1932

Abstract

Body size is a key life-history trait influencing all aspects of an organism's biology. Ants provide an interesting model for examining body-size variation because of the high degree of worker polymorphism seen in many taxa. We review worker-size variation in ants from the perspective of factors internal and external to the colony that may influence body-size distributions. We also discuss proximate and ultimate causes of size variation and how variation in worker size can promote worker efficiency and colony fitness. Our review focuses on two questions: What is our current understanding of factors influencing worker-size variation? And how does variation in body size benefit the colony? We conclude with recommendations for future work aimed at addressing current limitations and ask, How can we better understand the contribution of worker body-size variation to colony success? And, what research is needed to address gaps in our knowledge?

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020117-043357
2018-01-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ento/63/1/annurev-ento-020117-043357.html?itemId=/content/journals/10.1146/annurev-ento-020117-043357&mimeType=html&fmt=ahah

Literature Cited

  1. Abouheif E, Wray GA. 1.  2002. Evolution of the gene network underlying wing polyphenism in ants. Science 297:5579249–52 [Google Scholar]
  2. Abril S, Oliveras J, Gómez C. 2.  2010. Effect of temperature on the development and survival of the Argentine ant, Linepithema humile. J. Insect Sci. 10:97 [Google Scholar]
  3. Adams ES, Mesterton-Gibbons M. 3.  2003. Lanchester's attrition models and fights among social animals. Behav. Ecol. 14:5719–23 [Google Scholar]
  4. Alvarado S, Rajakumar R, Abouheif E, Szyf M. 4.  2015. Epigenetic variation in the Egfr gene generates quantitative variation in a complex trait in ants. Nat. Comm. 6:6513 [Google Scholar]
  5. Anderson C, McShea DW. 5.  2001. Individual versus social complexity, with particular reference to ant colonies. Biol. Rev. Camb. Philos. Soc. 76:2211–37 [Google Scholar]
  6. Anderson KE, Linksvayer TA, Smith CR. 6.  2008. The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae). Myrmecol. News 11:119–32 [Google Scholar]
  7. Arnan X, Ferrandiz-Rovira M, Pladevall C, Rodrigo A. 7.  2011. Worker size-related task partitioning in the foraging strategy of a seed-harvesting ant species. Behav. Ecol. Sociobiol. 65:101881–90 [Google Scholar]
  8. Baroni Urbani C. 8.  1998. The number of castes in ants, where major is smaller than minor and queens wear the shield of the soldiers. Insectes Sociaux 45:315–33 [Google Scholar]
  9. Bernadou A, Felden A, Moreau M, Moretto P, Fourcassié V. 9.  2016. Ergonomics of load transport in the seed harvesting ant Messor barbarus: morphology influences transportation method and efficiency. J. Exp. Biol. 219:182920–27 [Google Scholar]
  10. Beshers SN, Traniello JFA. 10.  1994. The adaptiveness of worker demography in the Attine ant Trachymyrmex septentrionalis. Ecology 75:3763–75 [Google Scholar]
  11. Beshers SN, Fewell JH. 11.  2001. Models of division of labor in social insects. Annu. Rev. Entomol. 46:413–40 [Google Scholar]
  12. Billick I. 12.  2002. The relationship between the distribution of worker sizes and new worker production in the ant Formica neorufibarbis. Oecologia 132:2244–49 [Google Scholar]
  13. Billick I, Carter C. 13.  2007. Testing the importance of the distribution of worker sizes to colony performance in the ant species Formica obscuripes Forel. Insectes Sociaux 54:2113–17 [Google Scholar]
  14. Blanchard BD, Moreau CS. 14.  2017. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants. Evolution 71:2315–28 [Google Scholar]
  15. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM. 15.  et al. 2003. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161:11–28 [Google Scholar]
  16. Bourke AF, Franks NR. 16.  1995. Social Evolution in Ants Princeton, NJ: Princeton Univ. Press
  17. Brady SG, Schultz TR, Fisher BL, Ward PS. 17.  2006. Evaluating alternative hypotheses for the early evolution and diversification of ants. PNAS 103:4818172–77 [Google Scholar]
  18. Brian MV. 18.  1965. Studies of caste differentiation in Myrmica rubra L: larval developmental sequences. Insectes Sociaux 12:4347–62 [Google Scholar]
  19. Calabi P, Traniello JFA. 19.  1989. Behavioral flexibility in age castes of the ant Pheidole dentata. Journal of Insect Behavior 2:5663–677 [Google Scholar]
  20. Calabi P, Traniello JFA. 20.  1989. Social organization in the ant Pheidole dentata: physical and temporal caste ratios lack ecological correlates. Behav. Ecol. Sociobiol. 24:69–78 [Google Scholar]
  21. Cassill DL, Tschinkel WR. 21.  1995. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 50:3801–13 [Google Scholar]
  22. Cassill DL, Tschinkel WR. 22.  2000. Behavioral and developmental homeostasis in the fire ant, Solenopsis invicta. J. Insect Physiol. 46:6933–39 [Google Scholar]
  23. Cerdá X, Retana J. 23.  1997. Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 78:3467–74 [Google Scholar]
  24. Cerdá X, Retana J. 24.  2000. Alternative strategies by thermophilic ants to cope with extreme heat: individual versus colony level traits. Oikos 89:1155–63 [Google Scholar]
  25. Chamberlain SA, Holland JN. 25.  2009. Body size predicts degree in ant–plant mutualistic networks. Funct. Ecol. 23:1196–202 [Google Scholar]
  26. Chown SL, Gaston KJ. 26.  2010. Body size variation in insects: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85:1139–69 [Google Scholar]
  27. Clémencet J, Doums C. 27.  2007. Habitat-related microgeographic variation of worker size and colony size in the ant Cataglyphis cursor. Oecologia 152:2211–18 [Google Scholar]
  28. Constant N, Santorelli LA, Lopes JFS, Hughes WOH. 28.  2012. The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav. Ecol. 23:61284–88 [Google Scholar]
  29. Davidson DW. 29.  1978. Size variability in the worker caste of a social insect (Veromessor pergandei Mayr) as a function of the competitive environment. Am. Nat. 112:985523–32 [Google Scholar]
  30. de Andrade ML, Baroni Urbani C. 30.  1999. Diversity and adaptation in the ant genus Cephalotes, past and present (Hymenoptera, Formicidae). Stuttg. Beitr. Naturkunde Ser. B 271:1–889 [Google Scholar]
  31. Dornhaus A, Powell S. 31.  2010. Foraging and defence strategies. See Ref. 76 210–30
  32. Dornhaus A, Powell S, Bengston S. 32.  2012. Group size and its effects on collective organization. Annu. Rev. Entomol. 57:123–41 [Google Scholar]
  33. Dussutour A, Simpson SJ. 33.  2008. Carbohydrate regulation in relation to colony growth in ants. J. Exp. Biol. 211:142224–32 [Google Scholar]
  34. Emlen DJ, Nijhout HF. 34.  2000. The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. 45:661–708 [Google Scholar]
  35. Feener DH, Lighton JRB, Bartholomew GA. 35.  1988. Curvilinear allometry, energetics and foraging ecology: a comparison of leaf-cutting ants and army ants. Funct. Ecol. 2:4509–20 [Google Scholar]
  36. Feinerman O, Traniello JFA. 36.  2016. Social complexity, diet, and brain evolution: modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav. Ecol. Sociobiol. 70:71063–74 [Google Scholar]
  37. Fischer G, Azorsa F, Garcia FH, Mikheyev AS, Economo EP. 37.  2015. Two new phragmotic ant species from Africa: morphology and next-generation sequencing solve a caste association problem in the genus Carebara Westwood. ZooKeys 525:77–105 [Google Scholar]
  38. Fjerdingstad EJ, Crozier RH. 38.  2006. The evolution of worker caste diversity in social insects. Am. Nat. 167:3390–400 [Google Scholar]
  39. Fournier D, Battaille G, Timmermans I, Aron S. 39.  2008. Genetic diversity, worker size polymorphism and division of labour in the polyandrous ant Cataglyphis cursor. Anim. Behav. 75:1151–58 [Google Scholar]
  40. Fox CW, Czesak ME. 40.  2000. Evolutionary ecology of progeny size in arthropods. Annu. Rev. Entomol. 45:341–69 [Google Scholar]
  41. Franks NR. 41.  1985. Reproduction, foraging efficiency and worker polymorphism in army ants. Experimental Behavioral Ecology and Sociobiology: In Memoriam Karl von Frisch, 1886–1982 B Holldobler 91–107 Sunderland, MA: Sinauer [Google Scholar]
  42. Franks NR, Partridge L. 42.  1993. Lanchester battles and the evolution of combat in ants. Anim. Behav. 45:197–99 [Google Scholar]
  43. Franks NR, Sendova-Franks AB, Simmons J, Mogie M. 43.  1999. Convergent evolution, superefficient teams and tempo in Old and New World army ants. Proc. R. Soc. B 266:14291697–701 [Google Scholar]
  44. Friedman DA, Gordon DM. 44.  2016. Ant genetics: reproductive physiology, worker morphology, and behavior. Annu. Rev. Neurosci. 39:41–56 [Google Scholar]
  45. Frumhoff PC, Ward PS. 45.  1992. Individual-level selection, colony-level selection, and the association between polygyny and worker monomorphism in ants. Am. Nat. 139:3559–90 [Google Scholar]
  46. Goodisman MAD, Mack PD, Pearse DE, Ross KG. 46.  1999. Effects of a single gene on worker and male body mass in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 92:4563–70 [Google Scholar]
  47. Goodisman MAD, Ross KG. 47.  1996. Relationship of queen number and worker size in polygyne colonies of the fire ant Solenopsis invicta. Insectes Sociaux 43:3303–7 [Google Scholar]
  48. Gordon DM, Pilko A, Bortoli ND, Ingram KK. 48.  2013. Does an ecological advantage produce the asymmetric lineage ratio in a harvester ant population?. Oecologia 173:3849–57 [Google Scholar]
  49. Gouws EJ, Gaston KJ, Chown SL. 49.  2011. Intraspecific body size frequency distributions of insects. PLOS ONE 6:3e16606 [Google Scholar]
  50. Hasegawa E. 50.  1993. Caste specialization in food storage in the dimorphic ant Colobopsis nipponicus (Wheeler). Insectes Sociaux 40:3261–71 [Google Scholar]
  51. Hasegawa E. 51.  1993. Nest defense and early production of the major workers in the dimorphic ant Colobopsis nipponicus (Wheeler) (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 33:273–77 [Google Scholar]
  52. Heinze J. 52.  2008. The demise of the standard ant (Hymenoptera: Formicidae). Myrmecol. News 11:9–20 [Google Scholar]
  53. Heinze J, Foitzik S, Fischer B, Wanke T, Kipyatkov VE. 53.  2003. The significance of latitudinal variation in body size in a Holarctic ant, Leptothorax acervorum. Ecography 26:3349–55 [Google Scholar]
  54. Heinze J, Foitzik S, Oberstadt B, Ruppell O, Hölldobler B. 54.  1999. A female caste specialized for the production of unfertilized eggs in the ant Crematogaster smithi. Naturwissenschaften 86:293–95 [Google Scholar]
  55. Hölldobler B, Wilson EO. 55.  1990. The Ants Cambridge, MA: Harvard Univ. Press
  56. Holley J-AC, Moreau CS, Laird JG, Suarez AV. 56.  2016. Subcaste-specific evolution of head size in the ant genus Pheidole. Biol. J. Linn. Soc. 118:3472–85 [Google Scholar]
  57. Hood WG, Tschinkel WR. 57.  1990. Desiccation resistance in arboreal and terrestrial ants. Physiol. Entomol. 15:123–35 [Google Scholar]
  58. Huang MH. 58.  2010. Multi-phase defense by the big-headed ant, Pheidole obtusospinosa, against raiding army ants. J. Insect Sci. 10:11–10 [Google Scholar]
  59. Huang MH, Wheeler DE. 59.  2011. Colony demographics of rare soldier-polymorphic worker caste systems in Pheidole ants (Hymenoptera, Formicidae). Insectes Sociaux 58:4539–49 [Google Scholar]
  60. Hughes WOH, Sumner S, Van Borm S, Boomsma JJ. 60.  2003. Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. PNAS 100:169394–97 [Google Scholar]
  61. Hurlbert AH, Ballantyne F, Powell S. 61.  2008. Shaking a leg and hot to trot: the effects of body size and temperature on running speed in ants. Ecol. Entomol. 33:1144–54 [Google Scholar]
  62. Irschick DJ. 62.  2002. Evolutionary approaches for studying functional morphology: examples from studies of performance capacity. Int. Comp. Biol. 42:2278–90 [Google Scholar]
  63. Irschick DJ. 63.  2003. Measuring performance in nature: implications for studies of fitness within populations. Int. Comp. Biol. 43:3396–407 [Google Scholar]
  64. Jaffé R, Kronauer DJC, Kraus FB, Boomsma JJ, Moritz RFA. 64.  2007. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3:5513–16 [Google Scholar]
  65. Johnson RA. 65.  2002. Semi-claustral colony founding in the seed-harvester ant Pogonomyrmex californicus: a comparative analysis of colony founding strategies. Oecologia 132:160–67 [Google Scholar]
  66. Kaspari M. 66.  1993. Body size and microclimate use in Neotropical granivorous ants. Oecologia 96:4500–7 [Google Scholar]
  67. Kaspari M. 67.  2005. Global energy gradients and size in colonial organisms: worker mass and worker number in ant colonies. PNAS 102:145079–83 [Google Scholar]
  68. Kaspari M, O'Donnell S. 68.  2003. High rates of army ant raids in the Neotropics and implications for ant colony and community structure. Evol. Ecol. Res. 5:6933–39 [Google Scholar]
  69. Kaspari M, Weiser MD. 69.  1999. The size-grain hypothesis and interspecific scaling in ants. Funct. Ecol. 13:4530–38 [Google Scholar]
  70. Keller L, Ross KG. 70.  1993. Phenotypic plasticity and “cultural transmission” of alternative social organizations in the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 33:2121–29 [Google Scholar]
  71. Keller L, Ross KG. 71.  1999. Major gene effects on phenotype and fitness: the relative roles of Pgm-3 and Gp-9 in introduced populations of the fire ant Solenopsis invicta. J. Evol. Biol. 12:4672–80 [Google Scholar]
  72. King JR. 72.  2010. Size-abundance relationships in Florida ant communities reveal how ants break the energetic equivalence rule. Ecol. Entomol. 35:287–98 [Google Scholar]
  73. Kingsolver JG, Pfennig DW. 73.  2007. Patterns and power of phenotypic selection in nature. BioScience 57:7561–72 [Google Scholar]
  74. Kipyatkov VE, Lopatina EB, Imamgaliev AA, Shirokova LA. 74.  2004. Effect of temperature on rearing of the first brood by the founder females of the ant Lasius niger (Hymenoptera, Formicidae): latitude-dependent variability of the response norm. J. Evol. Biochem. Physiol. 40:2165–75 [Google Scholar]
  75. Kronauer DJ, Schöning C, Vilhelmsen LB, Boomsma JJ. 75.  2007. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche. BMC Evol. Biol. 7:56 [Google Scholar]
  76. Lach L, Parr CL, Abott KL. 76.  2010. Ant Ecology Oxford, UK: Oxford Univ. Press
  77. Lachaud JP, Passera L, Grimal A, Detrain C, Beugnon G. 77.  1992. Lipid storage by major workers and starvation resistance in the ant Pheidole pallidula (Hymenoptera, Formicidae). Biology and Evolution of Social Insects J Billen 153–60 Leuven, Belg.: Leuven Univ. Press [Google Scholar]
  78. Lillico-Ouachour A, Abouheif E. 78.  2017. Regulation, development, and evolution of caste ratios in the hyperdiverse ant genus Pheidole. Curr. Opin. Insect Sci. 19:43–51 [Google Scholar]
  79. Mason KS, Kwapich CL, Tschinkel WR. 79.  2015. Respiration, worker body size, tempo and activity in whole colonies of ants. Physiol. Entomol. 40:2149–65 [Google Scholar]
  80. McGlynn TP, Diamond SE, Dunn RR. 80.  2012. Tradeoffs in the evolution of caste and body size in the hyperdiverse ant genus Pheidole. PLOS ONE 7:10e48202 [Google Scholar]
  81. McGlynn TP, Owen JP. 81.  2002. Food supplementation alters caste allocation in a natural population of Pheidole flavens, a dimorphic leaf-litter dwelling ant. Insectes Sociaux 49:18–14 [Google Scholar]
  82. Mertl AL, Traniello JFA. 82.  2009. Behavioral evolution in the major worker subcaste of twig-nesting Pheidole (Hymenoptera: Formicidae): Does morphological specialization influence task plasticity?. Behav. Ecol. Sociobiol. 63:101411–26 [Google Scholar]
  83. Molet M, Maicher V, Peeters C. 83.  2014. Bigger helpers in the ant Cataglyphis bombycina: increased worker polymorphism or novel soldier caste?. PLOS ONE 9:1e84929 [Google Scholar]
  84. Molet M, Wheeler DE, Peeters C, Cole AEBJ, Shaw ERG. 84.  2012. Evolution of novel mosaic castes in ants: modularity, phenotypic plasticity, and colonial buffering. Am. Nat. 180:3328–41 [Google Scholar]
  85. Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. 85.  2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312:5770101–4 [Google Scholar]
  86. Muscedere ML, Traniello JFA. 86.  2012. Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste- and age-related patterns of worker brain organization. PLOS ONE 7:2e31618 [Google Scholar]
  87. O'Donnell S, Lattke J, Powell S, Kaspari M. 87.  2007. Army ants in four forests: geographic variation in raid rates and species composition. J. Anim. Ecol. 76:3580–89 [Google Scholar]
  88. Oster GF, Wilson EO. 88.  1978. Caste and Ecology in the Social Insects Princeton, NJ: Princeton Univ. Press
  89. Passera L, Roncin E, Kaufmann B, Keller L. 89.  1996. Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379:6566630–31 [Google Scholar]
  90. Peeters C. 90.  1997. Morphologically “primitive” ants: comparative review of social characters, and the importance of queen-worker dimorphism. The Evolution of Social Behavior in Insects and Arachnids JC Choe, BJ Crespi 372–91 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  91. Peeters C, Molet M. 91.  2010. Evolution of advanced social traits in phylogenetically basal ants: striking worker polymorphism and large queens in Amblyopone australis. Insectes Sociaux 57:2177–83 [Google Scholar]
  92. Peters RH. 92.  1986. The Ecological Implications of Body size 2 Cambridge, UK: Cambridge Univ. Press
  93. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP. 93.  2010. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol. Evol. 25:8459–67 [Google Scholar]
  94. Planqué R, Powell S, Franks NR, van den Berg JB. 94.  2016. Disruptive selection as a driver of evolutionary branching and caste evolution in social insects. J. Evol. Biol. 29:112111–28 [Google Scholar]
  95. Plowes NJR, Adams ES. 95.  2005. An empirical test of Lanchester's square law: mortality during battles of the fire ant Solenopsis invicta. Proc. R. Soc. B 272:15741809–14 [Google Scholar]
  96. Porter SD. 96.  1988. Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta. J. Insect Physiol. 34:121127–33 [Google Scholar]
  97. Porter SD, Tschinkel WR. 97.  1985. Fire ant polymorphism: the ergonomics of brood production. Behav. Ecol. Sociobiol. 16:4323–36 [Google Scholar]
  98. Porter SD, Tschinkel WR. 98.  1986. Adaptive value of nanitic workers in newly founded red imported fire ant colonies (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 79:4723–26 [Google Scholar]
  99. Powell S. 99.  2008. Ecological specialization and the evolution of a specialized caste in Cephalotes ants. Funct. Ecol. 22:5902–11 [Google Scholar]
  100. Powell S. 100.  2009. How ecology shapes caste evolution: linking resource use, morphology, performance and fitness in a superorganism. J. Evol. Biol. 22:51004–13 [Google Scholar]
  101. Powell S. 101.  2016. A comparative perspective on the ecology of morphological diversification in complex societies: nesting ecology and soldier evolution in the turtle ants. Behav. Ecol. Sociobiol. 70:71075–85 [Google Scholar]
  102. Powell S, Clark E. 102.  2004. Combat between large derived societies: a subterranean army ant established as a predator of mature leaf-cutting ant colonies. Insectes Sociaux 51:4342–51 [Google Scholar]
  103. Powell S, Dornhaus A. 103.  2013. Soldier-based defences dynamically track resource availability and quality in ants. Anim. Behav. 85:1157–64 [Google Scholar]
  104. Powell S, Franks NR. 104.  2005. Caste evolution and ecology: a special worker for novel prey. R. Soc. Proc. B 272:15772173–80 [Google Scholar]
  105. Powell S, Franks NR. 105.  2006. Ecology and the evolution of worker morphological diversity: a comparative analysis with Eciton army ants. Funct. Ecol. 20:61105–14 [Google Scholar]
  106. Powell S, Franks NR. 106.  2007. How a few help all: Living pothole plugs speed prey delivery in the army ant Eciton burchellii. Anim. Behav. 73:1067–76 [Google Scholar]
  107. Rajakumar R, Mauro DS, Dijkstra MB, Huang MH, Wheeler DE. 107.  et al. 2012. Ancestral developmental potential facilitates parallel evolution in ants. Science 335:606479–82 [Google Scholar]
  108. Retana J, Cerdá X. 108.  1994. Worker size polymorphism conditioning size matching in two sympatric seed-harvesting ants. Oikos 71:2261–66 [Google Scholar]
  109. Rettenmeyer CW, Chadab Crepet R, Naumann MG, Morales L. 109.  1983. Comparative foraging by Neotropical army ants. Social Insects in the Tropics 2 P Jaisson 59–73 Paris: Université Paris-Nord [Google Scholar]
  110. Rissing SW. 110.  1984. Replete caste production and allometry of workers in the honey ant, Myrmecocystus mexicanus Wesmael (Hymenoptera: Formicidae). J. Kans. Entomol. Soc. 57:2347–50 [Google Scholar]
  111. Rissing SW. 111.  1987. Annual cycles in worker size of the seed-harvester ant Veromessor pergandei (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 20:2117–24 [Google Scholar]
  112. Rissing SW, Polloek GB. 112.  1984. Worker size variability and foraging efficiency in Veromessor pergandei (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 15:2121–26 [Google Scholar]
  113. Schoener TW, Janzen DH. 113.  1968. Notes on environmental determinants of tropical versus temperate insect size patterns. Am. Nat. 102:925207–24 [Google Scholar]
  114. Schöning C, Kinuthia W, Franks NR. 114.  2005. Evolution of allometries in the worker caste of Dorylus army ants. Oikos 110:2231–40 [Google Scholar]
  115. Schwander T, Lo N, Beekman M, Oldroyd BP, Keller L. 115.  2010. Nature versus nurture in social insect caste differentiation. Trends Ecol. Evol. 25:5275–82 [Google Scholar]
  116. Schwander T, Rosset H, Chapuisat M. 116.  2005. Division of labour and worker size polymorphism in ant colonies: the impact of social and genetic factors. Behav. Ecol. Sociobiol. 59:2215–21 [Google Scholar]
  117. Simpson C, Jackson JBC, Herrera-Cubilla A. 117.  2017. Evolutionary determinants of morphological polymorphism in colonial animals. Am. Nat. 190:17–28 [Google Scholar]
  118. Smith CC, Fretwell SD. 118.  1974. The optimal balance between size and number of offspring. Am. Nat. 108:962499–506 [Google Scholar]
  119. Smith CD, Smith CR, Mueller U, Gadau J. 119.  2010. Ant genomics: strength and diversity in numbers. Mol. Ecol. 19:131–35 [Google Scholar]
  120. Smith CR, Anderson KE, Tillberg CV, Gadau J, Suarez AV. 120.  2008. Caste determination in a polymorphic social insect: nutritional, social, and genetic factors. Am. Nat. 172:4497–507 [Google Scholar]
  121. Smith CR, Suarez AV. 121.  2010. The trophic ecology of castes in harvester ant colonies. Funct. Ecol. 24:1122–30 [Google Scholar]
  122. Stearns SC. 122.  1992. The Evolution of Life Histories Oxford, UK: Oxford Univ. Press
  123. Traniello JFA. 123.  1977. Recruitment behavior, orientation, and the organization of foraging in the carpenter ant Camponotus pennsylvanicus degeer (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 2:61–79 [Google Scholar]
  124. Traniello JFA. 124.  1989. Foraging strategies of ants. Annu. Rev. Entomol. 34:191–210 [Google Scholar]
  125. Trible W, Kronauer DJC. 125.  2017. Caste development and evolution in ants: It's all about size. J. Exp. Biol. 220:153–62 [Google Scholar]
  126. Tschinkel WR. 126.  1988. Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behav. Ecol. Sociobiol. 22:2103–15 [Google Scholar]
  127. Tschinkel WR. 127.  1993. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol. Monogr. 63:4425–57 [Google Scholar]
  128. Tschinkel WR, Kwapich CL. 128.  2016. The Florida harvester ant, Pogonomyrmex badius, relies on germination to consume large seeds. PLOS ONE 11:11e0166907 [Google Scholar]
  129. Tsuji K. 129.  1990. Nutrient storage in the major workers of Pheidole ryukyuensis (Hymenoptera: Formicidae). Appl. Entomol. Zool. 25:2283–87 [Google Scholar]
  130. Ward PS. 130.  2006. The ant genus Tetraponera in the Afrotropical region: synopsis of species groups and revision of the T. ambigua-group (Hymenoptera: Formicidae). Myrmecol. Nachr. 8:119–30 [Google Scholar]
  131. Wendt CF, Verble-Pearson R. 131.  2016. Critical thermal maxima and body size positively correlate in red imported fire ants, Solenopsis invicta. Southwest. Nat. 61:179–83 [Google Scholar]
  132. Wetterer JK. 132.  1994. Forager polymorphism, size-matching, and load delivery in the leaf-cutting ant, Atta cephalotes. Ecol. Entomol. 19:157–64 [Google Scholar]
  133. Wheeler DE. 133.  1986. Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am. Nat. 128:113–34 [Google Scholar]
  134. Wheeler DE. 134.  1991. The developmental basis of worker caste polymorphism in ants. Am. Nat. 138:51218–38 [Google Scholar]
  135. Wheeler DE, Nijhout HF. 135.  1981. Soldier determination in ants: new role for juvenile hormone. Science 213:4505361–63 [Google Scholar]
  136. Wheeler DE, Nijhout HF. 136.  1984. Soldier determination in Pheidole bicarinata: inhibition by adult soldiers. J. Insect Physiol. 30:2127–35 [Google Scholar]
  137. Whitehouse MEA, Jaffe K. 137.  1996. Ant wars: combat strategies, territory and nest defense in the leaf-cutting ant Atta laevigata. Anim. Behav. 51:61207–17 [Google Scholar]
  138. Wiernasz DC, Cole BJ. 138.  2010. Patriline shifting leads to apparent genetic caste determination in harvester ants. PNAS 107:2912958–62 [Google Scholar]
  139. Wills BD, Chong CD, Wilder SM, Eubanks MD, Holway DA, Suarez AV. 139.  2015. Effect of carbohydrate supplementation on investment into offspring number, size, and condition in a social insect. PLOS ONE 10:7e0132440 [Google Scholar]
  140. Wilson EO. 140.  1953. The origin and evolution of polymorphism in ants. Q. Rev. Biol. 28:2136–56 [Google Scholar]
  141. Wilson EO. 141.  1976. Which are the most prevalent ant genera?. Stud. Entomol. 19:187–200 [Google Scholar]
  142. Wilson EO. 142.  1978. Division of labor in fire ants based on physical castes (Hymenoptera: Formicidae: Solenopsis). J. Kans. Entomol. Soc. 51:615–36 [Google Scholar]
  143. Wilson EO. 143.  1980. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) I. the overall pattern in A. sexdens. Behav. Ecol. Sociobiol. 7:2143–56 [Google Scholar]
  144. Wilson EO. 144.  1980. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) II. the ergonomic optimization of leaf cutting.. Behav. Ecol. Sociobiol. 7:2157–65 [Google Scholar]
  145. Wilson EO. 145.  1983. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) III. Ergonomic resiliency in foraging by A. cephalotes.. Behav. Ecol. Sociobiol. 14:147–54 [Google Scholar]
  146. Wilson EO. 146.  2003. Pheidole in the New World: A Dominant, Hyperdiverse Ant Genus Cambridge, MA: Harvard Univ. Press [Google Scholar]
  147. Wilson EO, Hölldobler B. 147.  1985. Caste-specific techniques of defense in the polymorphic ant Pheidole embolopyx (Hymenoptera: Formicidae). Insectes Sociaux 32:13–22 [Google Scholar]
  148. Yang AS. 148.  2006. Seasonality, division of labor, and dynamics of colony-level nutrient storage in the ant Pheidole morrisi. Insectes Sociaux 53:4456–62 [Google Scholar]
  149. Yanoviak SP, Kaspari M. 149.  2000. Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89:2259–66 [Google Scholar]
  150. Fowler HG. 150.  1986. Polymorphism and colony ontogeny in North American carpenter ants (Hymenoptera: Formicidae: Camponotus pennsyvlvanicus and Camponotus ferrugineus). Zool. Jahrbücher 90:2297–316 [Google Scholar]
/content/journals/10.1146/annurev-ento-020117-043357
Loading
/content/journals/10.1146/annurev-ento-020117-043357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error