. Am. J. Epidemiol. 61:371–80
    [Google Scholar]
  66. 66. 
    Hopla CE. 1960. The transmission of tularemia organisms by ticks in the southern states. South. Med. J. 53:92–97
    [Google Scholar]
  67. 67. 
    Hopla CE. 1974. The ecology of tularemia. Adv. Vet. Sci. Comp. Med. 18:25–53
    [Google Scholar]
  68. 68. 
    Hornfeldt B. 1978. Synchronous population fluctuations in voles, small game, owls, and tularemia in northern Sweden. Oecologia 32:141–52
    [Google Scholar]
  69. 69. 
    Hubálek Z, Halouzka J. 1997. Mosquitoes (Diptera: Culicidae), in contrast to ticks (Acari: Ixodidae), do not carry Francisella tularensis in a natural focus of tularemia in the Czech Republic. J. Med. Entomol. 34:660–63
    [Google Scholar]
  70. 70. 
    Hubalek Z, Rudolf I. 2017. Francisella tularensis prevalence and load in Dermacentor reticulatus ticks in an endemic area in Central Europe. Med. Vet. Entomol. 31:234–39
    [Google Scholar]
  71. 71. 
    Ivanov IN, Mitkova N, Reye AL, Hübschen JM, Vatcheva-Dobrevska RS et al. 2011. Detection of new Francisella-like tick endosymbionts in Hyalomma spp. and Rhipicephalus spp. (Acari: Ixodidae) from Bulgaria. Appl. Environ. Microbiol. 77:5562–65
    [Google Scholar]
  72. 72. 
    Jellison WL. 1950. Tularemia geographical distribution of “deerfly fever” and the biting fly, Chrysops discalis. Public Health Rep. 65:1315–50
    [Google Scholar]
  73. 73. 
    Jellison WL. 1974. Tularemia in North America, 1930–1974 Missoula, MT: Univ. Mont.
  74. 74. 
    Jellison WL, Kohls GM, Butler WJ, Weaver JA 1942. Epizootic tularemia in the beaver, Castor canadensis, and the contamination of stream water with Pasteurella tularensis. Am. J. Epidemiol 36:168–82
    [Google Scholar]
  75. 75. 
    Jellison WL, Owen C, Bell J, Kohls GM 1961. Tularemia and animal populations: ecology and epizootiology. Wildl. Dis. 17:1–22
    [Google Scholar]
  76. 76. 
    Karlsson E, Svensson K, Lindgren P, Byström M, Sjödin A et al. 2013. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environ. Microbiol. 15:634–45
    [Google Scholar]
  77. 77. 
    Karpoff SP, Antonoff NI. 1936. The spread of tularemia through water, as a new factor in its epidemiology. J. Bacteriol. 32:243–58
    [Google Scholar]
  78. 78. 
    Keim P, Johansson A, Wagner DM 2007. Molecular epidemiology, evolution, and ecology of Francisella. Ann. N. Y. Acad. Sci 1105:30–66
    [Google Scholar]
  79. 79. 
    Kharitonova N, Leonov Y. 1985. Omsk Hemorrhagic Fever: Ecology of the Agent and Epizootiology New Dehli: Amerind Publ.
  80. 80. 
    Kingry LC, Petersen JM. 2014. Comparative review of Francisella tularensis and Francisella novicida. Front. Cell Infect. Microbiol 4:35
    [Google Scholar]
  81. 81. 
    Kugeler KJ, Mead PS, Janusz AM, Staples JE, Kubota KA et al. 2009. Molecular epidemiology of Francisella tularensis in the United States. Clin. Infect. Dis. 48:863–70
    [Google Scholar]
  82. 82. 
    KuoLee R, Zhao X, Austin J, Harris G, Conlan JW, Chen W 2007. Mouse model of oral infection with virulent type A Francisella tularensis. Infect. Immun 75:1651–60
    [Google Scholar]
  83. 83. 
    Lake GC, Francis E. 1922. Tularaemia Francis 1921: VII. Six cases of tularaemia occurring in laboratory workers. Public Health Rep 37:392–413
    [Google Scholar]
  84. 84. 
    Larson MA, Fey PD, Hinrichs SH, Iwen PC 2014. Francisella tularensis bacteria associated with feline tularemia in the United States. Emerg. Infect. Dis. 20:2068–71
    [Google Scholar]
  85. 85. 
    Larson MA, Nalbantoglu U, Sayood K, Zentz EB, Cer RZ et al. 2016. Reclassification of Wolbachia persica as Francisella persica comb. nov. and emended description of the family Francisellaceae. Int. J. Syst. Evol. Microbiol. 66:1200–5
    [Google Scholar]
  86. 86. 
    Londono-Renteria B, Cardenas JC, Cardenas LD, Christofferson RC, Chisenhall DM et al. 2013. Use of anti-Aedes aegypti salivary extract antibody concentration to correlate risk of vector exposure and dengue transmission risk in Colombia. PLOS ONE 8:e81211
    [Google Scholar]
  87. 87. 
    Loss SR, Will T, Marra PP 2013. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4:1396
    [Google Scholar]
  88. 88. 
    Lundström JO, Andersson A-C, Bäckman S, Schäfer ML, Forsman M, Thelaus J 2011. Transstadial transmission of Francisella tularensis holarctica in mosquitoes, Sweden. Emerg. Infect. Dis. 17:794–99
    [Google Scholar]
  89. 89. 
    Luque-Larena JJ, Mougeot F, Arroyo B, Vidal MD, Rodríguez Pastor R et al. 2017. Irruptive mammal host populations shape tularemia epidemiology. PLOS Pathog 13:e1006622
    [Google Scholar]
  90. 90. 
    Magnarelli L, Levy S, Koski R 2007. Detection of antibodies to Francisella tularensis in cats. Res. Vet. Sci. 82:22–26
    [Google Scholar]
  91. 91. 
    Mahajan UV, Gravgaard J, Turnbull M, Jacobs DB, McNealy TL 2011. Larval exposure to Francisella tularensis LVS affects fitness of the mosquito Culex quinquefasciatus. FEMS Microbiol. Ecol 78:520–30
    [Google Scholar]
  92. 92. 
    Mailles A, Vaillant V. 2014. 10 years of surveillance of human tularaemia in France. Eurosurveillance 19:20956
    [Google Scholar]
  93. 93. 
    Maksimov AA. 1960. Natural Nidi of Tularemia in the USSR Moscow: Med. Lit. Publ. House
  94. 94. 
    Matyas BT, Nieder HS, Telford SR 2007. Pneumonic tularemia on Martha's Vineyard. Ann. N. Y. Acad. Sci. 1105:351–77
    [Google Scholar]
  95. 95. 
    May RM. 1984. Ecology and population biology. Tropical and Geographic Medicine KS Warren, AA Mahmoud 152–66 New York: McGraw-Hill
    [Google Scholar]
  96. 96. 
    McCoy G. A plague-like disease of rodents. Public Health Bull 1911:53–71
    [Google Scholar]
  97. 97. 
    McCoy GW, Chapin CW. 1912. Further observations on a plague-like disease of rodents with a preliminary note on the causative agent, Bacterium tularense. J. Infect. Dis. 10:61–72
    [Google Scholar]
  98. 98. 
    Miller RP. 1946. Viability of dried Bacterium tularense. . Publ. Health Rep 61:1081–85
    [Google Scholar]
  99. 99. 
    Mironchuk YV, Mazepa AV. 2002. Viability and virulence of Francisella tularensis subsp. holarctica in water ecosystems (experimental study). Zh. Mikrobiol. Epidemiol. Immunobiol. 2:9–13
    [Google Scholar]
  100. 100. 
    Molins CR, Delorey MJ, Yockey BM, Young JW, Sheldon SW et al. 2010. Virulence differences among Francisella tularensis subsp. tularensis clades in mice. PLOS ONE 5:e10205
    [Google Scholar]
  101. 101. 
    Moule MG, Monack DM, Schneider DS 2010. Reciprocal analysis of Francisella novicida infections of a Drosophila melanogaster model reveal host-pathogen conflicts mediated by reactive oxygen and imd-regulated innate immune response. PLOS Pathog 6:e1001065
    [Google Scholar]
  102. 102. 
    Niebylski ML, Peacock MG, Fischer ER, Porcella SF, Schwan TG 1997. Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl. Environ. Microbiol 63:3933–40
    [Google Scholar]
  103. 103. 
    Noda H, Munderloh UG, Kurtti TJ 1997. Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl. Environ. Microbiol. 63:3926–32
    [Google Scholar]
  104. 104. 
    Ohara Y, Sato T, Homma M 1996. Epidemiological analysis of tularemia in Japan (yato-byo). FEMS Immunol. Med. Microbiol. 13:185–89
    [Google Scholar]
  105. 105. 
    Olin G. 1942. Occurrence and mode of transmission of tularemia in Sweden. Acta Pathol. Microbiol. Immunol. Scand. 19:220–47
    [Google Scholar]
  106. 106. 
    Olsufiev NG. 1977. Results and perspectives of the study of natural foci of tularemia in USSR. Med. Parazitol. 46:273–82
    [Google Scholar]
  107. 107. 
    Olsufiev NG, Emelyanova OS, Dunayeva TN 1959. Comparative study of strains of B. tularense in the Old and New World and their taxonomy. J. Hyg. Epidemiol. Microbiol. Immunol. 3:138–49
    [Google Scholar]
  108. 108. 
    Olsufjev NG, Shlygina KN, Ananova EV 1984. Persistence of Francisella tularensis McCoy et Chapin tularemia agent in the organism of highly sensitive rodents after oral infection. J. Hyg. Epidemiol. Microbiol. Immunol. 28:441–54
    [Google Scholar]
  109. 109. 
    Overholt EL, Tigertt WD, Kadull PJ, Ward MK, David CN et al. 1961. An analysis of forty-two cases of laboratory-acquired tularemia: treatment with broad spectrum antibiotics. Am. J. Med. 30:785–806
    [Google Scholar]
  110. 110. 
    Owen CR, Buker ER. 1956. Factors involved in the transmission of Pasteurella tularensis from inoculated animals to healthy cagemates. J. Infect. Dis. 99:227–33
    [Google Scholar]
  111. 111. 
    Parker DD. 1958. Attempted transmission of Pasteurella tularensis by three species of fleas. J. Econ. Entomol. 50:724–26
    [Google Scholar]
  112. 112. 
    Parker RR, Jellison WL. 1945. Rodents, rabbits and tularemia in North America: some zoological and epidemiological considerations. Am. J. Trop. Med. Hyg. s1–25 349–62
    [Google Scholar]
  113. 113. 
    Parker RR, Spencer RR. 1926. Hereditary transmission of tularemia infection by the wood tick, Dermacentor andersoni Stiles. Public Health Rep 41:1403–7
    [Google Scholar]
  114. 114. 
    Parker RR, Spencer RR, Francis E 1924. Tularaemia: XI. Tularaemia infection in ticks of the species Dermacentor andersoni Stiles in the Bitterroot Valley, Mont. Public Health Rep 39:1057–73
    [Google Scholar]
  115. 115. 
    Parker R, Steinhaus E, Kohls G, Jellison W 1951. Contamination of natural waters and mud with Pasteurella tularensis and tularemia in beavers and muskrats in the northwestern United States. Bull. Natl. Inst. Health 193:1–161
    [Google Scholar]
  116. 116. 
    Pavlovsky E. 1966. Natural Nidality of Transmissible Diseases Urbana, IL: Univ. Ill. Press
  117. 117. 
    Pedati C, House J, Hancock-Allen J, Colton L, Bryan K et al. 2015. Notes from the field: increase in human cases of tularemia—Colorado, Nebraska, South Dakota, and Wyoming, January–September 2015. MMWR Morb. Mortal. Wkly. Rep. 64:1317–18
    [Google Scholar]
  118. 118. 
    Petersen JM, Carlson JK, Dietrich G, Eisen RJ, Coombs J et al. 2008. Multiple Francisella tularensis subspecies and clades, tularemia outbreak, Utah. Emerg. Infect. Dis. 14:1928–30
    [Google Scholar]
  119. 119. 
    Petrov VG. 1960. Experimental study of Dermacentor marginatus Sulz. and Rhipicephalus rossicus Jak. et K. Jak. ticks as vectors of tularemia. J. Parasitol. 46:877–84
    [Google Scholar]
  120. 120. 
    Petrov VG. 1962. Concerning transovarial transmission of the tularemia agent in Dermacentor marginatus Schulz. Ticks. Med. Parazitol. Bolezn. 31:62–66
    [Google Scholar]
  121. 121. 
    Petrov VG, Dunaeva TN. 1955. Relationship between infection of ixodid ticks and the course of tularemia in animal donors. Vopr. Kraev. Obshch. Eksp. Parazitol. 9:153–61
    [Google Scholar]
  122. 122. 
    Philip CB, Parker RR. 1932. Experimental transmission of tularemia by mosquitoes. Public Health Rep 47:2077–88
    [Google Scholar]
  123. 123. 
    Philip CB, Jellison WL. 1934. The American dog tick, Dermacentor variabilis, as a host of Bacterium tularense. Public Health Rep 49:386–92
    [Google Scholar]
  124. 124. 
    Pilo P. 2018. Phylogenetic lineages of Francisella tularensis in animals. Front. Cell Infect. Microbiol. 8:258
    [Google Scholar]
  125. 125. 
    Pollitzer R. 1967. History and Incidence of Tularemia in the Soviet Union: A Review New York: Fordham Univ.
  126. 126. 
    Price RD. 1956. The multiplication of Pasteurella tularensis in human body lice. Am. J. Hyg. 63:186–97
    [Google Scholar]
  127. 127. 
    Price RD. 1957. A microscopic study of Pasteurella tularensis in the human body louse. Parasitology 47:435–46
    [Google Scholar]
  128. 128. 
    Prince FM, McMahon MC. 1946. Tularemia: attempted transmission by each of two species of fleas: Xenopsylla cheopis (Roths.) and Diamanus montanus (Baker). Public Health Rep 61:79–85
    [Google Scholar]
  129. 129. 
    Pullen RL, Stuart BM. 1945. Tularemia: analysis of 225 cases. J. Am. Med. Assoc. 129:495–500
    [Google Scholar]
  130. 130. 
    Reese SM, Dietrich G, Dolan MC, Sheldon SW, Piesman J et al. 2010. Transmission dynamics of Francisella tularensis subspecies and clades by nymphal Dermacentor variabilis (Acari: Ixodidae). Am. J. Trop. Med. Hyg. 83:645–52
    [Google Scholar]
  131. 131. 
    Reese SM, Petersen JM, Sheldon SW, Dolan MC, Dietrich G et al. 2011. Transmission efficiency of Francisella tularensis by adult American dog ticks (Acari: Ixodidae). J. Med. Entomol. 48:884–90
    [Google Scholar]
  132. 132. 
    Reif KE, Palmer GH, Crowder DW, Ueti MW, Noh SM 2014. Restriction of Francisella novicida genetic diversity during infection of the vector midgut. PLOS Pathog 10:e1004499
    [Google Scholar]
  133. 133. 
    Reinhardt C, Aeschlimann A, Hecker H 1972. Distribution of Rickettsia-like microorganisms in various organs of an Ornithodorus moubata laboratory strain (Ixodoidea, Argasidae) as revealed by electron microscopy. Z. Parasitenkd. 39:201–9
    [Google Scholar]
  134. 134. 
    Reintjes R, Dedushaj I, Gjini A, Jorgensen TR, Cotter B et al. 2002. Tularemia outbreak investigation in Kosovo: case control and environmental studies. Emerg. Infect. Dis. 8:69–73
    [Google Scholar]
  135. 135. 
    Romanova VP, Bojenko VP, Yakolev MG 1955. Studies of the natural nidus of the water meadow type of tularemia. Natural Nidi of Human Diseases and Regional Epidemiology EN Pavlovskiy, PA Petrishcheva, DN Zasukhin, NG Olsufiev 83–89 Leningrad, USSR: Medgiz
    [Google Scholar]
  136. 136. 
    Rydén P, Björk R, Schäfer ML, Lundström JO, Petersén B et al. 2012. Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. J. Infect. Dis. 205:297–304
    [Google Scholar]
  137. 137. 
    Scoles GA. 2004. Phylogenetic analysis of the Francisella-like endosymbionts of Dermacentor ticks. J. Med. Entomol. 41:277–86
    [Google Scholar]
  138. 138. 
    Simpson WM. 1929. Tularemia: History, Pathology, Diagnosis and Treatment Hoeber, MN: Univ. Minn. Press
  139. 139. 
    Steinhaus E. 1946. Insect Microbiology Ithaca, NY: Comstock Publ.
  140. 140. 
    Suitor EC, Weiss E. 1961. Isolation of a Rickettsia-like microorganism (Wolbachia persica, n. sp.) from Argas persicus (Oken). J. Infect. Dis. 108:95–106
    [Google Scholar]
  141. 141. 
    Sun LV, Scoles GA, Fish D, O'Neill SL 2000. Francisella-like endosymbionts of ticks. J. Invert. Pathol. 76:301–3
    [Google Scholar]
  142. 142. 
    Sutakova G, Rehacek J. 1991. Symbiotic microorganisms (endocytobionts) in Dermacentor reticulatus ticks. Modern Acarology F Dushabek, V Bukva 41–43 Prague: Academia
    [Google Scholar]
  143. 143. 
    Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M 2016. Symbiosis with Francisella tularensis provides resistance to pathogens in the silkworm. Sci. Rep. 6:31476
    [Google Scholar]
  144. 144. 
    Svensson K, Granberg M, Karlsson L, Neubauerova V, Forsman M, Johansson A 2009. A real-time PCR array for hierarchical identification of Francisella isolates. PLOS ONE 4:e8360
    [Google Scholar]
  145. 145. 
    Syrjala H, Kujala P, Myllyla V, Salminen A 1985. Airborne transmission of tularemia in farmers. Scand. J. Infect. Dis. 17:371–75
    [Google Scholar]
  146. 146. 
    Thelaus J, Andersson A, Broman T, Bäckman S, Granberg M et al. 2014. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. Microb. Ecol. 67:96–107
    [Google Scholar]
  147. 147. 
    Thelaus J, Andersson A, Mathisen P, Forslund AL, Noppa L, Forsman M 2008. Influence of nutrient status and grazing pressure on the fate of Francisella tularensis in lake water. FEMS Microbiol. Ecol. 67:69–80
    [Google Scholar]
  148. 148. 
    Thelaus J, Lundmark E, Lindgren P, Sjödin A, Forsman M 2018. Galleria mellonella reveals niche differences between highly pathogenic and closely related strains of Francisella spp. Front. Cell. Infect. Microbiol. 8:188
    [Google Scholar]
  149. 149. 
    Timofeev V, Bakhteeva I, Titareva G, Kopylov P, Christiany D et al. 2017. Russian isolates enlarge the known geographic diversity of Francisella tularensis subsp. mediasiatica. PLOS ONE 12:e0183714
    [Google Scholar]
  150. 150. 
    Trager W. 1939. Acquired immunity to ticks. J. Parasitol. 25:57–78
    [Google Scholar]
  151. 151. 
    Vogler AJ, Birdsell D, Price LB, Bowers JR, Beckstrom-Sternberg SM et al. 2009. Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J. Bacteriol. 191:2474–84
    [Google Scholar]
  152. 152. 
    Volfrez AA, Kolpakov SA, Flegontoff AA 1934. The role of ectoparasites in the tularaemic epizootic of the ground squirrels. Rev. Microbiol. Epidemiol. Parasitol. 13:103–16
    [Google Scholar]
  153. 153. 
    Vonkavaara M, Telepnev MV, Ryden P, Sjostedt A, Stoven S 2008. Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis. Cell. Microbiol 10:1327–38
    [Google Scholar]
  154. 154. 
    Weber IB, Turabelidze G, Patrick S, Griffith KS, Kugeler KJ, Mead PS 2012. Clinical recognition and management of tularemia in Missouri: a retrospective records review of 121 cases. Clin. Infect. Dis. 55:1283–90
    [Google Scholar]
  155. 155. 
    Yeatter RE, Thompson DH. 1952. Tularemia, weather, and rabbit populations. Ill. Nat. Hist. Surv. Bull. 25:351–82
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-025134
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error