1932

Abstract

Disturbances associated with agricultural intensification reduce our ability to achieve sustainable crop production. These disturbances stem from crop-management tactics and can leave crop fields more vulnerable to insect outbreaks, in part because natural-enemy communities often tend to be more susceptible to disturbance than herbivorous pests. Recent research has explored practices that conserve natural-enemy communities and reduce pest outbreaks, revealing that different components of agroecosystems can influence natural-enemy populations. In this review, we consider a range of disturbances that influence pest control provided by natural enemies and how conservation practices can mitigate or counteract disturbance. We use four case studies to illustrate how conservation and disturbance mitigation increase the potential for biological control and provide co-benefits for the broader agroecosystem. To facilitate the adoption of conservation practices that improve top-down control across significant areas of the landscape, these practices will need to provide multifunctional benefits, but should be implemented with natural enemies explicitly in mind.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-025143
2020-01-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-025143.html?itemId=/content/journals/10.1146/annurev-ento-011019-025143&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aartsma Y, Bianchi FJ, van der Werf W, Poelman EH, Dicke M 2017. Herbivore‐induced plant volatiles and tritrophic interactions across spatial scales. New Phytol 216:1054–63
    [Google Scholar]
  2. 2. 
    Altieri MA, Nicholls CI. 2003. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–11
    [Google Scholar]
  3. 3. 
    Andow DA. 1991. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36:561–86
    [Google Scholar]
  4. 4. 
    Andow DA, Hidaka K. 1989. Experimental natural history of sustainable agriculture: syndromes of production. Agric. Ecosyst. Environ. 27:447–62
    [Google Scholar]
  5. 5. 
    Aviron S, Poggi S, Varennes YD, Lefèvre A 2016. Local landscape heterogeneity affects crop colonization by natural enemies of pests in protected horticultural cropping systems. Agric. Ecosyst. Environ. 227:1–10
    [Google Scholar]
  6. 6. 
    Awmack CS, Leather SR. 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47:817–44
    [Google Scholar]
  7. 7. 
    Betz L, Tscharntke T. 2017. Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local and landscape management. J. Insect Conserv. 21:495–508
    [Google Scholar]
  8. 8. 
    Bianchi FJ, Booij CJ, Tscharntke T 2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 273:1715–27
    [Google Scholar]
  9. 9. 
    Bianchi FJJA, Ives AR, Schellhorn NA 2013. Interactions between conventional and organic farming for biocontrol services across the landscape. Ecol. Appl. 23:1531–43
    [Google Scholar]
  10. 10. 
    Björkman C, Bommarco R, Eklund K, Höglund S 2004. Harvesting disrupts biological control of herbivores in a short‐rotation coppice system. Ecol. Appl. 14:1624–33
    [Google Scholar]
  11. 11. 
    Blaauw BR, Isaacs R. 2012. Larger wildflower plantings increase natural enemy density, diversity, and biological control of sentinel prey, without increasing herbivore density. Ecol. Entomol. 37:386–94
    [Google Scholar]
  12. 12. 
    Blaauw BR, Isaacs R. 2014. Flower plantings increase wild bee abundance and the pollination services provided to a pollination‐dependent crop. J. Appl. Ecol. 51:890–98
    [Google Scholar]
  13. 13. 
    Blaauw BR, Isaacs R. 2015. Wildflower plantings enhance the abundance of natural enemies and their services in adjacent blueberry fields. Biol. Control 91:94–103
    [Google Scholar]
  14. 14. 
    Blumberg AY, Crossley DA Jr 1983. Comparison of soil surface arthropod populations in conventional tillage, no-tillage and old field systems. Agro-Ecosystems 8:247–53
    [Google Scholar]
  15. 15. 
    Bohnenblust E, Egan JF, Mortensen D, Tooker J 2013. Direct and indirect effects of the synthetic-auxin herbicide dicamba on two lepidopteran species. Environ. Entomol. 42:586–94
    [Google Scholar]
  16. 16. 
    Brandes E, McNunn GS, Schulte LA, Bonner IJ, Muth DJ et al. 2016. Subfield profitability analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 11:014009
    [Google Scholar]
  17. 17. 
    Brust GE, Stinner BR, McCartney DA 1985. Tillage and soil insecticide effects on predator-black cutworm (Lepidoptera: Noctuidae) interactions in corn agroecosystems. J. Econ. Entomol. 78:1389–92
    [Google Scholar]
  18. 18. 
    Cannon RJ. 1998. The implications of predicted climate change for insect pests in the UK, with emphasis on non‐indigenous species. Glob. Change Biol. 4:785–96
    [Google Scholar]
  19. 19. 
    Cardinale BJ, Harvey CT, Gross K, Ives AR 2003. Biodiversity and biocontrol: emergent impacts of a multi‐enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol. Lett. 6:857–65
    [Google Scholar]
  20. 20. 
    Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL et al. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–92
    [Google Scholar]
  21. 21. 
    Chabert A, Sarthou JP. 2017. Practices of conservation agriculture prevail over cropping systems and landscape heterogeneity in understanding the ecosystem service of aphid biocontrol. Agric. Ecosyst. Environ. 249:70–79
    [Google Scholar]
  22. 22. 
    Chaplin-Kramer R, Kremen C. 2012. Pest control experiments show benefits of complexity at landscape and local scales. Ecol. Appl. 22:1936–48
    [Google Scholar]
  23. 23. 
    Chaplin‐Kramer R, O'Rourke ME, Blitzer EJ, Kremen C 2011. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14:922–32
    [Google Scholar]
  24. 24. 
    Chen YH, Gols R, Benrey B 2015. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60:35–58
    [Google Scholar]
  25. 25. 
    Cox R, O'Neal ME, Hessel R, Schulte LA, Helmers MJ 2014. The impact of prairie strips on aphidophagous predator abundance and soybean aphid predation in agricultural catchments. Environ. Entomol. 43:1185–97
    [Google Scholar]
  26. 26. 
    Crowder DW, Northfield TD, Snyder WE 2010. Organic farming promotes evenness and natural pest control. Nature 466:109–12
    [Google Scholar]
  27. 27. 
    Dassou AG, Tixier P. 2016. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis. Ecol. Evol. 6:1143–53
    [Google Scholar]
  28. 28. 
    Davis AS, Hill JD, Chase CA, Johanns AM, Liebman M 2012. Increasing cropping system diversity balances productivity, profitability and environmental health. PLOS ONE 7:e47149
    [Google Scholar]
  29. 29. 
    DeBach P, Rosen D 1991. Biological Control by Natural Enemies Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  30. 30. 
    Diamond J. 2002. Evolution, consequences and future of plant and animal domestication. Nature 418:700–7
    [Google Scholar]
  31. 31. 
    Diekötter T, Wamser S, Wolters V, Birkhofer K 2010. Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agric. Ecosyst. Environ. 137:108–12
    [Google Scholar]
  32. 32. 
    Djoudi EA, Marie A, Mangenot A, Puech C, Aviron S et al. 2018. Farming system and landscape characteristics differentially affect two dominant taxa of predatory arthropods. Agric. Ecosyst. Environ. 259:98–110
    [Google Scholar]
  33. 33. 
    Douglas MR, Rohr JR, Tooker JF 2015. Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non‐target pests and decreasing soya bean yield. J. Appl. Ecol. 52:250–60
    [Google Scholar]
  34. 34. 
    Dunbar MW, Gassmann AJ, O'Neal ME 2017. Limited impact of a fall-seeded, spring-terminated rye cover crop on beneficial arthropods. Environ. Entomol. 46:284–90
    [Google Scholar]
  35. 35. 
    Dunbar MW, O'Neal ME, Gassmann AJ 2016. Increased risk of insect injury to corn following rye cover crop. J. Econ. Entomol. 109:1691–97
    [Google Scholar]
  36. 36. 
    Dutcher JD. 2007. A review of resurgence and replacement causing pest outbreaks in IPM. General Concepts in Integrated Pest and Disease Management: Integrated Management of Plants Pests and Diseases A Ciancio, KG Mukerji 27–43 Berlin: Springer
    [Google Scholar]
  37. 37. 
    Egan JF, Bohnenblust E, Goslee S, Mortensen D, Tooker J 2014. Herbicide drift can affect plant and arthropod communities. Agric. Ecosyst. Environ. 185:77–87
    [Google Scholar]
  38. 38. 
    Egan JF, Mortensen DA. 2012. A comparison of land‐sharing and land‐sparing strategies for plant richness conservation in agricultural landscapes. Ecol. Appl. 22:459–71
    [Google Scholar]
  39. 39. 
    Eilenberg J, Hajek A, Lomer C 2001. Suggestions for unifying the terminology in biological control. BioControl 46:387–400
    [Google Scholar]
  40. 40. 
    Fiedler AK, Landis DA. 2007. Plant characteristics associated with natural enemy abundance at Michigan native plants. Environ. Entomol. 36:878–86
    [Google Scholar]
  41. 41. 
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G et al. 2005. Global consequences of land use. Science 309:570–74
    [Google Scholar]
  42. 42. 
    Furlong MJ, Ang GC, Silva R, Zalucki MP 2018. Bringing ecology back: How can the chemistry of indirect plant defences against herbivory be manipulated to improve pest management?. Front. Plant Sci. 9:1436
    [Google Scholar]
  43. 43. 
    Fusser MS, Pfister SC, Entling MH, Schirmel J 2017. Effects of field margin type and landscape composition on predatory carabids and slugs in wheat fields. Agric. Ecosyst. Environ. 247:182–88
    [Google Scholar]
  44. 44. 
    Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O'Neal M et al. 2009. Landscape diversity enhances biological control of an introduced crop pest in the north‐central USA. Ecol. Appl. 19:143–54
    [Google Scholar]
  45. 45. 
    Garnett T, Godfray CH 2012. Sustainable intensification in agriculture: navigating a course through competing food system priorities Food Clim Res. Netw./Oxford Martin Prog. Future Food, Univ Oxford, UK:
  46. 46. 
    Gill KA, Cox R, O'Neal ME 2014. Quality over quantity: Buffer strips can be improved with select native plant species. Environ. Entomol. 43:298–311
    [Google Scholar]
  47. 47. 
    González E, Salvo A, Valladares G 2017. Arthropod communities and biological control in soybean fields: Forest cover at landscape scale is more influential than forest proximity. Agric. Ecosyst. Environ. 239:359–67
    [Google Scholar]
  48. 48. 
    Grab H, Danforth B, Poveda K, Loeb G 2018. Landscape simplification reduces classical biological control and crop yield. Ecol. Appl. 28:348–55
    [Google Scholar]
  49. 49. 
    Gurr GM, Wratten SD, Landis DA, You M 2017. Habitat management to suppress pest populations: progress and prospects. Annu. Rev. Entomol. 62:91–109
    [Google Scholar]
  50. 50. 
    Hairston NG, Smith FE, Slobodkin LB 1960. Community structure, population control, and competition. Am. Nat. 94:421–25
    [Google Scholar]
  51. 51. 
    Heath SK, Soykan CU, Velas KL, Kelsey R, Kross SM 2017. A bustle in the hedgerow: Woody field margins boost on farm avian diversity and abundance in an intensive agricultural landscape. Biol. Conserv. 212:153–61
    [Google Scholar]
  52. 52. 
    Heimpel GE, Mills NJ. 2017. Biological Control: Ecology and Applications Cambridge, UK: Cambridge Univ. Press
  53. 53. 
    Heimpel GE, Ragsdale DW, Venette R, Hopper KR, O'Neil RJ et al. 2004. Prospects for importation biological control of the soybean aphid: anticipating potential costs and benefits. Ann. Entomol. Soc. Am. 97:249–58
    [Google Scholar]
  54. 54. 
    Herbst C, Wäschke N, Barto EK, Arnold S, Geuß D et al. 2013. Land use intensification in grasslands: Higher trophic levels are more negatively affected than lower trophic levels. Entomol. Exp. Appl. 147:269–81
    [Google Scholar]
  55. 55. 
    Hirsh SM, Mabry CM, Schulte LA, Liebman MZ 2013. Diversifying agricultural catchments by incorporating tallgrass prairie buffer strips. Ecol. Res. 31:201–11
    [Google Scholar]
  56. 56. 
    Hobbs PR, Sayre K, Gupta R 2008. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. Lond. B 363:543–55
    [Google Scholar]
  57. 57. 
    Inclán DJ, Cerretti P, Gabriel D, Benton TG, Sait SM et al. 2015. Organic farming enhances parasitoid diversity at the local and landscape scales. J. Appl. Ecol. 52:1102–9
    [Google Scholar]
  58. 58. 
    Inclán DJ, Cerretti P, Marini L 2015. Landscape composition affects parasitoid spillover. Agric. Ecosyst. Environ. 208:48–54
    [Google Scholar]
  59. 59. 
    Janković M, Plećaš M, Sandić D, Popović A, Petrović A et al. 2017. Functional role of different habitat types at local and landscape scales for aphids and their natural enemies. J. Pest Sci. 90:261–73
    [Google Scholar]
  60. 60. 
    Jonsson M, Buckley HL, Case BS, Wratten SD, Hale RJ et al. 2012. Agricultural intensification drives landscape‐context effects on host-parasitoid interactions in agroecosystems. J. Appl. Ecol. 49:706–14
    [Google Scholar]
  61. 61. 
    Kaplan I, Lewis D. 2015. What happens when crops are turned on? Simulating constitutive volatiles for tritrophic pest suppression across an agricultural landscape. Pest Manag. Sci. 71:139–50
    [Google Scholar]
  62. 62. 
    Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F et al. 2018. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. PNAS 115:E7863–70
    [Google Scholar]
  63. 63. 
    Karp DS, Moses R, Gennet S, Jones MS, Joseph S, et al. 2016. Agricultural practices for food safety threaten pest control services for fresh produce. J. Appl. Ecol. 53:1402–12
    [Google Scholar]
  64. 64. 
    Kersch-Becker MF, Kessler A, Thaler JS 2017. Plant defences limit herbivore population growth by changing predator-prey interactions. Proc. R. Soc. B. 284:20171120
    [Google Scholar]
  65. 65. 
    Kibblewhite MG, Ritz K, Swift MJ 2008. Soil health in agricultural systems. Philos. Trans. R Soc. Lond. B 363:685–701
    [Google Scholar]
  66. 66. 
    Koch KA, Potter BD, Ragsdale DW 2010. Non-target impacts of soybean rust fungicides on the fungal entomopathogens of soybean aphid. J. Invert. Path. 103:156–64
    [Google Scholar]
  67. 67. 
    Koch RL. 2003. The multicolored Asian lady beetle, Harmoniaaxyridis: a review of its biology, uses in biological control, and non-target impacts. J. Insect Sci. 3:32
    [Google Scholar]
  68. 68. 
    Kogan M. 1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43:243–70
    [Google Scholar]
  69. 69. 
    Lal R, Reicosky DC, Hanson JD 2007. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res 93:1–12
    [Google Scholar]
  70. 70. 
    Landis DA, Gardiner MM, van der Werf W, Swinton SM 2008. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. PNAS 105:20552–57
    [Google Scholar]
  71. 71. 
    Landis DA, Wratten SD, Gurr GM 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45:175–201
    [Google Scholar]
  72. 72. 
    Langellotto GA, Denno RF. 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10
    [Google Scholar]
  73. 73. 
    Larsen AE. 2013. Agricultural landscape simplification does not consistently drive insecticide use. PNAS 110:15330–35
    [Google Scholar]
  74. 74. 
    Larsen AE, Noack F. 2017. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. PNAS 114:5473–78
    [Google Scholar]
  75. 75. 
    Le Gall M, Tooker JF 2017. Developing ecologically based pest management programs for terrestrial molluscs in field and forage crops. J. Pest Sci. 90:825–38
    [Google Scholar]
  76. 76. 
    Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ et al. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21:9–21
    [Google Scholar]
  77. 77. 
    Lewis WJ, van Lenteren JC, Phatak SC, Tumlinson JH 1997. A total system approach to sustainable pest management. PNAS 94:12243–48
    [Google Scholar]
  78. 78. 
    Lichtenberg EM, Kennedy CM, Kremen C, Batáry P, Berendse F et al. 2017. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23:4946–57
    [Google Scholar]
  79. 79. 
    Liere H, Kim TN, Werling BP, Meehan TD, Landis DA, et al. 2015. Trophic cascades in agricultural landscapes: indirect effects of landscape composition on crop yield. Ecol. Appl. 25:652–61
    [Google Scholar]
  80. 80. 
    Lindell C, Eaton RA, Howard PH, Roels SM, Shave ME 2018. Enhancing agricultural landscapes to increase crop pest reduction by vertebrates. Agric. Ecosyst. Environ. 257:1–11
    [Google Scholar]
  81. 81. 
    Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. BioScience 56:311–23
    [Google Scholar]
  82. 82. 
    Lundgren JG, Fausti SW. 2015. Trading biodiversity for pest problems. Sci. Adv. 1:e1500558
    [Google Scholar]
  83. 83. 
    Lundgren JG, Fergen JK. 2011. Enhancing predation of a subterranean insect pest: a conservation benefit of winter vegetation in agroecosystems. Appl. Soil Ecol. 51:9–16
    [Google Scholar]
  84. 84. 
    Macfadyen S, Hopkinson J, Parry H, Neave MJ, Bianchi FJ et al. 2015. Early-season movement dynamics of phytophagous pest and natural enemies across a native vegetation-crop ecotone. Agric. Ecosyst. Environ. 200:110–18
    [Google Scholar]
  85. 85. 
    Matson PA, Parton WJ, Power AG, Swift MJ 1997. Agricultural intensification and ecosystem properties. Science 277:504–9
    [Google Scholar]
  86. 86. 
    Mattson WJ. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11:119–61
    [Google Scholar]
  87. 87. 
    McCarville MT, O'Neal ME. 2012. Measuring the benefit of biological control for single gene and pyramided host plant resistance for Aphisglycines (Hemiptera: Aphididae) management. J. Econ. Entomol. 105:1835–43
    [Google Scholar]
  88. 88. 
    Meehan TD, Werling BP, Landis DA, Gratton C 2011. Agricultural landscape simplification and insecticide use in the Midwestern United States. PNAS 108:11500–5
    [Google Scholar]
  89. 89. 
    Meehan TD, Werling BP, Landis DA, Gratton C 2012. Pest-suppression potential of midwestern landscapes under contrasting bioenergy scenarios. PLOS ONE 7:e41728
    [Google Scholar]
  90. 90. 
    Mitchell MG, Bennett EM, Gonzalez A 2014. Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. Agric. Ecosyst. Environ. 192:144–51
    [Google Scholar]
  91. 91. 
    Monteiro LB, Lavigne C, Ricci B, Franck P, Toubon JF et al. 2013. Predation of codling moth eggs is affected by pest management practices at orchard and landscape levels. Agric. Ecosyst. Environ. 166:86–93
    [Google Scholar]
  92. 92. 
    Morandin LA, Kremen C. 2013. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23:829–39
    [Google Scholar]
  93. 93. 
    Morandin LA, Long RF, Kremen C 2014. Hedgerows enhance beneficial insects on adjacent tomato fields in an intensive agricultural landscape. Agric. Ecosyst. Environ. 189:164–70
    [Google Scholar]
  94. 94. 
    Norris RF, Kogan M. 2000. Interactions between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sci 48:94–158
    [Google Scholar]
  95. 95. 
    Norris RF, Kogan M. 2005. Ecology of interactions between weeds and arthropods. Annu. Rev. Entomol. 50:479–503
    [Google Scholar]
  96. 96. 
    Orre-Gordon GUS, Wratten SD, Jonsson M, Simpson M, Hale R 2013. “Attract and reward”: combining a herbivore-induced plant volatile with floral resource supplementation—multi-trophic level effects. Biol. Control 64:106–15
    [Google Scholar]
  97. 97. 
    Östman Ö, Ekbom B, Bengtsson J, Weibull AC 2001. Landscape complexity and farming practice influence the condition of polyphagous carabid beetles. Ecol. Appl. 11:480–88
    [Google Scholar]
  98. 98. 
    Pearsons K, Tooker J. 2017. In-field habitat management to optimize pest control of novel soil communities in agroecosystems. Insects 8:E82
    [Google Scholar]
  99. 99. 
    Pedigo LP, Rice ME 2009. Entomology and Pest Management Upper Saddle River, NJ: Pearson Prentice Hall. , 6th ed..
  100. 100. 
    Phelan PL, Mason JF, Stinner BR 1995. Soil-fertility management and host preference by European corn borer, Ostrinianubilalis (Hübner), on Zeamays L.: a comparison of organic and conventional chemical farming. Agric. Ecosyst. Environ. 56:1–8
    [Google Scholar]
  101. 101. 
    Ponisio LC, M'Gonigle LK, Kremen C 2016. On-farm habitat restoration curbs biotic homogenization in intensive agricultural landscape. Glob. Change Biol. 22:704–15
    [Google Scholar]
  102. 102. 
    Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65
    [Google Scholar]
  103. 103. 
    Prosser RS, Anderson JC, Hanson ML, Solomon KR, Sibley PK 2016. Indirect effects of herbicides on biota in terrestrial edge-of-field habitats: a critical review of the literature. Agric. Ecosyst. Environ. 232:59–72
    [Google Scholar]
  104. 104. 
    Puech C, Poggi S, Baudry J, Aviron S 2015. Do farming practices affect natural enemies at the landscape scale?. Landscape Ecol 30:125–40
    [Google Scholar]
  105. 105. 
    Ramsden MW, Menéndez R, Leather SR, Wäckers F 2015. Optimizing field margins for biocontrol services: the relative role of aphid abundance, annual floral resources, and overwinter habitat in enhancing aphid natural enemies. Agric. Ecosyst. Environ. 199:94–104
    [Google Scholar]
  106. 106. 
    Rand TA, van Veen FF, Tscharntke T 2012. Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35:97–104
    [Google Scholar]
  107. 107. 
    Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, et al. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–37
    [Google Scholar]
  108. 108. 
    Rice KB, Bergh CJ, Bergmann EJ, Biddinger DJ, Dieckhoff C, et al. 2014. Biology, ecology, and management of brown marmorated stink bug (Hemiptera: Pentatomidae). J. Integr. Pest Manag. 5:A1–13
    [Google Scholar]
  109. 109. 
    Rodriguez-Saona C, Vorsa N, Singh A, Johnson-Cicalese J, Szendrei Z et al. 2011. Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. J. Exp. Bot. 62:2633–44
    [Google Scholar]
  110. 110. 
    Rodriguez-Saona CR, Blaauw BR, Isaacs R 2012. Manipulation of natural enemies in agroecosystems: habitat and semiochemicals for sustainable insect pest control. Integrated Pest Management and Pest Control: Current and Future Tactics ML Larramendy, S Soloneski 89–126 London: InTech
    [Google Scholar]
  111. 111. 
    Rossetti MR, Tscharntke T, Aguilar R, Batáry P 2017. Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical meta‐analysis. Ecol. Lett. 20:264–72
    [Google Scholar]
  112. 112. 
    Roubos CR, Rodriguez-Saona C, Isaacs R 2014. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75:28–38
    [Google Scholar]
  113. 113. 
    Deleted in proof
  114. 114. 
    Rowen EK, Tooker JF, Blubaugh C 2019. Managing fertility with animal waste to promote arthropod pest suppression. Biol. Control 134:130–40
    [Google Scholar]
  115. 115. 
    Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J et al. 2016. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221:198–204
    [Google Scholar]
  116. 116. 
    Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305–32
    [Google Scholar]
  117. 117. 
    Sarthou JP, Badoz A, Vaissière B, Chevallier A, Rusch A 2014. Local more than landscape parameters structure natural enemy communities during their overwintering in semi-natural habitats. Agric. Ecosyst. Environ. 194:17–28
    [Google Scholar]
  118. 118. 
    Schellhorn NA, Bianchi FJ, Hsu CL 2014. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annu. Rev. Entomol. 59:559–81
    [Google Scholar]
  119. 119. 
    Schellhorn NA, Parry HR, Macfadyen S, Wang Y, Zalucki MP 2015. Connecting scales: achieving in‐field pest control from areawide and landscape ecology studies. Insect Sci 22:35–51
    [Google Scholar]
  120. 120. 
    Schipanski ME, Barbercheck M, Douglas MR, Finney DM, Haider K et al. 2014. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125:12–22
    [Google Scholar]
  121. 121. 
    Schlinger E, Dietrick E. 1960. Biological control of insect pests aided by strip-farming alfalfa in experimental program. Calif. Agric. 14:8–915
    [Google Scholar]
  122. 122. 
    Schulte LA, Niemi J, Helmers MJ, Liebman M, Arbuckle JG et al. 2017. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. PNAS 114:11247–52
    [Google Scholar]
  123. 123. 
    Shackelford G, Steward PR, Benton TG, Kunin WE, Potts SG et al. 2013. Comparison of pollinators and natural enemies: a meta‐analysis of landscape and local effects on abundance and richness in crops. Biol. Rev. 88:1002–21
    [Google Scholar]
  124. 124. 
    Siemann E, Tilman D, Haarstad J, Ritchie M 1998. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152:738–50
    [Google Scholar]
  125. 125. 
    Silva RF, Rabeschini GBP, Peinado GLR, Cosmo LG, Rezende LHG et al. 2018. The ecology of plant chemistry and multi-species interactions in diversified agroecosystems. Front. Plant Sci. 9:1713
    [Google Scholar]
  126. 126. 
    Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG et al. 2011. Field evaluation of the “attract and reward” biological control approach in vineyards. Ann. Appl. Biol. 159:69–78
    [Google Scholar]
  127. 127. 
    Smith MT, Hardee DD. 1996. Influence of fungicides on development of an entomopathogenic fungus (Zygomycetes: Neozygitaceae) in the cotton aphid (Homoptera: Aphididae). Environ. Entomol. 25:677–87
    [Google Scholar]
  128. 128. 
    Smith R, Hagen K. 1959. The integration of chemical and biological control of the spotted alfalfa aphid: impact of commercial insecticide treatments. Hilgardia 29:131–54
    [Google Scholar]
  129. 129. 
    Staley JT, Stewart-Jones A, Pope TW, Wright DJ, Leather SR et al. 2009. Varying responses of insect herbivores to altered plant chemistry under organic and conventional treatments. Proc. R. Soc. Lond. B 277:779–86
    [Google Scholar]
  130. 130. 
    Stern VMRF, Smith R, Van den Bosch R, Hagen K 1959. The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept. Hilgardia 29:81–101
    [Google Scholar]
  131. 131. 
    Stinner BR, House GJ. 1990. Arthropods and other invertebrates in conservation-tillage agriculture. Annu. Rev. Entomol. 35:299–318
    [Google Scholar]
  132. 132. 
    Stutz S, Entling MH. 2011. Effects of the landscape context on aphid-ant-predator interactions on cherry trees. Biol. Control 57:37–43
    [Google Scholar]
  133. 133. 
    Tamburini G, DeSimone S, Sigura M, Boscutti F, Marini L 2016. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53:233–41
    [Google Scholar]
  134. 134. 
    Tamburini G, DeSimone S, Sigura M, Boscutti F, Marini L 2016. Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes. Proc. R. Soc. B 283:20161369
    [Google Scholar]
  135. 135. 
    Thies C, Tscharntke T. 1999. Landscape structure and biological control in agroecosystems. Science 285:893–95
    [Google Scholar]
  136. 136. 
    Tilman D, Balzer C, Hill J, Befort BL 2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–64
    [Google Scholar]
  137. 137. 
    Tooker JF, Frank SD. 2012. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49:974–85
    [Google Scholar]
  138. 138. 
    Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D et al. 2007. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43:294–309
    [Google Scholar]
  139. 139. 
    Tscharntke T, Karp DS, Chaplin-Kramer R, Batáry P, DeClerck F et al. 2016. When natural habitat fails to enhance biological pest control: five hypotheses. Biol. Conserv. 204:449–58
    [Google Scholar]
  140. 140. 
    Tscharntke T, Klein AM, Kruess A, Steffan‐Dewenter I, Thies C 2005. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol. Lett. 8:857–74
    [Google Scholar]
  141. 141. 
    Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L et al. 2012. Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol. Rev. 87:661–85
    [Google Scholar]
  142. 142. 
    Tschumi M, Albrecht M, Entling MH, Jacot K 2015. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. R. Soc. B. 282:20151369
    [Google Scholar]
  143. 143. 
    Tuell JK, Fiedler AK, Landis D 2008. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern US native plants for use in conservation programs. Environ. Entomol. 37:707–18
    [Google Scholar]
  144. 144. 
    Turlings TC, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63:433–52
    [Google Scholar]
  145. 145. 
    Van den Bosch R, Stern VM 1962. The integration of chemical and biological control of arthropod pests. Annu. Rev. Entomol. 7:367–86
    [Google Scholar]
  146. 146. 
    Veres A, Petit S, Conord C, Lavigne C 2013. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric. Ecosyst. Environ. 166:110–17
    [Google Scholar]
  147. 147. 
    Vidal MC, Murphy SM. 2018. Bottom‐up versus top‐down effects on terrestrial insect herbivores: a meta‐analysis. Ecol. Lett. 21:138–50
    [Google Scholar]
  148. 148. 
    Walker M, Hartley SE, Jones TH 2008. The relative importance of resources and natural enemies in determining herbivore abundance: thistles, tephritids and parasitoids. J. Anim. Ecol. 77:1063–71
    [Google Scholar]
  149. 149. 
    Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J et al. 2011. Drosophilasuzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. 2:G1–G7
    [Google Scholar]
  150. 150. 
    Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW et al. 2011. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 48:570–79
    [Google Scholar]
  151. 151. 
    Winter TR, Rostás M. 2010. Nitrogen deficiency affects bottom-up cascade without disrupting indirect plant defense. J. Chem. Ecol. 36:642–51
    [Google Scholar]
  152. 152. 
    Wissinger SA. 1997. Cyclic colonization in predictably ephemeral habitats: a template for biological control in annual crop systems. Biol. Control 10:4–15
    [Google Scholar]
  153. 153. 
    Witmer JE, Hough-Goldstein JA, Pesek JD 2003. Ground-dwelling and foliar arthropods in four cropping systems. Environ. Entomol. 32:366–76
    [Google Scholar]
  154. 154. 
    Woltz JM, Isaacs R, Landis DA 2012. Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agric. Ecosyst. Environ. 152:40–49
    [Google Scholar]
  155. 155. 
    Yang L, Zhang Q, Liu B, Zeng Y, Pan Y et al. 2018. Mixed effects of landscape complexity and insecticide use on ladybeetle abundance in wheat fields. Pest Manag. Sci. 75:1638–45
    [Google Scholar]
  156. 156. 
    Yang Y, Suh S. 2015. Changes in environmental impacts of major crops in the US. Environ. Res. Lett. 10:094016
    [Google Scholar]
  157. 157. 
    Zehnder G, Gurr GM, Kühne S, Wade MR, Wratten SD et al. 2007. Arthropod pest management in organic crops. Annu. Rev. Entomol. 52:57–80
    [Google Scholar]
  158. 158. 
    Zhou K, Huang J, Deng X, van der Werf W, Zhang W et al. 2014. Effects of land use and insecticides on natural enemies of aphids in cotton: first evidence from smallholder agriculture in the North China Plain. Agric. Ecosyst. Environ. 183:176–84
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-025143
Loading
/content/journals/10.1146/annurev-ento-011019-025143
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error