1932

Abstract

Until recently, deep-level phylogeny in Lepidoptera, the largest single radiation of plant-feeding insects, was very poorly understood. Over the past two decades, building on a preceding era of morphological cladistic studies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yielding to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035125
2017-01-31
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-031616-035125.html?itemId=/content/journals/10.1146/annurev-ento-031616-035125&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham D, Ryrholm N, Wittzell H, Holloway JD, Scoble MJ, Lofstedt C. 1.  2001. Molecular phylogeny of the subfamilies in Geometridae (Geometroidea: Lepidoptera). Mol. Phylogenet. Evol. 20:65–77 [Google Scholar]
  2. Ackery PR, de Jong R, Vane-Wright RI. 2.  1998. The butterflies: Hedyloidea, Hesperioidea, and Papilionoidea. See Ref. 63 264–300
  3. Ackery PR, Vane-Wright RI. 3.  1984. Milkweed Butterflies, Their Cladistics and Biology: Being an Account of the Natural History of the Danainae, Subfamily of the Lepidoptera, Nymphalidae London: Br. Mus. Nat. Hist.
  4. Adamski D, Brown RL. 4.  1989. Morphology and systematics of North American Blastobasidae (Lepidoptera: Gelechioidea) Tech. Bull. 165, Miss. Agric. For. Exp. Stn., Miss. State
  5. Ando T, Inomata S, Yamamoto M. 5.  2004. Lepidopteran sex pheromones. Top. Curr. Chem. 239:51–96 [Google Scholar]
  6. Baixeras J. 6.  2002. An overview of genus-level taxonomic problems surrounding Argyroploce Hübner (Lepidoptera: Tortricidae), with description of a new species. Ann. Entomol. Soc. Am. 95422–31
  7. Barber J, Leavell BC, Keener AL, Breinholt JW, Chadwell BA. 7.  et al. 2015. Moth tails divert bat attack: evolution of acoustic deflection. PNAS 112:2812–16 [Google Scholar]
  8. Bazinet AL, Cummings MP, Mitter KT, Mitter C. 8.  2013. Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLOS ONE 8e82615
  9. Bazinet AL, Mitter KT, Davis DR, van Nieukerken EJ, Cummings MP, Mitter C. 9.  2016. Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Syst. Entomol. In press
  10. Breinholt JW, Cason CE, Lemmon AR, Lemmon EM, Xiao L, Kawahara AY. 10.  2016. Anchored hybrid enrichment in Lepidoptera: leveraging genomic data for studies on the megadiverse butterflies and moths. Syst. Biol. In press
  11. Breinholt JW, Kawahara AY. 11.  2013. Phylotranscriptomics: Saturated third codon positions radically influence the estimation of trees based on next-gen data. Genome Biol. Evol. 52082–92
  12. Brower AVZ. 12.  1994. Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 3159–74
  13. Brower AVZ, DeSalle R. 13.  1998. Mitochondrial versus nuclear DNA sequence evolution among nymphalid butterflies: the utility of Wingless as a source of characters for phylogenetic inference. Insect Mol. Biol. 71–10
  14. Brown JM, Pellmyr O, Thompson JN, Harrison RG. 14.  1994. Mitochondrial DNA phylogeny of the Prodoxidae (Lepidoptera: Incurvarioidea) indicates a rapid ecological diversification of the yucca moths. Ann. Entomol. Soc. Am. 87795–802
  15. Cho S, Mitchell A, Mitter C, Regier J, Matthews M, Robertson R. 15.  2008. Molecular phylogenetics of heliothine moths (Lepidoptera: Noctuidae: Heliothinae), with comments on the evolution of host range and pest status. Syst. Entomol. 49581–94
  16. Cho S, Mitchell A, Regier JC, Mitter C, Poole RW. 16.  et al. 1995. A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1α recovers morphology-based tree for heliothine moths. Mol. Biol. Evol. 12:650–56 [Google Scholar]
  17. Cho S, Zwick A, Regier JC, Mitter C, Cummings MP. 17.  et al. 2011. Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)?. Syst. Biol. 60782–96
  18. Common IFB. 18.  1975. Evolution and classification of the Lepidoptera. Annu. Rev. Entomol. 20:183–203 [Google Scholar]
  19. Condamine FL, Clapham ME, Kergoat GJ. 19.  2016. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?. Sci. Rep. 619208
  20. Condamine FL, Sperling FAH, Wahlberg N, Rasplus JY, Kergoat GJ. 20.  2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15:267–77 [Google Scholar]
  21. Davis DR. 21.  1987. Gracillariidae. Immature Insects 1 FW Stehr 372–78 Dubuque, IA: Kendall/Hunt [Google Scholar]
  22. Davis DR. 22.  1998. A world classification of the Harmacloninae, a new subfamily of Tineidae (Lepidoptera: Tineoidea). Smithson. Contrib. Zool. 5971–81
  23. Davis DR, Gentili P. 23.  2003. Andesianidae, a new family of monotrysian moths (Lepidoptera: Andesianoidea) from South America. Invertebr. Syst. 17:15–26 [Google Scholar]
  24. Davis DR, Robinson GS. 24.  1998. The Tineoidea and Gracillarioidea. See Ref. 63 91–117
  25. de Jong R. 25.  2007. Estimating time and space in the evolution of the Lepidoptera. Tijdschr. Entomol. 150:319–46 [Google Scholar]
  26. de Jong R. 26.  2016. Reconstructing a 55-million-year-old butterfly (Lepidoptera: Hesperiidae). Eur. J. Entomol 113:423–28 [Google Scholar]
  27. Doorenweerd C, van Nieukerken EJ, Sohn J-C, Labandeira CC. 27.  2015. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963295–334
  28. dos Reis M, Donoghue PCJ, Yang Z. 28.  2016. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17:71–80 [Google Scholar]
  29. Dugdale JS, Kristensen NP, Robinson GS, Scoble MJ. 29.  1998. The Yponomeutoidea. See Ref. 63 120–30
  30. Duncan IJ. 30.  1997. The taphonomy of insects PhD Thesis, Palaeobiol. Res. Group, Univ. Bristol
  31. Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G. 31.  et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. PNAS 112:8362–66 [Google Scholar]
  32. Edwards ED, Gentili P, Horak M, Kristensen NP, Nielsen ES. 32.  1998. The cossoid/sesioid assemblage. See Ref. 63 181–97
  33. Ehrlich PR, Raven PH. 33.  1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608 [Google Scholar]
  34. Epstein ME. 34.  1996. Revision and phylogeny of the Limacodid-group families, with evolutionary studies on slug caterpillars (Lepidoptera: Zygaenoidea). Smithson. Contrib. Zool. 5821–102
  35. Epstein ME, Geertsema H, Naumann CM, Tarmann GM. 35.  1998. The Zygaenoidea. See Ref. 63 159–80
  36. Espeland M, Hall JPW, DeVries PJ, Lees DC, Cornwall M. 36.  et al. 2015. Ancient Neotropical origin and recent recolonisation: phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Mol. Phylogenet. Evol. 93296–306
  37. Faircloth BC, Branstetter MG, White ND, Brady SG. 37.  2014. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol. Ecol. Res. 15489–501
  38. Fang Q, Cho S, Regier J, Mitter C, Matthews M. 38.  et al. 1997. A new nuclear gene for insect phylogenetics: Dopa decarboxylase is informative of relationships within Heliothinae (Lepidoptera: Noctuidae). Syst. Biol. 46269–83
  39. Fordyce JA. 39.  2010. Host shifts and evolutionary radiations of butterflies. Proc. R. Soc. B 277:3735–43 [Google Scholar]
  40. Garzón-Orduña IJ, Silva-Brandão KL, Willmott KR, Freitas AV, Brower AV. 40.  2015. Incompatible ages for clearwing butterflies based on alternative secondary calibrations. Syst. Biol. 64752–67
  41. Gilligan TM, Baixeras J, Brown JW, Tuck KR. 41.  2014. T@RTS: online world catalogue of the Tortricidae (version 3.0). Tortricid.net: Torticidae Resources on the Web. http://www.tortricid.net/catalogue.asp. Accessed March 26, 2016
  42. Grimaldi DA, Engel MS. 42.  2005. Evolution of the Insects Cambridge, UK: Cambridge Univ. Press
  43. Heikkilä M, Mutanen M, Kekkonen M, Kaila L. 43.  2014. Morphology reinforces proposed molecular phylogenetic affinities: a revised classification for Gelechioidea (Lepidoptera). Cladistics 30563–89
  44. Heikkilä M, Kaila L, Mutanen M, Peña C, Wahlberg N. 44.  2011. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B 279:1093–99 [Google Scholar]
  45. Heikkilä M, Mutanen M, Wahlberg N, Sihvonen P, Kaila L. 45.  2015. Elusive ditrysian phylogeny: an account of combining systematized morphology with molecular data (Lepidoptera). BMC Evol. Biol. 15260
  46. Hodges RW. 46.  1998. The Gelechioidea. See Ref. 63 131–58
  47. Holloway JD. 47.  1986–2011. Moths of Borneo part 2 Kuala Lumpur: Malays. Nat. Soc./Southdene Sdn. Bhd.
  48. Horak M. 48.  1998. The Tortricoidea. See Ref. 63 199–215
  49. Kaila L. 49.  2004. Phylogeny of the superfamily Gelechioidea (Lepidoptera: Ditrysia): an exemplar approach. Cladistics 20303–40
  50. Kaila L, Mutanen M, Nyman T. 50.  2011. Phylogeny of the mega-diverse Gelechioidea (Lepidoptera): adaptations and determinants of success. Mol. Phylogenet. Evol. 61801–9
  51. Kaliszewska ZA, Lohman DJ, Sommer K, Adelson G, Rand DB. 51.  et al. 2015. When caterpillars attack: biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution 69571–88
  52. Kawahara AY, Barber JR. 52.  2015. Tempo and mode of anti-bat ultrasound and jamming in the diverse hawkmoth radiation. PNAS 1126407–12
  53. Kawahara AY, Breinholt JW. 53.  2014. Phylogenomics provides strong evidence for relationships of butterflies and moths. Proc. R. Soc. B 28120140970
  54. Kawahara AY, Mignault AA, Regier JC, Kitching IJ, Mitter C. 54.  2009. Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae): evidence from five nuclear genes. PLOS ONE 4e5719
  55. Kawahara AY, Ohshima I, Kawakita A, Regier JC, Mitter C. 55.  et al. 2011. Increased gene sampling provides stronger support for higher-level groups within gracillariid leaf mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evol. Biol. 11182
  56. Kawahara AY, Plotkin D, Ohshima I, Lopez-Vaamonde C, Houlihan PR. 56.  et al. 2016. A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host use evolution. Syst. Entomol. In press. https://doi.org/10.1111/syen.12210
  57. Kim MJ, Kang AR, Jeong HC, Kim KG, Kim I. 57.  2011. Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol. Phylogenet. Evol. 61436–45
  58. Kitching IJ. 58.  1987. Spectacles and silver Ys: a synthesis of the systematics, cladistics and biology of the Plusiinae (Lepidoptera: Noctuidae). Bull. Br. Mus. Nat. Hist. Entomol. 5475–261
  59. Kitching IJ, Rawlins JE. 59.  1998. Noctuoidea. See Ref. 63 355–401
  60. Kong W, Yang J. 60.  2015. The complete mitochondrial genome of Rondotia menciana (Lepidoptera: Bombycidae). J. Insect Sci. 1548
  61. Kristensen NP. 61.  1976. Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). J. Zool. Syst. Evol. Res. 1425–33
  62. Kristensen NP. 62.  1997. Early evolution of the Trichoptera + Lepidoptera lineage: phylogeny and the ecological scenario. Mém. Mus. Natl. Hist. Nat. 173253–71
  63. Kristensen NP. 63.  1998. Lepidoptera: Moths and Butterflies, Vol. 1: Evolution, Systematics, and Biogeography Handb. Zool. 35 Berlin: De Gruyter [Google Scholar]
  64. Kristensen NP, Hilton DJ, Kallies A, Milla L, Rota J. 64.  et al. 2015. A new extant family of primitive moths from Kangaroo Island, Australia, and its significance for understanding early Lepidoptera evolution. Syst. Entomol. 405–16
  65. Kristensen NP, Scoble MJ, Karsholt OK. 65.  2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699–747 [Google Scholar]
  66. Kristensen NP, Skalski AW. 66.  1998. Phylogeny and palaeontology. See Ref. 63 7–25
  67. Kyrki J. 67.  1984. The Yponomeutoidea: a reassessment of the superfamily and its suprageneric groups (Lepidoptera). Insect Syst. Evol. 1571–84
  68. Kyrki J. 68.  1990. Tentative reclassification of holarctic Yponomeutoidea (Lepidoptera). Nota Lepidopterol 1328–42
  69. Labandeira CC, Dilcher DL, Davis DR, Wagner DL. 69.  1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. PNAS 9112278–82
  70. Lafontaine JD. 70.  1993. Cutworm systematics: confusions and solutions. Mem. Entomol. Soc. Can. 165189–96
  71. Lees DC, Kawahara AY, Rougerie R, Ohshima I, Kawakita A. 71.  et al. 2014. DNA barcoding reveals a largely unknown fauna of Gracillariidae leaf-mining moths in the Neotropics. Mol. Ecol. Resour. 14286–96
  72. Lees DC, Smith NG. 72.  1991. Foodplant associations of the Uraniinae and their systematic, evolutionary and ecological significance. J. Lepidopterists Soc. 45296–347
  73. Lemmon AR, Emme S, Lemmon EC. 73.  2012. Anchored hybrid enrichment for massively high-throughput phylogenetics. Syst. Biol. 61721–74
  74. Löfstedt C, Wahlberg N, Miller JG. 74.  2016. Evolutionary patterns of pheromone diversity in Lepidoptera. Pheromone Communication in Moths: Evolution, Behavior, and Application JD Allison, RT Cardé 43–78 Oakland, CA: Univ. California Press [Google Scholar]
  75. Lohman D. 75.  2015. Collaborative research: ButterflyNet—an interactive framework for comparative biology NSF Award Abstr. 1541557, Nat. Sci. Found., Arlington, VA. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1541557
  76. Lopez-Vaamonde C, Wikström N, Labandeira C, Godfray HCJ, Goodman SJ, Cook JM. 76.  2006. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J. Evol. Biol. 191314–26
  77. Menken SBJ, Boomsma JJ, van Nieukerken EJ. 77.  2010. Large-scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution 641098–119
  78. Millar JG. 78.  2000. Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol. 45575–604
  79. Miller JS. 79.  1987. Phylogenetic studies in the Papilioninae (Lepidoptera: Papilionidae). Bull. Am. Mus. Nat. Hist. 186365–512
  80. Miller JS. 80.  1991. Cladistics and classification of the Notodontidae (Lepidoptera: Noctuoidea) based on larval and adult morphology. Bull. Am. Mus. Nat. Hist. 2041–230
  81. Minet J. 81.  1982. Les Pyraloidea et leurs principales divisions systématiques. Bull. Soc. Entomol. Fr. 86262–80
  82. Minet J. 82.  1985. Ètude morphologique et phylogénétique des organs tympaniques des Pyraloidea. 2—Pyralidae, Crambidae, premiere partie (Lepidoptera Glossata). Ann. Soc. Entomol. Fr. 2169–86
  83. Minet J. 83.  1986. Ebauche d'une classification modern de l'ordre des Lepidopteres. Alexanor 14291–313
  84. Minet J. 84.  1991. Tentative reconstruction of the ditrysian phylogeny (Lepidoptera: Glossata). Entomol. Scand. 2269–95
  85. Minet J. 85.  1994. The Bombycoidea: phylogeny and higher classification (Lepidoptera: Glossata). Entomol. Scand. 2563–88
  86. Minet J, Scoble MJ. 86.  1998. The drepanoid/geometroid assemblage. See Ref. 63 301–20
  87. Minet J, Surlykke A. 87.  2003. Auditory and sound producing organs. Lepidoptera: Moths and Butterflies, Vol. 2: Morphology and Physiology NP Kristensen 289–323 Berlin: De Gruyter [Google Scholar]
  88. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 88.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346763–67
  89. Mitchell A, Mitter C, Regier JC. 89.  2006. Systematics and evolution of the cutworm moths (Lepidoptera: Noctuidae): evidence from two protein-coding nuclear genes. Syst. Entomol. 3121–46
  90. Mitter C, Silverfine E. 90.  1988. On the systematic position of Catocala Schrank. Syst. Entomol. 1367–84
  91. Monteiro A. 91.  2015. The origin, development, and evolution of butterfly eyespots. Annu. Rev. Entomol. 60253–71
  92. Munroe EG, Solis MA. 92.  1998. The Pyraloidea. See Ref. 63 233–56
  93. Mutanen M, Wahlberg N, Kaila L. 93.  2010. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc. R. Soc. B 2772839–48
  94. Nazari V, Zakharov EV, Sperling FAH. 94.  2007. Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Mol. Phylogenet. Evol. 42131–56
  95. Niehuis O, Yen S-H, Naumann CM, Misof B. 95.  2006. Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Mol. Phylogenet. Evol. 39812–29
  96. Nuss M, Landry B, Vegliante F, Tränkner A, Mally R. 96.  et al. 2015. GlobIZ: global information system on Pyraloidea accessed on March 15, 2016. http://www.pyraloidea.org
  97. Nylin S, Slove J, Janz N. 97.  2014. Host plant utilization, host range oscillations and diversification in nymphalid butterflies: a phylogenetic investigation. Evolution 68105–24
  98. Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ. 98.  et al. 2012. Best practices for justifying fossil calibrations. Syst. Biol. 61346–59
  99. Peña C, Wahlberg N. 99.  Prehistorical climate change increased diversification of a group of butterflies. Biol. Lett. 2008:274–78 [Google Scholar]
  100. Penz CM, Freitas AVL, Kaminski LA, Casagrande MM, DeVries PJ. 100.  2013. Adult and early-stage characters of Brassolini contain conflicting phylogenetic signal (Lepidoptera, Nymphalidae). Syst. Entomol. 38316–33
  101. Pitkin LM. 101.  1988. The Holarctic genus Teleiopsis: host-plants, biogeography and cladistics (Lepidoptera: Gelechiidae). Entomol. Scand. 19143–91
  102. Poole RW. 102.  1995. Noctuoidea. Noctuidae (part). Cuculliinae, Stiriinae, Psaphidinae Moths Am. North Mex. Ser. Fascicle 26.1 Washington, DC: Wedge Entomol. Res. Found.
  103. Powell JA, Mitter C, Farrell BD. 103.  1998. Evolution of larval feeding habits in Lepidoptera. See Ref. 63 403–22
  104. Rajaei HS, Greve C, Letsch H, Stüning D, Wahlberg N. 104.  et al. 2015. Advances in Geometroidea phylogeny, with characterization of a new family based on Pseudobiston pinratanai (Lepidoptera, Glossata). Zool. Scr. 44418–36
  105. Regier JC, Brown JW, Mitter C, Baixeras J, Cho S. 105.  et al. 2012. A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLOS ONE 7e35574
  106. Regier JC, Cook CP, Mitter C, Hussey A. 106.  2008. A phylogenetic study of the “bombycoid complex” (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Syst. Entomol. 33:175–89 [Google Scholar]
  107. Regier JC, Grant MC, Peigler RS, Mitter C, Cook CP, Rougerie R. 107.  2008. Phylogenetic relationships of wild silkmoths (Lepidoptera: Saturniidae) inferred from four protein-coding nuclear genes. Syst. Entomol. 33219–28
  108. Regier JC, Mitter C, Davis DR, Harrison TL, Sohn J-C. 108.  et al. 2015. A molecular phylogeny and revised classification for the oldest ditrysian moth lineages (Lepidoptera: Tineoidea), with implications for ancestral feeding habits of the mega-diverse Ditrysia. Syst. Entomol. 40409–32
  109. Regier JC, Mitter C, Kristensen NP, Davis DR, van Nieukerken EJ. 109.  et al. 2015. A molecular phylogeny for the oldest (non-ditrysian) lineages of extant Lepidoptera, with implications for classification, comparative morphology and life history evolution. Syst. Entomol. 40671–704
  110. Regier JC, Mitter C, Solis MA, Hayden JE, Landry B. 110.  et al. 2012. A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Syst. Entomol. 37635–56
  111. Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP. 111.  et al. 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLOS ONE 8e58568
  112. Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S. 112.  et al. 2009. Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol. Biol. 9280
  113. Rhainds M, Davis DR, Price PW. 113.  2009. Bionomics of bagworms (Lepidoptera: Psychidae). Annu. Rev. Entomol 54209–26
  114. Rota J, Peña C, Miller SE. 114.  2016. The importance of long-distance dispersal and establishment events in small insects: historical biogeography of metalmark moths (Lepidoptera, Choreutidae). J. Biogeogr. 43:1254–65 [Google Scholar]
  115. Schachat SR, Brown RL. 115.  2015. Color pattern on the forewing of Micropterix (Lepidoptera: Micropterigidae): insights into the evolution of wing pattern and wing venation in moths. PLOS ONE 10e0139972
  116. Scoble MJ. 116.  1986. The structure and affinities of the Hedyloidea: a new concept of the butterflies. Bull. Br. Mus. Nat. Hist. Entomol. 53251–86
  117. Scott JA. 117.  1986. On the monophyly of the Macrolepidoptera, including a reassessment of their relationship to Cossoidea and Castnioidea, and a reassignment of Mimallonidae to Pyraloidea. J. Res. Lepidoptera 25:30–38 [Google Scholar]
  118. Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A. 118.  et al. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6e20356
  119. Simonsen TJ, Zakharov EV, Djernaes M, Cotton A, Vane-Wright RI, Sperling FAH. 119.  2011. Phylogeny, host plant associations and divergence time of Papilioninae (Lepidoptera: Papilionidae) inferred from morphology and seven genes with special focus on the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27:113–37 [Google Scholar]
  120. Sohn J-C, Labandeira C, Davis DR. 120.  2015. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 1512
  121. Sohn J-C, Labandeira C, Davis DR, Mitter C. 121.  2012. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 32861–132
  122. Sohn J-C, Regier JC, Mitter C, Adamski D, Landry JF. 122.  et al. 2013. A molecular phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and its implications for classification, biogeography and the evolution of host plant use. PLOS ONE 8e55066
  123. Sohn JC, Regier JC, Mitter C, Adamski D, Landry JF. 123.  et al. 2015. Phylogeny and feeding trait evolution of the mega-diverse Gelechioidea (Lepidoptera: Obtectomera): new insight from 19 nuclear genes. Syst. Entomol. 41112–32
  124. Solis MA, Mitter C. 124.  1992. Review and phylogenetic analysis of the Pyralidae (sensu stricto) (Lepidoptera: Pyralidae) and placement of the Epipaschiinae. Syst. Entomol. 17:79–90 [Google Scholar]
  125. Sperling FAH. 125.  1993. Mitochondrial DNA phylogeny of the Papilio machaon species group (Lepidoptera: Papilionidae). Mem. Entomol. Soc. Can. 165:233–42 [Google Scholar]
  126. Timmermans MJTN, Lees DC, Simonsen TJ. 126.  2014. Towards a mitogenomic phylogeny of Lepidoptera using next generation sequence technology. Mol. Phylogenet. Evol. 79169–78
  127. van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC. 127.  et al. 2011. Order Lepidoptera Linnaeus, 1758. Zootaxa 3148:212–21 [Google Scholar]
  128. Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S. 128.  et al. 2009. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B 276:4295–302 [Google Scholar]
  129. Wahlberg N, Rota J, Braby MF, Pierce NP, Wheat CW. 129.  2014. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zool. Scr. 43641–50
  130. Wahlberg N, Wheat CW. 130.  2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 57231–42
  131. Wahlberg N, Wheat CW, Peña C. 131.  2013. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLOS ONE 8e80875
  132. Warren AD, Ogawa JR, Brower AVZ. 132.  2008. Phylogenetic relationships of subfamilies and circumscription of tribes in the family Hesperiidae (Lepidoptera: Hesperioidea). Cladistics 24:1–35 [Google Scholar]
  133. Weller SJ, Pashley DP, Martin JA, Constable JL. 133.  1994. Phylogeny of noctuoid moths and the utility of combining independent nuclear and mitochondrial genes. Syst. Biol. 43194–211
  134. Weller SJ, Friedlander TP, Martin JA, Pashley DP. 134.  1992. Phylogenetic studies of ribosomal RNA variation in higher moths and butterflies (Lepidoptera: Ditrysia). Mol. Phylogenet. Evol. 1312–37
  135. Whalley PES. 135.  1978. New taxa of fossil and recent Micropterigidae with a discussion of their evolution and a comment on the evolution of the Lepidoptera (Insecta). Ann. Transvaal Mus. 3172–86
  136. Whalley PES. 136.  1985. The systematics and paleogeography of the Lower Jurassic insects of Dorset, England. Bull. Br. Mus. Nat. Hist. Geol. 39107–89
  137. Wheat CW, Wahlberg N. 137.  2013. Critiquing blind dating: the dangers of over-confident date estimates in comparative genomics. Trends Ecol. Evol. 28:636–42 [Google Scholar]
  138. Wiegmann BM, Mitter C, Regier JC, Friedlander TP, Wagner DM, Nielsen ES. 138.  2000. Nuclear genes resolve Mesozoic-aged divergences in the insect order Lepidoptera. Mol. Phylogenet. Evol. 15:242–59 [Google Scholar]
  139. Yamamoto S, Sota T. 139.  2007. Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. Mol. Phylogenet. Evol. 44711–23
  140. Yang X, Cameron SL, Lees DC, Xue D, Han H. 140.  2015. A mitochondrial genome phylogeny of owlet moths (Lepidoptera: Noctuoidea), and examination of the utility of mitochondrial genomes for lepidopteran phylogenetics. Mol. Phylogenet. Evol. 85230–37
  141. Ye F, Shi Y, Xing L, Yu H, You P. 141.  2013. The complete mitochondrial genome of Paracymoriza prodigalis (Leech, 1889) (Lepidoptera), with a preliminary phylogenetic analysis of Pyraloidea. Aquat. Insects 3571–88
  142. Yen S-H, Robinson GS, Quicke DLJ. 142.  2005. The phylogenetic relationships of Chalcosiinae (Lepidoptera, Zygaenoidea, Zygaenidae). Zool. J. Linn. Soc. 143:161–341 [Google Scholar]
  143. You M, Yue Z, He W, Yang X, Yang G. 143.  et al. 2013. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 45220–22
  144. Young CJ. 144.  2006. Molecular relationships of the Australian Ennominae (Lepidoptera: Geometridae) and implications for the phylogeny of the Geometridae from molecular and morphological data. Zootaxa 1264:1–147 [Google Scholar]
  145. Zahiri R, Holloway JD, Kitching IJ, Lafontaine D, Mutanen M, Wahlberg N. 145.  2012. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37102–24
  146. Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L. 146.  2011. A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zool. Scr. 40158–73
  147. Zahiri R, Lafontaine JD, Holloway JD, Kitching IJ, Schmidt BC. 147.  et al. 2013. Major lineages of Nolidae (Lepidoptera, Noctuoidea) elucidated by molecular phylogenetics. Cladistics 29:337–59 [Google Scholar]
  148. Zahiri R, Lafontaine JD, Schmidt BC, Holloway JD, Kitching IJ. 148.  et al. 2013. Relationships among the basal lineages of Noctuidae (Lepidoptera, Noctuoidea) based on eight gene regions. Zool. Scr. 42488–507
  149. Zaspel JM, Weller SJ, Wardwell CT, Zahiri R, Wahlberg N. 149.  2014. Phylogeny and evolution of pharmacophagy in tiger moths (Lepidoptera: Erebidae: Arctiinae). PLOS ONE 9e101975
  150. Zwick A. 150.  2008. Molecular phylogeny of Anthelidae and other bombycoid taxa (Lepidoptera: Bombycoidea). Syst. Entomol. 33190–209
  151. Zwick A, Regier JC, Mitter C, Cummings MP. 151.  2011. Increased gene sampling yields robust support for higher-level clades within Bombycoidea (Lepidoptera). Syst. Entomol. 3631–43
/content/journals/10.1146/annurev-ento-031616-035125
Loading
/content/journals/10.1146/annurev-ento-031616-035125
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error