1932

Abstract

Insect invasions, the establishment and spread of nonnative insects in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates rates of introductions, while climate change may decrease the barriers to invader species’ spread. We follow an individual-level insect- and arachnid-centered perspective to assess how the process of invasion is influenced by phenotypic heterogeneity associated with dispersal and stress resistance, and their coupling, across the multiple steps of the invasion process. We also provide an overview and synthesis on the importance of environmental filters during the entire invasion process for the facilitation or inhibition of invasive insect population spread. Finally, we highlight important research gaps and the relevance and applicability of ongoing natural range expansions in the context of climate change to gain essential mechanistic insights into insect invasions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020117-043315
2018-01-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ento/63/1/annurev-ento-020117-043315.html?itemId=/content/journals/10.1146/annurev-ento-020117-043315&mimeType=html&fmt=ahah

Literature Cited

  1. Ahlroth P, Alatalo RV, Holopainen A, Kumpulainen T, Suhonen J. 1.  2003. Founder population size and number of source populations enhance colonization success in waterstriders. Oecologia 137:4617–20 [Google Scholar]
  2. Arca M, Mougel F, Guillemaud T, Dupas S, Rome Q. 2.  et al. 2015. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol. Invasions 17:82357–71 [Google Scholar]
  3. Baguette M, Convie I, Neve G. 3.  1996. Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta Oecologica 17:225–32 [Google Scholar]
  4. Bailey NW, Gray B, Zuk M. 4.  2011. Exposure to sexual signals during rearing increases immune defence in adult field crickets. Biol. Lett. 7:2217–20 [Google Scholar]
  5. Baines CB, McCauley SJ, Rowe L. 5.  2014. The interactive effects of competition and predation risk on dispersal in an insect. Biol. Lett. 10:620140287–87 [Google Scholar]
  6. Bansal R, Mian MAR, Michel AP. 6.  2014. Microbiome diversity of Aphis glycines with extensive superinfection in native and invasive populations: microbiome diversity in soybean aphid. Environ. Microbiol. Rep. 6:157–69 [Google Scholar]
  7. Battisti A, Larsson S, Roques A. 7.  2017. Processionary moths and associated urtication risk: global change–driven effects. Annu. Rev. Entomol. 62:323–42 [Google Scholar]
  8. Beaudoin-Ollivier L, Bonaccorso F, Aloysius M, Kasiki M. 8.  2003. Flight movement of Scapanes australis australis (Boisduval) (Coleoptera: Scarabaeidae: Dynastinae) in Papua New Guinea: a radiotelemetry study. Aust. J. Entomol. 42:4367–72 [Google Scholar]
  9. Benard MF, McCauley SJ. 9.  2008. Integrating across life-history stages: consequences of natal habitat effects on dispersal. Am. Nat. 171:5553–67 [Google Scholar]
  10. Bitume EV, Bonte D, Ronce O, Bach F, Flaven E. 10.  et al. 2013. Density and genetic relatedness increase dispersal distance in a subsocial organism. Ecol. Lett. 16:4430–37 [Google Scholar]
  11. Bitume EV, Bonte D, Ronce O, Olivieri I, Nieberding CM. 11.  2014. Dispersal distance is influenced by parental and grand-parental density. Proc. R. Soc. B 281:179020141061 [Google Scholar]
  12. Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP. 12.  et al. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:7333–339 [Google Scholar]
  13. Bonte D, Baert L, Lens L, Maelfait J-P. 13.  2004. Effects of aerial dispersal, habitat specialisation, and landscape structure on spider distribution across fragmented grey dunes. Ecography 27:3343–49 [Google Scholar]
  14. Bonte D, Dahirel M. 14.  2017. Dispersal: a central and independent trait in life history. Oikos 126:4472–79 [Google Scholar]
  15. Bonte D, De La Peña E. 15.  2009. Evolution of body condition-dependent dispersal in metapopulations. J. Evol. Biol. 22:61242–51 [Google Scholar]
  16. Bonte D, De Meester N, Matthysen E. 16.  2011. Selective integration advantages when transience is costly: immigration behaviour in an agrobiont spider. Anim. Behav. 81:4837–41 [Google Scholar]
  17. Bonte D, De Roissart A, Wybouw N, Van Leeuwen T. 17.  2014. Fitness maximization by dispersal: evidence from an invasion experiment. Ecology 95:113104–11First experimental demonstration of the adaptive significance of phenotype-dependent dispersal. [Google Scholar]
  18. Bonte D, Travis JM, De Clercq N, Zwertvaegher I, Lens L. 18.  2008. Thermal conditions during juvenile development affect adult dispersal in a spider. PNAS 105:4417000–5 [Google Scholar]
  19. Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M. 19.  et al. 2012. Costs of dispersal. Biol. Rev. 87:2290–312 [Google Scholar]
  20. Bouget C, Brin A, Tellez D, Archaux F. 20.  2015. Intraspecific variations in dispersal ability of saproxylic beetles in fragmented forest patches. Oecologia 177:3911–20 [Google Scholar]
  21. Bradshaw WE, Holzapfel CM. 21.  2006. Evolutionary response to rapid climate change. Science 312:57791477–78 [Google Scholar]
  22. Braendle C, Davis GK, Brisson JA, Stern DL. 22.  2006. Wing dimorphism in aphids. Heredity 97:3192–99 [Google Scholar]
  23. Bridle JR, Vines TH. 23.  2007. Limits to evolution at range margins: When and why does adaptation fail?. Trends Ecol. Evol. 22:3140–47 [Google Scholar]
  24. Briscoe NJ, Porter WP, Sunnucks P, Kearney MR. 24.  2012. Stage-dependent physiological responses in a butterfly cause non-additive effects on phenology. Oikos 121:91464–72 [Google Scholar]
  25. Buoro M, Carlson SM. 25.  2014. Life-history syndromes: integrating dispersal through space and time. Ecol. Lett. 17:6756–67 [Google Scholar]
  26. Chuang A, Peterson CR. 26.  2016. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22:2494–512 [Google Scholar]
  27. Chuine I. 27.  2010. Why does phenology drive species distribution?. Philos. Trans. R. Soc. B Biol. Sci. 365:15553149–60 [Google Scholar]
  28. Clobert J, Le Galliard J-F, Cote J, Meylan S, Massot M. 28.  2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12:3197–209 [Google Scholar]
  29. Colinet H. 29.  2011. Disruption of ATP homeostasis during chronic cold stress and recovery in the chill susceptible beetle (Alphitobius diaperinus). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 160:163–67 [Google Scholar]
  30. Colinet H, Renault D, Roussel D. 30.  2017. Cold acclimation allows Drosophila flies to maintain mitochondrial functioning under cold stress. Insect Biochem. Mol. Biol. 80:52–60 [Google Scholar]
  31. Cornet S, Brouat C, Diagne C, Charbonnel N. 31.  2016. Eco-immunology and bioinvasion: revisiting the evolution of increased competitive ability hypotheses. Evol. Appl. 9:8952–62 [Google Scholar]
  32. Cote J, Clobert J, Brodin T, Fogarty S, Sih A. 32.  2010. Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philos. Trans. R. Soc. B Biol. Sci. 365:15604065–76 [Google Scholar]
  33. Cote J, Fogarty S, Brodin T, Weinersmith K, Sih A. 33.  2011. Personality-dependent dispersal in the invasive mosquitofish: group composition matters. Proc. R. Soc. B 278:17121670–78 [Google Scholar]
  34. Crozier L, Dwyer G. 34.  2006. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am. Nat. 167:6853–66 [Google Scholar]
  35. Danks HV. 35.  1983. Extreme individuals in natural populations. Bull. Entomol. Soc. Am. 29:141–48 [Google Scholar]
  36. David G, Giffard B, Piou D, Jactel H. 36.  2014. Dispersal capacity of Monochamus galloprovincialis, the European vector of the pine wood nematode, on flight mills. J. Appl. Entomol. 138:8566–76 [Google Scholar]
  37. Davis MB, Shaw RG. 37.  2001. Range shifts and adaptive responses to quaternary climate change. Science 292:673–79 [Google Scholar]
  38. De Meester N, Bonte D. 38.  2010. Information use and density-dependent emigration in an agrobiont spider. Behav. Ecol. 21:5992–98 [Google Scholar]
  39. Deere JA, Coulson T, Smallegange IM. 39.  2015. Life history consequences of the facultative expression of a dispersal life stage in the phoretic bulb mite (Rhizoglyphus robini). PLOS ONE 10:9e0136872 [Google Scholar]
  40. Delgado MM, Barton KA, Bonte D, Travis JMJ. 40.  2014. Prospecting and dispersal: their eco-evolutionary dynamics and implications for population patterns. Proc. R. Soc. B 281:177820132851 [Google Scholar]
  41. Denno RF, Roderick GK, Peterson MA, Huberty AF, Dobel HG. 41.  et al. 1996. Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecol. Monogr. 66:4389–408 [Google Scholar]
  42. Diepenbrock LM, Swoboda-Bhattarai KA, Burrack HJ. 42.  2016. Ovipositional preference, fidelity, and fitness of Drosophila suzukii in a co-occurring crop and non-crop host system. J. Pest Sci. 89:3761–69 [Google Scholar]
  43. Edelsparre AH, Vesterberg A, Lim JH, Anwari M, Fitzpatrick MJ. 43.  2014. Alleles underlying larval foraging behaviour influence adult dispersal in nature. Ecol. Lett. 17:3333–39 [Google Scholar]
  44. Elkinton JS, Liebhold A, Boettner GH, Sremac M. 44.  2014. Invasion spread of Operophtera brumata in northeastern United States and hybridization with O. bruceata. Biol. Invasions 16:112263–72 [Google Scholar]
  45. Excoffier L, Ray N. 45.  2008. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol. Evol. 23:7347–51 [Google Scholar]
  46. Faillace CA, Morin PJ. 46.  2016. Evolution alters the consequences of invasions in experimental communities. Nat. Ecol. Evol. 1:10013 [Google Scholar]
  47. Falk-Petersen J, Bøhn T, Sandlund OT. 47.  2006. On the numerous concepts in invasion biology. Biol. Invasions 8:61409–24 [Google Scholar]
  48. Fitzpatrick MC, Hargrove WW. 48.  2009. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 18:82255–61 [Google Scholar]
  49. Fronhofer EA, Klecka J, Melián CJ, Altermatt F. 49.  2015. Condition-dependent movement and dispersal in experimental metacommunities. Ecol. Lett. 18:9954–63 [Google Scholar]
  50. Fronhofer EA, Nitsche N, Altermatt F. 50.  2017. Information use shapes the dynamics of range expansions into environmental gradients: informed dispersal and range dynamics. Glob. Ecol. Biogeogr. 26:4400–11Demonstrates the importance of informed dispersal on range dynamics and evolutionary change in dispersal rates. [Google Scholar]
  51. Gandon S. 51.  1999. Kin competition, the cost of inbreeding and the evolution of dispersal. J. Theor. Biol. 200:4345–64Theoretical study linking relatedness and cost of inbreeding to evolution of sex-biased dispersal rates. [Google Scholar]
  52. García-Robledo C, Horvitz CC. 52.  2012. Parent–offspring conflicts, “optimal bad motherhood” and the “mother knows best” principles in insect herbivores colonizing novel host plants. Ecol. Evol. 2:1446–57 [Google Scholar]
  53. Géri C. 53.  1983. Distribution and evolution of populations of the pine processionary, Thaumetopoeapityocampa Schiff, (Lep., Thaumetopoeidae) in the Corsican mountains. I. Emergence rhythms of the insect and population dynamics. Acta Oecologia 4:247–68 [Google Scholar]
  54. Ghalambor CK, McKay JK, Carroll SP, Reznick DN. 54.  2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21:3394–407 [Google Scholar]
  55. Gilchrist GW, Jeffers LM, West B, Folk DG, Suess J, Huey RB. 55.  2008. Clinal patterns of desiccation and starvation resistance in ancestral and invading populations of Drosophila subobscura. Evol. Appl. 1:3513–23 [Google Scholar]
  56. Girardot F, Monnier V, Tricoire H. 56.  2004. Genome wide analysis of common and specific stress responses in adult Drosophila melanogaster. BMC Genom 5:174 [Google Scholar]
  57. Gu H, Hughes J, Dorn S. 57.  2006. Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecol. Entomol. 31:168–74 [Google Scholar]
  58. Guerra PA. 58.  2011. Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: a meta-analysis. Biol. Rev. 86:4813–35 [Google Scholar]
  59. Gunderson AR, Stillman JH. 59.  2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. Lond. B 282:20150401 [Google Scholar]
  60. Haag CR, Saastamoinen M, Marden JH, Hanski I. 60.  2005. A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc. R. Soc. B 272:15802449–56 [Google Scholar]
  61. Hallsson LR, Björklund M. 61.  2012. Selection in a fluctuating environment and the evolution of sexual dimorphism in the seed beetle Callosobruchus maculatus: sex differences in fluctuating environments. J. Evol. Biol. 25:81564–75 [Google Scholar]
  62. Hammill E, Fitzjohn RG, Srivastava DS. 62.  2015. Conspecific density modulates the effect of predation on dispersal rates. Oecologia 178:41149–58 [Google Scholar]
  63. Hayes KR, Barry SC. 63.  2008. Are there any consistent predictors of invasion success?. Biol. Invasions 10:4483–506 [Google Scholar]
  64. Hidalgo K, Laparie M, Bical R, Larvor V, Bouchereau A. 64.  et al. 2013. Metabolic fingerprinting of the responses to salinity in the invasive ground beetle Merizodus soledadinus at the Kerguelen Islands. J. Insect Physiol. 59:191–100 [Google Scholar]
  65. Hill JK, Griffiths HM, Thomas CD. 65.  2011. Climate change and evolutionary adaptations at species’ range margins. Annu. Rev. Entomol. 56:143–59 [Google Scholar]
  66. Hopper KR. 66.  1999. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44:535–60 [Google Scholar]
  67. Hopper KR, Roush RT. 67.  1993. Mate finding, dispersal, number released, and the success of biological control introductions. Ecol Entomol 18:4321–31 [Google Scholar]
  68. Hu Y, Holway DA, Łukasik P, Chau L, Kay AD. 68.  et al. 2017. By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes. Mol. Ecol. 26:61608–30 [Google Scholar]
  69. Hufbauer RA, Rutschmann A, Serrate B, Vermeil de Conchard H, Facon B. 69.  2013. Role of propagule pressure in colonization success: disentangling the relative importance of demographic, genetic and habitat effects. J. Evol. Biol. 26:81691–99Demonstrates the role of genetic background, propagule size, and habitat on founding success and fitness. [Google Scholar]
  70. Hughes J, Dorn S. 70.  2002. Sexual differences in the flight performance of the oriental fruit moth, Cydia molesta. Entomol. Exp. Appl. 103:2171–82 [Google Scholar]
  71. Inoue MN. 71.  2011. Size-dependent selection against small queens of the invasive bumblebee Bombus terrestris in Japan: selection against small Bombus terrestris queens. Entomol. Exp. Appl. 138:165–70 [Google Scholar]
  72. Jacob S, Bestion E, Legrand D, Clobert J, Cote J. 72.  2015. Habitat matching and spatial heterogeneity of phenotypes: implications for metapopulation and metacommunity functioning. Evol. Ecol. 29:6851–71 [Google Scholar]
  73. Jiu M, Zhou X-P, Tong L, Xu J, Yang X, Wan F-H. 73.  et al. 2007. Vector-virus mutualism accelerates population increase of an invasive whitefly. PLOS ONE 2:1e182 https://doi.org/10.1371/journal.pone.0000182 [Crossref] [Google Scholar]
  74. Ju R-T, Gao L, Zhou X-H, Li B. 74.  2013. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae), in subtropical China. PLOS ONE 8:1e54372 [Google Scholar]
  75. Kalarus K, Skórka P, Halecki W, Jirak A, Kajzer-Bonk J, Nowicki P. 75.  2013. Within-patch mobility and flight morphology reflect resource use and dispersal potential in the dryad butterfly Minois dryas. J. Insect Conserv. 17:61221–28 [Google Scholar]
  76. Kasumovic MM. 76.  2013. The multidimensional consequences of the juvenile environment: towards an integrative view of the adult phenotype. Anim. Behav. 85:1049–59 [Google Scholar]
  77. Keitt TH, Lewis MA, Holt RD. 77.  2001. Allee effects, invasion pinning, and species’ borders. Am. Nat. 157:2203–16 [Google Scholar]
  78. Kelley AL. 78.  2014. The role thermal physiology plays in species invasion. Conserv. Physiol. 2:1cou045A meta-analysis of the role of physiological plasticity in invasion success. [Google Scholar]
  79. King AM, MacRae TH. 79.  2015. Insect heat shock proteins during stress and diapause. Annu. Rev. Entomol. 60:59–75 [Google Scholar]
  80. Kisdi E, Utz M, Gyllenberg M. 80.  2012. Evolution of condition-dependent dispersal. Dispersal Ecology and Evolution J Clobert, M Baguette, TG Benton, J Bullock 139–51 Oxford, UK: Oxford Univ. Press [Google Scholar]
  81. Kooijman S. 81.  2010. Dynamic Energy Budget Theory for Metabolic Organization Cambridge, UK: Cambridge Univ. Press
  82. Kot M, Lewis MA, van den Driessche P. 82.  1996. Dispersal data and the spread of invading organisms. Ecology 77:72027–42 [Google Scholar]
  83. Kültz D. 83.  2005. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67:225–57 [Google Scholar]
  84. Kumschick S, Devenish A, Kenis M, Rabitsch W, Richardson DM, Wilson JRU. 84.  2016. Intentionally introduced terrestrial invertebrates: patterns, risks, and options for management. Biol. Invasions 18:41077–88 [Google Scholar]
  85. Kuussaari M, Rytteri S, Heikkinen RK, Heliölä J, von Bagh P. 85.  2016. Weather explains high annual variation in butterfly dispersal. Proc. R. Soc. B 283:183520160413 [Google Scholar]
  86. Lalouette L, Williams CM, Hervant F, Sinclair BJ, Renault D. 86.  2011. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 158:2229–34 [Google Scholar]
  87. Laparie M, Renault D. 87.  2016. Physiological responses to temperature in Merizodus soledadinus (Col., Carabidae), a subpolar carabid beetle invading sub-Antarctic islands. Polar Biol 39:135–45 [Google Scholar]
  88. Lavergne S, Mouquet N, Thuiller W, Ronce O. 88.  2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41:321–50 [Google Scholar]
  89. Lebouvier M, Laparie M, Hullé M, Marais A, Cozic Y. 89.  et al. 2011. The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol. Invasions 13:51195–208 [Google Scholar]
  90. Lee D-H, Leskey TC. 90.  2015. Flight behavior of foraging and overwintering brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Bull. Entomol. Res. 105:5566–73 [Google Scholar]
  91. Legrand D, Larranaga N, Bertrand R, Ducatez S, Calvez O. 91.  et al. 2016. Evolution of a butterfly dispersal syndrome. Proc. R. Soc. B 283:183920161533 [Google Scholar]
  92. Legrand D, Trochet A, Moulherat S, Calvez O, Stevens VM. 92.  et al. 2015. Ranking the ecological causes of dispersal in a butterfly. Ecography 38:8822–31 [Google Scholar]
  93. Lessard J-P, Fordyce JA, Gotelli NJ, Sanders NJ. 93.  2009. Invasive ants alter the phylogenetic structure of ant communities. Ecology 90:102664–69 [Google Scholar]
  94. Leturque H, Rousset F. 94.  2002. Dispersal, kin competition, and the ideal free distribution in a spatially heterogeneous population. Theor. Popul. Biol. 62:2169–80 [Google Scholar]
  95. Levins R, Culver D. 95.  1971. Regional coexistence of species and competition between rare species. PNAS 68:61246–48 [Google Scholar]
  96. Li S, Cadotte MW, Meiners SJ, Hua Z, Shu H. 96.  et al. 2015. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin's naturalisation conundrum. Ecol. Lett. 18:121285–92 [Google Scholar]
  97. Lidwien Raak-van den Berg C, Stam JM, de Jong PW, Hemerik L, van Lenteren JC. 97.  2012. Winter survival of Harmonia axyridis in the Netherlands. Biol. Control 60:168–76 [Google Scholar]
  98. Liebhold AM, Mastro V. 98.  Schaefer PW 1989. Learning from the legacy of Leopold Trouvelot. Bull. Entomol. Soc. Am. 35:220–22 [Google Scholar]
  99. Liebhold AM, Tobin PC. 99.  2008. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53:387–408 [Google Scholar]
  100. Lu M, Hulcr J, Sun J. 100.  2016. The role of symbiotic microbes in insect invasions. Annu. Rev. Ecol. Evol. Syst. 47:487–505Reviews the role of facultative and mutualistic microbes and their coevolution in invasive insects. [Google Scholar]
  101. Magwere T, West M, Riyahi K, Murphy MP, Smith RAJ, Partridge L. 101.  2006. The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mech. Ageing Dev. 127:4356–70 [Google Scholar]
  102. Manenti T, Loeschcke V, Moghadam NN, Sørensen JG. 102.  2015. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments. J. Evol. Biol. 28:2078–87 [Google Scholar]
  103. Manenti T, Sørensen JG, Loeschcke V. 103.  2017. Environmental heterogeneity does not affect levels of phenotypic plasticity in natural populations of three Drosophila species. Ecol. Evol. 7:82716–24 [Google Scholar]
  104. Marras S, Cucco A, Antognarelli F, Azzurro E, Milazzo M. 104.  et al. 2015. Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling. Conserv. Physiol. 3:1cou059 [Google Scholar]
  105. Matthysen E. 105.  2005. Density-dependent dispersal in birds and mammals. Ecography 28:3403–16 [Google Scholar]
  106. McCauley SJ. 106.  2010. Body size and social dominance influence breeding dispersal in male Pachydiplax longipennis (Odonata). Ecol. Entomol. 35:3377–85 [Google Scholar]
  107. McCauley SJ, Rowe L. 107.  2010. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6:4449–52 [Google Scholar]
  108. McGrannachan CM, Lester PJ. 108.  2013. Temperature and starvation effects on food exploitation by Argentine ants and native ants in New Zealand. J. Appl. Entomol. 137:7550–59 [Google Scholar]
  109. McPeek MA, Holt RD. 109.  1992. The evolution of dispersal in spatially and temporally varying environment. Am. Nat. 140:61010–27 [Google Scholar]
  110. Mennechez G, Schtickzelle N, Baguette M. 110.  2003. Metapopulation dynamics of the bog fritillary butterfly: comparison of demographic parameters and dispersal between a continuous and a highly fragmented landscape. Landsc. Ecol. 18:3279–91 [Google Scholar]
  111. Menu F, Desouhant E. 111.  2002. Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause. Oecologia 132:2167–74 [Google Scholar]
  112. Menu F, Roebuck J-P, Viala M. 112.  2000. Bet-hedging diapause strategies in stochastic environments. Am. Nat. 155:6724–34 [Google Scholar]
  113. Merckx T, Van Dyck H. 113.  2006. Landscape structure and phenotypic plasticity in flight morphology in the butterfly Pararge aegeria. Oikos 113:2226–32 [Google Scholar]
  114. Mestre L, Bonte D. 114.  2012. Food stress during juvenile and maternal development shapes natal and breeding dispersal in a spider. Behav. Ecol. 23:4759–64 [Google Scholar]
  115. Metz JAJ, Gyllenberg M. 115.  2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies. Proc. R. Soc. B 268:1466499–508 [Google Scholar]
  116. Moya-Laraño J, Macías-Ordóñez R, Blanckenhorn WU, Fernández-Montraveta C. 116.  2008. Analysing body condition: mass, volume or density?. J. Anim. Ecol. 77:61099–108 [Google Scholar]
  117. Niitepõld K, Hanski I. 117.  2013. A long life in the fast lane: positive association between peak metabolic rate and lifespan in a butterfly. J. Exp. Biol. 216:81388–97 [Google Scholar]
  118. Niitepõld K, Mattila AL, Harrison PJ, Hanski I. 118.  2011. Flight metabolic rate has contrasting effects on dispersal in the two sexes of the Glanville fritillary butterfly. Oecologia 165:4847–54 [Google Scholar]
  119. Niitepõld K, Smith AD, Osborne JL, Reynolds DR, Carreck NL. 119.  et al. 2009. Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. Ecology 90:82223–32 [Google Scholar]
  120. Nyamukondiwa C, Kleynhans E, Terblanche JS. 120.  2010. Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (Ceratitis capitata). Ecol. Entomol. 35:5565–75 [Google Scholar]
  121. Ochoki BM, Miller TEX. 121.  2017. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8:14315Experimental study on beetles showing that spatial sorting increases the rate of range expansion. [Google Scholar]
  122. O'Connor CM, Norris DR, Crossin GT, Cooke SJ. 122.  2014. Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere 5:3art28 [Google Scholar]
  123. Olyarnik S, Bracken M, Byrnes J, Hughes A, Hultgren K, Stachowicz J. 123.  2009. Ecological factors affecting community invasibility. Biological Invasions in Marine Ecosystems G Rilov, J Crooks 215–38 Berlin: Springer [Google Scholar]
  124. Ouisse T, Bonte D, Lebouvier M, Hendrickx F, Renault D. 124.  2016. The importance of relative humidity and trophic resources in governing ecological niche of the invasive carabid beetle Merizodus soledadinus in the Kerguelen archipelago. J. Insect Physiol. 93–94:42–49 [Google Scholar]
  125. Peacock L, Worner SP. 125.  2008. Biological and ecological traits that assist establishment of alien invasive insects. N. Z. Plant Prot. 61:1–7 [Google Scholar]
  126. Pélisson P-F, Bernstein C, François D, Menu F, Venner S. 126.  2013. Dispersal and dormancy strategies among insect species competing for a pulsed resource: dispersal-dormancy strategies. Ecol. Entomol. 38:5470–77 [Google Scholar]
  127. Piggott JJ, Townsend CR, Matthaei CD. 127.  2015. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5:71538–47 [Google Scholar]
  128. Piiroinen S, Lyytinen A, Lindström L. 128.  2013. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evol. Appl. 6:2313–23 [Google Scholar]
  129. Poethke HJ, Weisser WW, Hovestadt T. 129.  2010. Predator-induced dispersal and the evolution of conditional dispersal in correlated environments. Am. Nat. 175:5577–86 [Google Scholar]
  130. Rathe AA, Pilkington LJ, Spohr LJ, Hoddle MS, Daugherty MP, Gurr GM. 130.  2015. Invasion pathway risk analysis for the glassy-winged sharpshooter (Homalodisca vitripennis): survival and reproductive success following simulated air transportation. Biol. Invasions 17:2963–73 [Google Scholar]
  131. Renault D, Chevrier M, Laparie M, Vernon P, Lebouvier M. 131.  2015. Characterization of the habitats colonized by the alien ground beetle Merizodus soledadinus at the Kerguelen Islands. Rev Ecol 70:28–32 [Google Scholar]
  132. Renault D, Hance T, Vannier G, Vernon P. 132.  2003. Is body size an influential parameter in determining the duration of survival at low temperatures in Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae)?. J. Zool. 259:4381–88 [Google Scholar]
  133. Renault D, Salin C, Vannier G, Vernon P. 133.  1999. Survival and chill-coma in the adult lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae), exposed to low temperatures. J. Therm. Biol. 24:4229–36 [Google Scholar]
  134. Richardson DM, Pyšek P, Carlton JT. 134.  2011. A compendium of essential concepts and terminology in invasion ecology. Fifty Years of Invasion Ecology: The Legacy of Charles Elton DM Richardson 409–20 Oxford, UK: Wiley-Blackwell [Google Scholar]
  135. Robinet C, Laparie M, Rousselet J. 135.  2015. Looking beyond the large scale effects of global change: Local phenologies can result in critical heterogeneity in the pine processionary moth. Front. Physiol. 6:334 [Google Scholar]
  136. Roff DA. 136.  1986. The evolution of wing dimorphism in insects. Evolution 40:51009–20A seminal paper on the evolution of wing polymorphism and life history in macropterous insects. [Google Scholar]
  137. Roff DA, Bradford MJ. 137.  1996. Quantitative genetics of the trade-off between fecundity and wing dimorphism in the cricket Allonemobius socius. Heredity 76:2178–85 [Google Scholar]
  138. Roff DA, Fairbairn DJ. 138.  2007. The evolution and genetics of migration in insects. BioScience 57:2155–64 [Google Scholar]
  139. Ronce O. 139.  2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38:231–53 [Google Scholar]
  140. Ronce O, Clobert J. 140.  2012. Dispersal syndromes. Dispersal Ecology and Evolution, J Clobert, M Baguette, TG Benton, J Bullock 119–38 Oxford, UK: Oxford Univ. Press [Google Scholar]
  141. Roques A. 141.  2010. Taxonomy, time and geographic patterns. Chapter 2. BioRisk 4:11–26 [Google Scholar]
  142. Roques A. 142.  2010. Introductory notes to factsheets. Chapter 14. BioRisk 4:855–1021 [Google Scholar]
  143. Roques A. 143.  2015. Processionary Moths and Climate Change: An Update Dordrecht: Springer Neth.
  144. Roques A, Auger-Rozenberg M-A, Blackburn TM, Garnas J, Pyšek P. 144.  et al. 2016. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invasions 18:4907–20 [Google Scholar]
  145. Rosenzweig C, Casassa G, Karoly D, Imeson A, Liu C. 145.  et al. 2007. Assessment of observed changes and responses in natural and managed systems. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ML Parry, OF Canziani, JP Palutikof, PJ van der Linden, CE Hanson 79–131 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  146. Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM. 146.  et al. 2011. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. PNAS 108:1220–25Evidence of climatic suitability and human-mediated factors as drivers of an invasive ant global-scale distribution. [Google Scholar]
  147. Saastamoinen M, Brakefield PM, Ovaskainen O. 147.  2012. Environmentally induced dispersal-related life-history syndrome in the tropical butterfly, Bicyclus anynana. J. Evol. Biol. 25:112264–75 [Google Scholar]
  148. Salman MHR, Hellrigl K, Minerbi S, Battisti A. 148.  2016. Prolonged pupal diapause drives population dynamics of the pine processionary moth (Thaumetopoea pityocampa) in an outbreak expansion area. For. Ecol. Manag. 361:375–81 [Google Scholar]
  149. Santos H, Rousselet J, Magnoux E, Paiva M-R, Branco M, Kerdelhue C. 149.  2007. Genetic isolation through time: allochronic differentiation of a phenologically atypical population of the pine processionary moth. Proc. R. Soc. B 274:1612935–41 [Google Scholar]
  150. Schtickzelle N, Baguette M. 150.  2003. Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J. Anim. Ecol. 72:4533–45 [Google Scholar]
  151. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE. 151.  et al. 2017. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8:14435 [Google Scholar]
  152. Simmons AD, Thomas CD. 152.  2004. Changes in dispersal during species’ range expansions. Am. Nat. 164:3378–95 [Google Scholar]
  153. Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA. 153.  2013. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53:4545–56 [Google Scholar]
  154. Stamps JA. 154.  2001. Habitat selection by dispersers: integrating proximate and ultimate approaches. Dispersal J Clobert, E Danchin 230–43 Oxford, UK: Oxford Univ. Press [Google Scholar]
  155. Stamps JA, Krishnan VV, Reid ML. 155.  2005. Search costs and habitat selection by dispersers. Ecology 86:2510–18 [Google Scholar]
  156. Starrfelt J, Kokko H. 156.  2010. Parent-offspring conflict and the evolution of dispersal distance. Am. Nat. 175:138–49 [Google Scholar]
  157. Stinner RE, Barfield CS, Stimac JL, Dohse L. 157.  1983. Dispersal and movement of insect pests. Annu. Rev. Entomol. 28:319–35 [Google Scholar]
  158. Strauss SY, Webb CO, Salamin N. 158.  2006. Exotic taxa less related to native species are more invasive. PNAS 103:155841–45 [Google Scholar]
  159. Sulmon C, van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F. 159.  et al. 2015. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels?. Environ. Pollut. 202:66–77 [Google Scholar]
  160. Swaegers J, Mergeay J, Therry L, Bonte D, Larmuseau MHD, Stoks R. 160.  2014. Unravelling the effects of contemporary and historical range expansion on the distribution of genetic diversity in the damselfly Coenagrion scitulum. J. Evol. Biol. 27:4748–59 [Google Scholar]
  161. Swaegers J, Mergeay J, Van Geystelen A, Therry L, Larmuseau MHD, Stoks R. 161.  2015. Neutral and adaptive genomic signatures of rapid poleward range expansion. Mol. Ecol. 24:246163–76 [Google Scholar]
  162. Taylor PD, Merriam G. 162.  1995. Wing morphology of a forest damselfly is related to landscape structure. Oikos 73:143 [Google Scholar]
  163. Teets NM, Denlinger DL. 163.  2013. Physiological mechanisms of seasonal and rapid cold-hardening in insects: seasonal and rapid cold-hardening in insects. Physiol. Entomol. 38:2105–16 [Google Scholar]
  164. Telonis-Scott M. 164.  2006. A new set of laboratory-selected Drosophila melanogaster lines for the analysis of desiccation resistance: response to selection, physiology and correlated responses. J. Exp. Biol. 209:101837–47 [Google Scholar]
  165. Therry L, Bonte D, Stoks R. 165.  2015. Higher investment in flight morphology does not trade off with fecundity estimates in a poleward range-expanding damselfly: fecundity at the range-expansion front. Ecol. Entomol. 40:2133–42 [Google Scholar]
  166. Therry L, Gyulavári HA, Schillewaert S, Bonte D, Stoks R. 166.  2014. Integrating large-scale geographic patterns in flight morphology, flight characteristics and sexual selection in a range-expanding damselfly. Ecography 37:101012–21 [Google Scholar]
  167. Therry L, Nilsson-Örtman V, Bonte D, Stoks R. 167.  2014. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly. J. Evol. Biol. 27:1141–52 [Google Scholar]
  168. Travis JM, Dytham C. 168.  2002. Dispersal evolution during invasions. Evol. Ecol. Res. 4:81119–29 [Google Scholar]
  169. Trochet A, Courtois EA, Stevens VM, Baguette M, Chaine A. 169.  et al. 2016. Evolution of sex-biased dispersal. Q. Rev. Biol. 91:3297–320 [Google Scholar]
  170. Van Allen BG, Rudolf VH. 170.  2016. Carryover effects drive competitive dominance in spatially structured environments. PNAS 113:256939–44 [Google Scholar]
  171. Van Belleghem SM, Roelofs D, Hendrickx F. 171.  2015. Evolutionary history of a dispersal-associated locus across sympatric and allopatric divergent populations of a wing-polymorphic beetle across Atlantic Europe. Mol. Ecol. 24:4890–908 [Google Scholar]
  172. Van Petegem KHP, Pétillon J, Renault D, Wybouw N, Van Leeuwen T. 172.  et al. 2015. Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evol. Ecol. 29:2299–310 [Google Scholar]
  173. Van Petegem KHP, Renault D, Stoks R, Bonte D. 173.  2016. Metabolic adaptations in a range-expanding arthropod. Ecol. Evol. 6:6556–64 [Google Scholar]
  174. Wagner NK, Ochocki BM, Crawford KM, Compagnoni A, Miller TEX. 174.  2017. Genetic mixture of multiple source populations accelerates invasive range expansion. J. Anim. Ecol. 86:121–34Experimental evidence of the positive effects of genetic mixture and heterosis on insect spatial expansion. [Google Scholar]
  175. Walters AC, Mackay DA. 175.  2003. An experimental study of the relative humidity preference and survival of the Argentine ant, Linepithema humile (Hymenoptera, Formicidae): comparisons with a native Iridomyrmex species in south Australia. Insectes Sociaux 50:4355–60 [Google Scholar]
  176. Ward NL, Masters GJ. 176.  2007. Linking climate change and species invasion: an illustration using insect herbivores. Glob. Change Biol. 13:81605–15 [Google Scholar]
  177. Wheat C. 177.  2012. Dispersal genetics: emerging insights from fruitflies and butterflies. Dispersal Ecology and Evolution J Clobert, M Baguette, TG Benton, J Bullock 95–107 London: Oxford Univ. Press [Google Scholar]
  178. Williams CM, Marshall KE, MacMillan HA, Dzurisin JDK, Hellmann JJ, Sinclair BJ. 178.  2012. Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLOS ONE 7:3e34470 [Google Scholar]
  179. Williams JW, Jackson ST. 179.  2007. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5:9475–82 [Google Scholar]
  180. Williams JW, Jackson ST, Kutzbach JE. 180.  2007. Projected distributions of novel and disappearing climates by 2100 AD. PNAS 104:145738–42 [Google Scholar]
  181. Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM. 181.  2009. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evol. 24:3136–44 [Google Scholar]
  182. Wuellner CT, Saunders JB. 182.  2003. Circadian and circannual patterns of activity and territory shifts: comparing a native ant (Solenopsis geminata, Hymenoptera: Formicidae) with its exotic, invasive congener (S. invicta) and its parasitoids (Pseudacteon spp., Diptera: Phoridae) at a central Texas site. Ann. Entomol. Soc. Am. 96:154–60 [Google Scholar]
  183. Yan L-J, Sohal RS. 183.  2000. Prevention of flight activity prolongs the life span of the housefly, Musca domestica, and attenuates the age-associated oxidative damage to specific mitochondrial proteins. Free Radic. Biol. Med. 29:111143–50 [Google Scholar]
  184. Zeng Y, Zhu D-H. 184.  2012. Trade-off between flight capability and reproduction in male Velarifictorus asperses crickets. Ecol. Entomol. 37:3244–51 [Google Scholar]
  185. Zenni RD, Nuñez MA. 185.  2013. The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122:6801–15 [Google Scholar]
  186. Zera AJ, Brisson JA. 186.  2012. Quantitative, physiological, and molecular genetics of dispersal/migration. Dispersal Ecology and Evolution J Clobert, M Baguette, T Benton, J Bullock 63–75 Oxford, UK: Oxford Univ. Press [Google Scholar]
  187. Zera AJ, Denno RF. 187.  1997. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42:207–30 [Google Scholar]
/content/journals/10.1146/annurev-ento-020117-043315
Loading
/content/journals/10.1146/annurev-ento-020117-043315
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error