1932

Abstract

Cockroaches are a group of insects that evolved early in geological time. Because of their antiquity, they for the most part display generalized behavior and physiology and accordingly have frequently been used as model insects to examine physiological and biochemical mechanisms involved with water balance, nutrition, reproduction, genetics, and insecticide resistance. As a result, a considerable amount of information on these topics is available. However, there is much more to be learned by employing new protocols, microchemical analytical techniques, and molecular biology tools to explore many unanswered questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011613-162036
2015-01-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ento/60/1/annurev-ento-011613-162036.html?itemId=/content/journals/10.1146/annurev-ento-011613-162036&mimeType=html&fmt=ahah

Literature Cited

  1. Appel AG. 1.  1991. Water relations and thermal sensitivity of several cockroach species (Dictyoptera: Blattidae and blaberidae). Comp. Biochem. Physiol. A 100:353–56 [Google Scholar]
  2. Appel AG. 2.  2008. Behavioral and physiological aspects of energetics and respiration patterns of cockroaches. Recent Advances in Insect Physiology, Toxicology and Molecular Biology N Liu 1–10 Kerala, India: Res. Signpost [Google Scholar]
  3. Appel AG, Tanley MJ. 3.  1999. Water composition and loss by body color and form mutants of the German cockroach (Dictyoptera: Blattellidae). Comp. Biochem. Physiol. A 122:415–20 [Google Scholar]
  4. Avila F, Sirot LK, LaFlamme BA, Rubenstein CD, Wolfner MF. 4.  2011. Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56:21–40 [Google Scholar]
  5. Ballor NR, Leadbetter JR. 5.  2012. Analysis of extensive [FeFe] hydrogenase gene diversity within the gut microbiota of insects representing five families of Dictyoptera. Microb. Ecol. 63:586–95 [Google Scholar]
  6. Bandi C, Damian G, Magrassi L, Grigolo A, Fani R, Sacchi L. 6.  1994. Flavobacteria as intracellular symbionts in cockroaches. Proc. R. Soc. Lond. B 257:43–48 [Google Scholar]
  7. Bandi C, Sironi M, Nalepa CA, Corona S, Sacchi L. 7.  1997. Phylogenetically distant intracellular symbionts in termites. Parassitologia 39:71–75 [Google Scholar]
  8. Bell WJ, Adiyodi KG. 8.  1982. The American Cockroach London: Chapman Hall
  9. Bell WJ, Roth LM, Nalepa C. 9.  2007. Cockroaches: Ecology, Behavior, and Natural History Baltimore, MD: Johns Hopkins Univ. PressAn excellent summary of cockroach ecology, behavior, and natural history.
  10. Bignell D. 10.  1982. Nutrition and digestion. See Ref. 8, pp. 57–86
  11. Bignell DE. 11.  1977. An experimental study of cellulose and hemicellulose degradation in the alimentary canal of the American cockroach. Can. J. Zool. 55:579–89 [Google Scholar]
  12. Bignell DE. 12.  1980. An ultrastructural study and stereological analysis of the colon wall in the cockroach Periplaneta americana. Tissue Cell 12:153–64 [Google Scholar]
  13. Bohn H, Picker M, Klass K-D, Colville J. 13.  2010. A jumping cockroach from South Africa, Saltoblattella montistabularis, gen. nov., spec. nov. (Blattodea: Blattellidae). Arthropod. Syst. Phylog. 68:53–69 [Google Scholar]
  14. Bracke J, Cruden DL, Markovetz AJ. 14.  1979. Intestinal microbial flora of the American cockroach, Periplaneta americana L. Appl. Environ. Microbiol. 38:945–55 [Google Scholar]
  15. Bracke J, Markovetz AJ. 15.  1980. Transport of bacterial end products from the colon of Periplaneta americana.. J. Insect Physiol. 26:85–89 [Google Scholar]
  16. Brooks MA. 16.  1970. Comments on the classification of intracellular symbiotes of cockroaches and a description of the species. J. Invert. Pathol. 16:249–58 [Google Scholar]
  17. Bulmer MS, Denier D, Velenovsky J, Hamilton C. 17.  2012. A common antifungal defense strategy in Cryptocercus woodroaches and termites. Insect Soc. 59:469–78 [Google Scholar]
  18. Chown SL, Sorensen JG, Terblanche JS. 18.  2011. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57:1070–84 [Google Scholar]
  19. Cochran DG. 19.  1985. Nitrogen excretion in cockroaches. Annu. Rev. Entomol. 30:29–49 [Google Scholar]
  20. Cochran DG, Mullins DE, Mullins KJ. 20.  1979. Cytological changes in the fat body of the American cockroach, Periplaneta americana, in relation to dietary nitrogen levels. Ann. Entomol. Soc. Am. 72:197–205 [Google Scholar]
  21. Cohen AC, Cohen JL. 21.  1981. Microclimate, temperature and water relations of two species of desert cockroaches. Comp. Biochem. Physiol. A 69:165–67 [Google Scholar]
  22. Cornwell PB. 22.  1968. The Cockroach: A Laboratory Insect and an Industrial Pest London: Hutchinson
  23. Costa-Leonardo AM, Laranjo LT, Janei V, Haifig I. 23.  2013. The fat body of termites: functions and stored materials. J. Insect Physiol. 59:577–87 [Google Scholar]
  24. Cruden DL, Markovetz AJ. 24.  1981. Relative numbers of selected bacterial forms in different regions of the cockroach hindgut. Arch. Microbiol. 129:129–34 [Google Scholar]
  25. Dillon RJ, Dillon VM. 25.  2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49:71–92 [Google Scholar]
  26. Djernaes M, Klass K-D, Picker MD, Damgaard J. 26.  2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Syst. Entomol. 37:65–83 [Google Scholar]
  27. Donnellan JF, Kilby BA. 27.  1967. Uric acid metabolism by symbiotic bacteria from the fat body of Periplaneta americana. Comp. Biochem. Physiol. 22:235–52 [Google Scholar]
  28. Douglas A. 28.  1989. Mycetocyte symbiosis in insects. Biol. Rev. 64:409–34 [Google Scholar]
  29. Douglas AE. 29.  2011. Lessons from studying insect symbioses. Cell Host Microbe 10:359–67 [Google Scholar]
  30. Dow J. 30.  1986. Insect midgut function. Adv. Insect Physiol. 19:187–328 [Google Scholar]
  31. Downer RGH. 31.  1981. Physiological and environmental considerations in insect bioenergetics. Energy Metabolism in Insects RGH Downer 1–17 New York: Plenum [Google Scholar]
  32. Duncan IJ, Titchener F, Briggs DEG. 32.  2003. Decay and disarticulation of the cockroach: Implications for preservation of the blattoids of Writhlington (Upper Carboniferous), UK. Palaios 18:256–65 [Google Scholar]
  33. Edney E. 33.  1977. Water Balance in Land Arthropods Berlin: Springer-Verlag
  34. Edney EB, Haynes S, Gibo D. 34.  1974. Distribution and activity of the desert cockroach Arenivaga investigata (Polyphagidae) in relation to microclimate. Ecology 55:420–27 [Google Scholar]
  35. Elzinga RJ, Hopkins TL. 35.  1995. Microspine variation in hindgut regions of four families of cockroaches (Blattaria). Int. J. Insect Morphol. Embryol. 24:203–11 [Google Scholar]
  36. Engebretson JA, Mullins DE. 36.  1983. The effects of dietary nitrogen levels on glycine, formate, and xanthine incorporation into urates in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae). Comp. Biochem. Physiol. B 75:293–300 [Google Scholar]
  37. Engebretson JA, Mullins DE. 37.  1986. The effects of a purine inhibitor, allopurinol, on urate metabolism in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae). Comp. Biochem. Physiol. B 83:93–97 [Google Scholar]
  38. Gibbs AG. 38.  2007. Waterproof cockroaches: the early work of J. A. Ramsay. J. Exp. Biol. 210:921–22 [Google Scholar]
  39. Gibbs AG. 39.  2011. Thermodynamics of cuticular transpiration. J. Insect Physiol. 57:1066–69 [Google Scholar]
  40. Giorgi F, Nordin JH. 40.  1994. Structure of yolk granules in oocytes and eggs of Blattella germanica and their interaction with vitellophages and endosymbiotic bacteria during granule degradation. J. Insect Physiol. 40:1077–92 [Google Scholar]
  41. Gonzalez-Domenech CM, Belda E, Patino-Navarrete R, Moya A, Pereto J, Latorre A. 41.  2012. Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches. BMC Microbiol. 12:Suppl. 1S5 [Google Scholar]
  42. Graves PN. 42.  1969. Spermatophores of the Blattaria. Ann. Entomol. Soc. Am. 62:595–602 [Google Scholar]
  43. Gray EM, Chown SL. 43.  2008. Bias, precision and accuracy in the estimation of cuticular and respiratory water loss: a case study from a highly variable cockroach, Perisphaeria sp. J. Insect Physiol. 54:169–79 [Google Scholar]
  44. Grigolo A, Sacchi L, Laudani U, Jayakar SD, Sgaramella LZ. 44.  1984. The dynamics of endosymbiosis during development in the German cockroach, Blattella germanica L. (Blattodea). Monit. Zool. Ital. 18:231–38 [Google Scholar]
  45. Grimaldi H, Engel MS. 45.  2005. Evolution of the Insects New York: Cambridge Univ. Press
  46. Guthrie D, Tindall AR. 46.  1968. The Biology of the Cockroach London: Edward Arnold
  47. Hamilton R, Mullins DE, Orcutt DM. 47.  1985. Freezing-tolerance in the woodroach Cryptocercus punctulatus (Scudder). Experentia 41:1535–37 [Google Scholar]
  48. Hazell SP, Bale JS. 48.  2011. Low temperature thresholds: Are chill coma and CTmin synonymous?. J. Insect Physiol. 57:1085–89 [Google Scholar]
  49. Hazell SP, Pedersen BP, Worland MR, Blackburn TM, Bale JS. 49.  2008. A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiol. Entomol. 33:389–94 [Google Scholar]
  50. Hogan ME, Slaytor M, O'Brien RW. 50.  1985. Transport of volatile fatty acids across the hindgut of the cockroach Panesthia cribrata and the termite Mastotermes darwiniensis. J. Insect Physiol. 31:587–92 [Google Scholar]
  51. Huang CY, Sabree ZL, Moran N. 51.  2012. Genome sequence of Blattabacterium sp. strain BGIGA, endosymbiont of the Blaberus giganteus cockroach. J. Bacteriol. 194:4450–51 [Google Scholar]
  52. Huang J, Lozano J, Belles X. 52.  2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim. Biophys. Acta 1830:2178–87 [Google Scholar]
  53. Hyatt AD, Marshall AT. 53.  1985. Water and ion balance in the tissues of the dehydrated cockroach Periplaneta americana. J. Insect Physiol. 31:27–34 [Google Scholar]
  54. Hyatt AD, Marshall AT. 54.  1985. X-ray microanalysis of cockroach Periplaneta americana fat body in relation to ion and water regulation. J. Insect Physiol. 31:495–508 [Google Scholar]
  55. Ingram M, Stay B, Cain GD. 55.  1977. Composition of milk from the viviparous cockroach, Diploptera punctata. Insect Biochem. 7:257–67 [Google Scholar]
  56. Inward DBG, Eggelton P. 56.  2007. Death of an order: a comprehensive molecular study confirms that termites are eusocial cockroaches. Biol. Lett. 3:331–35 [Google Scholar]
  57. Irles P, Bellés X, Piulachs MD. 57.  2009. Brownie, a gene involved in building complex respiratory devices in insect eggshells. PLoS ONE 4:e8353 [Google Scholar]
  58. Irles P, Bellés X, Piulachs MD. 58.  2009. Identifying genes related to choriogenesis in insect panoistic ovaries by suppression subtractive hybridization. BMC Genomics 30:206 [Google Scholar]
  59. Irles PP. 59.  2011. Citrus, a key insect eggshell protein. Insect Biochem. Mol. Biol. 41:101–10 [Google Scholar]
  60. Kane MD, Breznak JA. 60.  1991. Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Appl. Environ. Mirobiol. 57:2628–34 [Google Scholar]
  61. Klass KD, Nalepa C, Lo N. 61.  2008. Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus versus Parasphaeria boleiriana. Mol. Phylogenet. Evol. 46:809–17 [Google Scholar]
  62. Kugimiya S, Nishida R, Kuwahara Y, Sakuma M. 62.  2002. Phospholipid composition and pheromonal activity of nuptial secretion of the male German cockroach, Blattella germanica. Entomol. Exp. Appl. 104:337–44 [Google Scholar]
  63. Kugimiya S, Nishida R, Sakuma M, Kuwahara Y. 63.  2003. Nutritional phagostimulants function as male courtship pheromone in the German cockroach, Blattella germanica. Chemoecology 13:169–75 [Google Scholar]
  64. Lanham UN. 64.  1968. The Blochmann bodies hereditary intracellular symbionts of insects. Biol. Rev. 43:269–86 [Google Scholar]
  65. Lembke HF, Cochran DG. 65.  1988. Uric acid in the Malpighian tubules of some blattellid cockroaches. Comp. Biochem. Physiol. A 91:587–97 [Google Scholar]
  66. Lighton JRB. 66.  1996. Discontinuous gas exchange in insects. Annu. Rev. Entomol. 41:309–24 [Google Scholar]
  67. Lo N, Bandi C, Watanabe H, Nalepa C, Beninati T. 67.  2003. Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol. Biol. Evol. 20:907–13 [Google Scholar]
  68. Lo N, Eggleton P. 68.  2011. Termite phylogentics and co-cladogenesis with symbionts. Biology of Termites: A Modern Synthesis D Bignell, Y Roisin, N Lo, pp 27–50 Dordrecht, Neth.: Springer [Google Scholar]
  69. Lo N, Stone F, Walker J, Sacchi L. 69.  2007. Cockroaches that lack Blattabacterium endosymbionts: the phylogenetically divergent genus Nocticola. Biol. Lett. 3:327–30 [Google Scholar]
  70. Lopez-Sanchez MJ, Neef A, Pereto J, Patino-Navarrete R, Pignatelli M. 70.  et al. 2009. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLOS Genet. 5:e1000721 [Google Scholar]
  71. Machin J, Kestler P, Lampert GJ. 71.  1991. Simultaneous measurements of spiracle and cuticular water losses in Periplaneta americana: implications of whole-animal loss studies. J. Exp. Biol. 161:431–53 [Google Scholar]
  72. Machin J, Lampert GJ. 72.  1989. Energetics of water diffusion through the cuticular water barrier of Periplaneta: the effect of temperature revisited. J. Insect Physiol. 35:437–45 [Google Scholar]
  73. Maddrell SHP. 73.  1971. The mechanisms of insect excretory systems. Adv. Insect Physiol. 8:199–331 [Google Scholar]
  74. Maekawa K, Kon M, Matsumoto T, Araya K, Lo N. 74.  2005. Phylogenetic analyses of fat body endosymbionts reveal differences in invasion times of blaberid wood-feeding cockroaches (Blaberidae: Panesthiinae) into the Japanese archipelago. Zool. Sci. 22:1061–67 [Google Scholar]
  75. Matson EG, Gora KG, Leadbetter JR. 75.  2011. Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of lower termites and the wood roach. PLOS ONE 6:e19316 [Google Scholar]
  76. Matthews PGD, White CR. 76.  2011. Discontinuous gas exchange in insects: Is it all in their heads?. Am. Nat. 177:130–34 [Google Scholar]
  77. Matthews PGD, White CR. 77.  2011. Regulation of gas exchange and haemolymph pH in the cockroach Nauphoeta cinerea. J. Exp. Biol. 214:3062–73 [Google Scholar]
  78. Milburn NS. 78.  1966. Fine structure of the pleomorphic bacteroids in the mycetocytes and ovaries of several genera of cockroaches. J. Insect Physiol. 12:1245–54 [Google Scholar]
  79. Moran NA, Wernegreen JJ. 79.  2000. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol. Evol. 15:321–26 [Google Scholar]
  80. Mullins D. 80.  1974. Nitrogen metabolism in the American cockroach: an examination of the whole body ammonium and other cations excreted in relation to water requirements. J. Exp. Biol. 61:541–56 [Google Scholar]
  81. Mullins DE. 81.  1982. Osmoregulation and excretion. See Ref. 8, pp 117–49
  82. Mullins DE, Cochran DG. 82.  1974. Nitrogen metabolism in the American cockroach: an examination of whole body and fat body regulation of cations in response to nitrogen balance. J. Exp. Biol. 61:557–70 [Google Scholar]
  83. Mullins DE, Keil CB, White RH. 83.  1992. Maternal and paternal nitrogen investment in Blattella germanica (L.) (Dictyoptera; Blattellidae). J. Exp. Biol. 162:55–72 [Google Scholar]
  84. Mullins DE, Mullins KJ, Tignor KR. 84.  2002. The structural basis for water exchange between the female cockroach (Blattella germanica) and her ootheca. J. Exp. Biol. 205:2987–96 [Google Scholar]
  85. Nalepa C, Bignell DE, Bandi C. 85.  2001. Detrivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc. 48:194–201 [Google Scholar]
  86. Nardi JB, Mackie RI, Dawson JO. 86.  2002. Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems?. J. Insect Physiol. 48:751–63 [Google Scholar]
  87. Neef A, Latorre A, Pereto J, Silva FJ, Pignatelli M, Moya A. 87.  2011. Genome economization in the endosymbiont of the wood roach Cryptocercus punctulatus due to drastic loss of amino acid synthesis capabilities. Genome Biol. Evol. 3:1437–48 [Google Scholar]
  88. Nelson DR, Hines H, Stay B. 88.  2004. Methyl-branched hydrocarbons, major components of the waxy material coating the embryos of the viviparous cockroach Diploptera punctata. Comp. Biochem. Physiol. B 138:265–76 [Google Scholar]
  89. Ngugi DK, Brune A. 89.  2012. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ. Microbiol. 14:860–71 [Google Scholar]
  90. Ngugi DK, Ji R, Brune A. 90.  2011. Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: a 15N-based approach. Biogeochemistry 103:355–69 [Google Scholar]
  91. Noble-Nesbitt J, Appel AG, Croghan PC. 91.  1995. Water and carbon dioxide loss from the cockroach Periplaneta americana (L.) measured using radioactive isotopes. J. Exp. Biol. 198:235–40 [Google Scholar]
  92. Nojima S, Sakuma M, Nishida R, Kuwahara Y. 92.  1999. A glandular gift in the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae): The courtship feeding of a female on secretions from male tergal glands. J. Insect Behav. 12:627–40 [Google Scholar]
  93. O'Donnell M. 93.  1982. Water vapour absorption by the desert burrowing cockroach, Arenivaga investigata: evidence against a solute dependent mechanism. J. Exp. Biol. 96:251–62 [Google Scholar]
  94. O'Donnell M. 94.  2008. Insect excretory mechanisms. Adv. Insect Physiol. 35:1–122A comprehensive treatment of the design, ion, metabolites, organic anions/cations transport, and detoxification mechanisms of insect excretory systems. [Google Scholar]
  95. O'Donnell MJ. 95.  1977. Site of water vapor absorption in the desert cockroach, Arenivaga investigata. Proc. Natl. Acad. Sci. 74:1757–60 [Google Scholar]
  96. O'Donnell MJ. 96.  2009. Too much of a good thing: How insects cope with excess ions or toxins in the diet. J. Exp. Biol. 212:363–72 [Google Scholar]
  97. Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T. 97.  2009. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc. R. Soc. Lond. B 276:239–45 [Google Scholar]
  98. Ottesen EA, Leadbetter JR. 98.  2010. Diversity of formyltetrahydrofolate synthetases in the guts of the wood-feeding cockroach Cryptocercus punctulatus and the omnivorous cockroach Periplaneta americana. App. Environ. Microbiol. 76:4909–13 [Google Scholar]
  99. Overgaard J, Kristensen TN, Sorensen JG. 99.  2012. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLOS ONE 7:e32758 [Google Scholar]
  100. Park M, Park P, Takeda M. 100.  2013. Roles of fat body trophocytes, mycetocytes and urocytes in the American cockroach, Periplaneta americana, under starvation conditions: an ultrastructural study. Arthropod Struct. Dev. 42:287–95 [Google Scholar]
  101. Patourel GNJ. 101.  1993. Cold-tolerance of the oriental cockroach Blatta orientalis. Entomol. Exp. Appl. 68:257–63 [Google Scholar]
  102. Picker J, Colville JF, Burrows M. 102.  2011. A cockroach jumps. Biol. Lett. 8:390–92 [Google Scholar]
  103. Potrikus C, Breznak JA. 103.  1981. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc. Natl. Acad. Sci. USA 78:4601–5 [Google Scholar]
  104. Quinlan MC, Gibbs AG. 104.  2006. Discontinuous gas exchange in insects. Resp. Physiol. Neurobiol. 154:18–29 [Google Scholar]
  105. Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D. 105.  2012. An implantable biofuel cell for a live insect. J. Am. Chem. Soc. 134:1458–60 [Google Scholar]
  106. Roth LM. 106.  1969. The evolution of male tergal glands in the Blattaria. Ann. Entomol. Soc. Am. 62:176–208 [Google Scholar]
  107. Roth LM. 107.  1982. Introduction. See Ref. 8, pp 1–14
  108. Roth LM, Dateo GP. 108.  1964. Uric acid in the reproductive system of males of the cockroach Blattella germanica. Science 146:782–84 [Google Scholar]
  109. Roth LM, Dateo GP. 109.  1965. Uric acid storage and excretion by accessory sex glands of male cockroaches. J. Insect Physiol. 11:1023–29 [Google Scholar]
  110. Rust MK, Owens JM, Reierson DA. 110.  1995. Understanding and Controlling the German Cockroach New York: Oxford Univ. Press
  111. Sabree ZL, Degnan PH, Moran NA. 111.  2010. Chromosome stability and gene loss in cockroach endosymbionts. Appl. Environ. Microbiol. 76:4076–79 [Google Scholar]
  112. Sabree ZL, Kambhampati S, Moran NA. 112.  2009. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl. Acad. Sci. USA 106:19521–26 [Google Scholar]
  113. Sacchi L, Girolo A, Laudani U. 113.  1985. Behavior of symbionts during oogenesis and early stages of development in the German cockroach, Blattella germanica (Blattodea). J. Invert. Pathol. 46:139–52 [Google Scholar]
  114. Sacchi L, Grigolo A. 114.  1989. Endocytobiosis in Blattella germanica L. (Blattodea): recent acquisitions. Endocytobiosis Cell Res. 6:121–47 [Google Scholar]
  115. Sacchi L, Nalepa CA, Bigliardi E, Corona S, Grigolo A. 115.  et al. 1998. Ultrastructural studies of the fat body and bacterial endosymbionts of Cryptocercus punctulatus Scudder (Blattaria: Cryptocercidae). Symbiosis 25:251–69 [Google Scholar]
  116. Schal C, Bell WJ. 116.  1982. Ecological correlates of paternal investment of urates in a tropical cockroach. Science 218:170–73 [Google Scholar]
  117. Schauer C, Thompson CL, Brune A. 117.  2012. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 78:2758–67 [Google Scholar]
  118. Schimpf NG, Matthews PG, White CR. 118.  2011. Cockroaches that exchange respiratory gases discontinuously survive food and water restriction. Evolution 66:597–604 [Google Scholar]
  119. Schimpf NG, Matthews PG, Wilson RS, White CR. 119.  2009. Cockroaches breathe discontinuously to reduce respiratory water loss. J. Exp. Biol. 212:2773–80 [Google Scholar]
  120. Snyder GK, Ungerman G, Breed M. 120.  1980. Effects of hypoxia, hypercapnia and pH on ventilation rate and Nauphoeta cinerea. J. Insect Physiol. 26:699–702 [Google Scholar]
  121. Sponberg S, Spence AJ, Mullens CH, Full RJ. 121.  2011. A single muscle's multifunctional control potential of body dynamics for postural control and running. Philos. Trans. R. Soc. Lond. B 366:1592–605 [Google Scholar]
  122. Spring JH, Hyatt AD, Marshall AT. 122.  1986. Uptake and release of sodium and potassium by the fat body of the American cockroach Periplaneta americana in vitro. J. Insect Physiol. 32:439–44 [Google Scholar]
  123. Sreng L. 123.  1990. Seducin, male sex pheromone of the cockroach Nauphoeta cinerea: isolation, identification, and bioassay. J. Chem. Ecol. 16:2899–912 [Google Scholar]
  124. Stay B, Coop A. 124.  1973. Developmental stages and chemical composition in embryos of the cockroach, Diploptera punctata, with observations on the effect of diet. J. Insect Physiol. 19:147–71 [Google Scholar]
  125. Storey KB, Storey JM. 125.  2012. Insect cold hardiness: metabolic, gene, and protein adaptation. Can. J. Zool. 90:456–75A review of the different processes and mechanisms involved in insect cold hardiness. [Google Scholar]
  126. Tanaka S. 126.  2002. Temperature acclimation in overwintering nymphs of a cockroach, Periplaneta japonica: walking on ice. J. Insect Physiol. 48:571–83 [Google Scholar]
  127. Thornhill R. 127.  1976. Sexual selection and paternal investment in insects. Am. Nat. 110:153–63 [Google Scholar]
  128. Tucker LE. 128.  1977. Regulation of ions in the haemolymph of the cockroach Periplaneta americana during dehydration and rehydration. J. Exp. Biol. 72:95–110 [Google Scholar]
  129. Vahed K. 129.  1998. The function of nuptial feeding in insects: a review of empirical studies. Biol. Rev. 73:43–78 [Google Scholar]
  130. Valovage WD, Brooks MA. 130.  1979. Uric acid quantities in the fat body of normal and aposymbiotic German cockroaches, Blattella germanica. Ann. Entomol. Soc. Am. 72:687–89 [Google Scholar]
  131. Vlasáková B, Kalinová B, Gustafsson MHG, Teichert H. 131.  2008. Cockroaches as pollinators of Clusia aff. sellowiana (Clusiaceae) on inselbergs in French Guiana. Ann. Bot. 102:295–304 [Google Scholar]
  132. Vršanský P. 132.  2009. Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. Geodiversitas 31:73–98 [Google Scholar]
  133. Vršanský P, Chorvát D. 133.  2013. Luminescent system of Lucihormetica luckae supported by fluorescence lifetime imaging. Naturwissenschaften 100:1099–101 [Google Scholar]
  134. Vršanský P, Chorvát D, Fritzsche I, Hain M, Ševčík R. 134.  2012. Light-mimicking cockroaches indicate tertiary origin of recent terrestrial luminescence. Naturwissenschaften 99:739–49 [Google Scholar]
  135. Vršanský P, Vidlička L, Barna P, Bugdaeva E, Markevick V. 135.  2013. Paleocene origin of the cockroach families Blaberidae and Corydiidae: evidence from Amur River region of Russia. Zootaxa 3635:117–26 [Google Scholar]
  136. Wall BJ. 136.  1970. Effects of dehydration and rehydration on Periplaneta americana. J. Insect Physiol. 16:1027–42 [Google Scholar]
  137. Wall BJ, Oschman JL, Schmidt BA. 137.  1975. Morphology and function of Malpighian tubules and associated structures in the cockroach Periplaneta americana. J. Morphol. 146:265–306 [Google Scholar]
  138. Ware JL, Litman J, Klass K-D, Spearman LA. 138.  2008. Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology. Syst. Entomol. 33:429–50 [Google Scholar]
  139. Watanabe H, Tokuda G. 139.  2010. Cellulolytic systems in insects. Annu. Rev. Entomol. 55:609–32Useful information on insect systems that digest cellulosic material; includes in-depth information on wood-feeding cockroaches and termites. [Google Scholar]
  140. Webster MR, De Vita R, Twigg JN, Socha JJ. 140.  2011. Mechanical properties of tracheal tubes in the American cockroach (Periplaneta americana). Smart Mater. Struct. 20:094017 [Google Scholar]
  141. Weihrauch D, Donini A, O'Donnell MJ. 141.  2012. Ammonia transport by terrestrial and aquatic insects. J. Insect Physiol. 58:473–87A review of nitrogen metabolism in insects with a focus on ammonia metabolism, an important topic. [Google Scholar]
  142. Wharton DA. 142.  2011. Cold tolerance of New Zealand alpine insects. J. Insect Physiol. 57:1090–95 [Google Scholar]
  143. Wharton DA, Pow B, Kristensen M, Ramlov H, Marshall CJ. 143.  2009. Ice-active proteins and cryoprotectants from the New Zealand alpine cockroach, Celatoblatta quinquemaculata. J. Insect Physiol. 55:27–31 [Google Scholar]
  144. Wigglesworth VB. 144.  1987. Histochemical studies of uric acid in some insects. I. Storage in the fat body of Periplaneta americana and the action of the symbiotic bacteria. Tissue Cell 19:83–91 [Google Scholar]
  145. Williford A, Stay B, Bhattacharya D. 145.  2004. Evolution of a novel function: nutritive milk in the viviparous cockroach, Diploptera punctata. Evol. Dev. 6:67–77 [Google Scholar]
  146. Worland MR, Wharton DA, Byars SG. 146.  2004. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata. J. Insect Physiol. 50:225–32 [Google Scholar]
  147. Wren HN, Cochran DG. 147.  1987. Xanthine dehydrogenase activity in the cockroach endosymbiont Blattabacterium cuenoti (Mercier 1906) Hollande and Favre 1931 and in the cockroach fat body. Comp. Biochem. Physiol. B 88:1023–26 [Google Scholar]
  148. Wren HN, Johnson JL, Cochran DG. 148.  1989. Evolutionary inferences from a comparison of cockroach nuclear DNA and DNA from their fat-body and egg endosymbionts. Evolution 43:276–81 [Google Scholar]
  149. Youngsteadt E, Fan Y, Stay B, Schal C. 149.  2005. Cuticular hydrocarbon synthesis and its maternal provisioning to embryos in the viviparous cockroach Diploptera punctata. J. Insect Physiol. 51:803–9 [Google Scholar]
  150. Zhou Y, Rocha A, Sanchez CJ, Liang H. 150.  2012. Assessment of toxicity of nanoparticles using insects as biological models. Nanoparticles in Biology and Medicine: Methods and Protocols M Soloviev 423–33 New York: Springer [Google Scholar]
  151. Zurek L, Keddie BA. 151.  1996. Contribution of the colon and colonic bacterial flora to metabolism and development of the American cockroach Periplaneta americana L. J. Insect Physiol. 42:743–48 [Google Scholar]
/content/journals/10.1146/annurev-ento-011613-162036
Loading
/content/journals/10.1146/annurev-ento-011613-162036
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error