1932

Abstract

Large-scale regular vegetation patterns are common in nature, but their causes are disputed. Whereas recent theory focuses on scale-dependent feedbacks as a potentially universal mechanism, earlier studies suggest that many regular spatial patterns result from territorial interference competition between colonies of social-insect ecosystem engineers, leading to hexagonally overdispersed nest sites and associated vegetation. Evidence for this latter mechanism is scattered throughout decades of disparate literature and lacks a unified conceptual framework, fueling skepticism about its generality in debates over the origins of patterned landscapes. We review these mechanisms and debates, finding evidence that spotted and gapped vegetation patterns generated by ants, termites, and other subterranean animals are globally widespread, locally important for ecosystem functioning, and consistent with models of intraspecific territoriality. Because these and other mechanisms of regular-pattern formation are not mutually exclusive and can coexist and interact at different scales, the prevailing theoretical outlook on spatial self-organization in ecology must expand to incorporate the dynamic interplay of multiple processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035413
2017-01-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-031616-035413.html?itemId=/content/journals/10.1146/annurev-ento-031616-035413&mimeType=html&fmt=ahah

Literature Cited

  1. Abe T, Bignell DE, Higashi M. 1.  2000. Termites: Evolution, Sociality, Symbioses, Ecology Dordrecht, Neth.: Kluwer Acad.
  2. Adams ES. 2.  1998. Territory size and shape in fire ants: a model based on neighborhood interactions. Ecology 79:1125–34 [Google Scholar]
  3. Adams ES. 3.  2001. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32:277–303 [Google Scholar]
  4. Adams ES, Tschinkel WR. 4.  1995. Spatial dynamics of colony interactions in young populations of the fire ant Solenopsis invicta. Oecologia 102:156–63 [Google Scholar]
  5. Adler FR, Gordon DM. 5.  2003. Optimization, conflict, and nonoverlapping foraging ranges in ants. Am. Nat. 162:529–43 [Google Scholar]
  6. Barbier N, Couteron P, Lefever R, Deblauwe V, Lejeune O. 6.  2008. Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns. Ecology 89:1521–31 [Google Scholar]
  7. Barbier N, Couteron P, Lejoly J, Deblauwe V, Lejeune O. 7.  2006. Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems. J. Ecol. 94:537–47 [Google Scholar]
  8. Barbier N, Couteron P, Planchon O, Diouf A. 8.  2010. Multiscale comparison of spatial patterns using two-dimensional cross-spectral analysis: application to a semi-arid (gapped) landscape. Landsc. Ecol. 25:889–902 [Google Scholar]
  9. Barlow GW. 9.  1974. Hexagonal territories. Anim. Behav. 22:876–78 [Google Scholar]
  10. Beattie AJ, Culver DC. 10.  1977. Effects of the mound nests of the ant, Formica obscuripes, on the surrounding vegetation. Am. Midl. Nat. 97:390–99 [Google Scholar]
  11. Benzie JA. 11.  1986. The distribution, abundance, and the effects of fire on mound building termites (Trinervitermes and Cubitermes spp., Isoptera: Termitidae) in northern guinea savanna West Africa. Oecologia 70:559–67 [Google Scholar]
  12. Bernstein RA. 12.  1975. Foraging strategies of ants in response to variable food density. Ecology 56:213–19 [Google Scholar]
  13. Bernstein RA, Gobbel M. 13.  1979. Partitioning of space in communities of ants. J. Anim. Ecol. 48:931–42 [Google Scholar]
  14. Bignell DE, Eggleton P. 14.  2000. Termites in ecosystems. See Ref. 1 363–88
  15. Blagodatski A, Sergeev A, Kryuchkov M, Lopatina Y, Katanaev VL. 15.  2015. Diverse set of Turing nanopatterns coat corneae across insect lineages. PNAS 112:10750–55 [Google Scholar]
  16. Bonachela JA, Pringle RM, Sheffer E, Coverdale TC, Guyton JA. 16.  et al. 2015. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science 347:651–55 [Google Scholar]
  17. Borgogno F, D'Odorico P, Laio F, Ridolfi L. 17.  2009. Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophys. 47:RG1005 [Google Scholar]
  18. Bourguignon T, Leponce M, Roisin Y. 18.  2011. Are the spatio-temporal dynamics of soil-feeding termite colonies shaped by intra-specific competition?. Ecol. Entomol. 36:776–85 [Google Scholar]
  19. Buckley PA, Buckley FG. 19.  1977. Hexagonal packing of Royal Tern nests. Auk 94:36–43 [Google Scholar]
  20. Carrington D. 20.  2014. Namibia's ‘fairy circles’: nature's greatest mystery?. CNN June 13. http://www.cnn.com/2014/06/13/world/africa/namibia-fairy-circles-nature-greatest-mystery/
  21. Cartení F, Marasco A, Bonanomi G, Mazzoleni S, Rietkerk M, Giannino F. 21.  2012. Negative plant soil feedback explaining ring formation in clonal plants. J. Theor. Biol. 313:153–61 [Google Scholar]
  22. Clark PJ, Evans FC. 22.  1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–53 [Google Scholar]
  23. Collins NM. 23.  1981. Populations, age structure and survivorship of colonies of Macrotermes bellicosus (Isoptera: Macrotermitinae). J. Anim. Ecol. 50:293–311 [Google Scholar]
  24. Couteron P, Lejeune O. 24.  2001. Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. J. Ecol. 89:616–28 [Google Scholar]
  25. Covich AP. 25.  1976. Analyzing shapes of foraging areas: some ecological and economic theories. Annu. Rev. Ecol. Syst. 7:235–57 [Google Scholar]
  26. Cramer MD, Barger NN. 26.  2013. Are Namibian “fairy circles” the consequence of self-organizing spatial vegetation patterning?. PLOS ONE 8:e70876 [Google Scholar]
  27. Cramer MD, Barger NN. 27.  2014. Are mima-like mounds the consequence of long-term stability of vegetation spatial patterning?. Palaeogeogr. Palaeoclim. Palaeoecol. 409:72–83 [Google Scholar]
  28. Cramer MD, Innes SN, Midgley JJ. 28.  2012. Hard evidence that heuweltjie earth mounds are relictual features produced by differential erosion. Palaeogeogr. Palaeoclim. Palaeoecol. 350–352:189–97 [Google Scholar]
  29. Cramer MD, Midgley JJ. 29.  2015. The distribution and spatial patterning of mima-like mounds in South Africa suggests genesis through vegetation induced aeolian sediment deposition. J. Arid Environ. 119:16–26 [Google Scholar]
  30. Dangerfield JM, McCarthy TS, Ellery WN. 30.  1998. The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J. Trop. Ecol. 14:507–20 [Google Scholar]
  31. Darlington J. 31.  1985. Lenticular soil mounds in the Kenya highlands. Oecologia 66:116–21 [Google Scholar]
  32. Darlington J. 32.  2000. Termite nests in a mound field at Oleserewa, Kenya (Isoptera: Macrotermitinae). Sociobiology 35:25–34 [Google Scholar]
  33. Darlington JPEC. 33.  1982. The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. J. Zool. 198:237–47 [Google Scholar]
  34. Darlington JPEC. 34.  2005. Termite nest structure and impact on the soil at the Radar Site, Embakasi, Kenya (Isoptera: Termitidae). Sociobiology 45:521–42 [Google Scholar]
  35. Darlington JPEC. 35.  2007. Arena nests built by termites in the Masai Mara, Kenya. J. East Afr. Nat. Hist. 96:73–81 [Google Scholar]
  36. Darlington JPEC, Bagine RKN. 36.  1999. Large termite nests in a moundfield on the Embakasi Plain, Kenya (Isoptera: Termitidae). Sociobiology 33:215–25 [Google Scholar]
  37. Darlington JPEC, Dransfield J. 37.  1987. Size relationships in nest populations and mound parameters in the termite Macrotermes michaelseni in Kenya. Insectes Soc 34:165–80 [Google Scholar]
  38. Davies AB, Levick SR, Asner GP, Robertson MP, van Rensburg BJ, Parr CL. 38.  2014. Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography 37:852–62 [Google Scholar]
  39. Day MD, Zalucki MP. 39.  2000. The effect of density on spatial distribution, pit formation, cannibalism and pit diameter of Myrmeleon acer Walker (Neuroptera: Myrmeleontidae). Aust. J. Ecol 25:58–64 [Google Scholar]
  40. Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J. 40.  2008. The global biogeography of semi-arid periodic vegetation patterns. Glob. Ecol. Biogeogr. 17:715–23 [Google Scholar]
  41. Deblauwe V, Couteron P, Bogaert J, Barbier N. 41.  2012. Determinants and dynamics of banded vegetation pattern migration in arid climates. Ecol. Monogr. 82:3–21 [Google Scholar]
  42. Deblauwe V, Couteron P, Lejeune O, Bogaert J, Barbier N. 42.  2011. Environmental modulation of self-organized periodic vegetation patterns in Sudan. Ecography 34:990–1001 [Google Scholar]
  43. Dibner RR, Doak DF, Lombardi EM. 43.  2015. An ecological engineer maintains consistent spatial patterning, with implications for community-wide effects. Ecosphere 6:9151 [Google Scholar]
  44. Doncaster CP, Macdonald DW. 44.  1991. Drifting territoriality in the red fox Vulpes vulpes. J. Anim. Ecol. 60:423–39 [Google Scholar]
  45. Eldridge DJ, Lepage M, Bryannah MA, Ouedraogo P. 45.  2001. Soil biota in banded landscapes. See Ref. 146 105–31
  46. Eppinga MB, Rietkerk M, Borren W, Lapshina ED, Bleuten W, Wassen MJ. 46.  2008. Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 11:520–36 [Google Scholar]
  47. Fletcher RS, Everitt JH, Drawe L. 47.  2007. Detecting red harvester ant mounds with panchromatic QuickBird imagery. J. Appl. Remote Sens. 1:013556 [Google Scholar]
  48. Fox-Dobbs K, Doak DF, Brody AK, Palmer TM. 48.  2010. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna. Ecology 91:1296–1307 [Google Scholar]
  49. Francis ML, Ellis F, Lambrechts JJN, Poch RM. 49.  2013. A micromorphological view through a Namaqualand termitaria (Heuweltjie, a Mima-like mound). Catena 100:57–73 [Google Scholar]
  50. Funch RR. 50.  2015. Termite mounds as dominant land forms in semiarid northeastern Brazil. J. Arid Environ. 122:27–29 [Google Scholar]
  51. Furley PA. 51.  1986. Classification and distribution of Murundus in the cerrado of Central Brazil. J. Biogeogr. 13:265–68 [Google Scholar]
  52. Gabet EJ, Perron JT, Johnson DL. 52.  2014. Biotic origin for Mima mounds supported by numerical modeling. Geomorphology 206:58–66 [Google Scholar]
  53. Getzin S, Wiegand T. 53.  2015. New studies on fairy circles need to account for new observations on their spatial patterns. Ecography Blog Jan. 28. http://www.ecography.org/blog/new-studies-fairy-circles-need-account-new-observations-their-spatial-patterns
  54. Getzin S, Wiegand K, Wiegand T, Yizhaq H, von Hardenberg J, Meron E. 54.  2015. Adopting a spatially explicit perspective to study the mysterious fairy circles of Namibia. Ecography 38:1–11 [Google Scholar]
  55. Getzin S, Wiegand K, Wiegand T, Yizhaq H, von Hardenberg J, Meron E. 55.  2015. Clarifying misunderstandings regarding vegetation self-organisation and spatial patterns of fairy circles in Namibia: a response to recent termite hypotheses. Ecol. Entomol. 40:669–75 [Google Scholar]
  56. Getzin S, Yizhaq H, Bell B, Erickson TE, Postle AC. 56.  et al. 2016. Discovery of fairy circles in Australia supports self-organization theory. PNAS 113:3551–56 [Google Scholar]
  57. Getzin S, Yizhaq H, Bell B, Erickson TE, Postle AC. 57.  et al. 2016. Reply to Walsh et al. Hexagonal patterns of Australian fairy circles develop without correlation to termitaria. PNAS 113:E5368–69 [Google Scholar]
  58. Glover PE, Trump EC, Wateridge L. 58.  1964. Termitaria and vegetation patterns on the Loita Plains of Kenya. J. Ecol. 52:367–77 [Google Scholar]
  59. Goosen D. 59.  1971. Physiography and soils of the Llanos Orientales, Colombia PhD thesis. Univ. Amsterdam, Neth.
  60. Gordon DM, Kulig AW. 60.  1996. Founding, foraging, and fighting: colony size and the spatial distribution of harvester ant nests. Ecology 77:2393–409 [Google Scholar]
  61. Grant PR. 61.  1968. Polyhedral territories of animals. Am. Nat. 102:75–80 [Google Scholar]
  62. Grohmann C, Oldeland J, Stoyan D, Linsenmair KE. 62.  2010. Multi-scale pattern analysis of a mound-building termite species. Insectes Soc. 57:477–86 [Google Scholar]
  63. von Hardenberg J, Meron E, Shachak M, Zarmi Y. 63.  2001. Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87:198101 [Google Scholar]
  64. Hasegawa M, Tanemura M. 64.  1976. On the pattern of space division by territories. Ann. Inst. Stat. Math. 28:509–19 [Google Scholar]
  65. HilleRisLambers R, Rietkerk M, van den Bosch F, Prins HH, de Kroon H. 65.  2001. Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50–61 [Google Scholar]
  66. Hölldobler B. 66.  1976. Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav. Ecol. Sociobiol. 1:3–44 [Google Scholar]
  67. Hölldobler B, Wilson EO. 67.  1990. The Ants Cambridge, MA: Harvard Univ. Press
  68. Holt JA, Lepage M. 68.  2000. Termites and soil properties. See Ref. 1 333–62
  69. Howard J. 69.  1959. The classification of woodland in Western Tanganyika for type-mapping from aerial photographs. Emp. For. Rev. 38:348–64 [Google Scholar]
  70. Hutchinson GE. 70.  1953. The concept of pattern in ecology. Proc. Acad. Nat. Sci. Phila. 105:1–12 [Google Scholar]
  71. Jmhasly P, Leuthold RH. 71.  1999. The system of underground passages in Macrotermes subhyalinus and comparison of laboratory bioassays to field evidence of intraspecific encounters in M. subhyalinus and M. bellicosus (Isoptera, Termitidae). Insectes Soc. 46:332–40 [Google Scholar]
  72. Johnson DL, Johnson DN. 72.  2012. The polygenetic origin of prairie mounds in northeastern California. GSA Spec. Pap. 490:135–59 [Google Scholar]
  73. Jones JA. 73.  1990. Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. J. Trop. Ecol. 6:291–305 [Google Scholar]
  74. Jones DW, Krummel JR. 74.  1985. The location theory of animal populations: the case of a spatially uniform food distribution. Am. Nat. 126:392–404 [Google Scholar]
  75. Joseph GS, Seymour CL, Cumming GS, Cumming DHM, Mahlangu Z. 75.  2012. Termite mounds as islands: woody plant assemblages relative to termitarium size and soil properties. J. Veg. Sci. 24:702–11 [Google Scholar]
  76. Joseph GS, Seymour CL, Cumming GS, Cumming DHM, Mahlangu Z. 76.  2014. Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems 17:808–19 [Google Scholar]
  77. Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D. 77.  2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47:215–22 [Google Scholar]
  78. Juergens N. 78.  2013. The biological underpinnings of Namib Desert fairy circles. Science 339:1618–21 [Google Scholar]
  79. Juergens N. 79.  2015. Exploring common ground for different hypotheses on Namib fairy circles. Ecography 38:12–14 [Google Scholar]
  80. Juergens N, Vlieghe KE, Bohn C, Erni B, Gunter F. 80.  et al. 2015. Weaknesses in the plant competition hypothesis for fairy circle formation and evidence supporting the sand termite hypothesis. Ecol. Entomol. 40:661–68 [Google Scholar]
  81. Klausmeier CA. 81.  1999. Regular and irregular patterns in semiarid vegetation. Science 284:1826–28 [Google Scholar]
  82. Koch AJ, Meinhardt H. 82.  1994. Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66:1481–507 [Google Scholar]
  83. Korb J. 83.  2011. Termite mound architecture, from function to construction. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 349–73 Dordrecht, Neth.: Springer [Google Scholar]
  84. Korb J, Linsenmair KE. 84.  2001. The causes of spatial patterning of mounds of a fungus-cultivating termite: results from nearest-neighbour analysis and ecological studies. Oecologia 127:324–33 [Google Scholar]
  85. Laurie H. 85.  2002. Optimal transport in central place foraging, with an application to the overdispersion of heuweltjies. S. Afr. J. Sci. 98:3141–46 [Google Scholar]
  86. Leal IR, Wirth R, Tabarelli M. 86.  2014. The multiple impacts of leaf-cutting ants and their novel ecological role in human-modified Neotropical forests. Biotropica 46:516–28 [Google Scholar]
  87. Lefever R, Lejeune O. 87.  1997. On the origin of tiger bush. Bull. Math. Biol. 59:263–94 [Google Scholar]
  88. Lefever R, Lejeune O, Couteron P. 88.  2001. Generic modelling of vegetation patterns. A case study of tiger bush in sub-Saharian Sahel. Mathematical Models for Biological Pattern Formation PK Maini, HG Othmer 83–112 New York: Springer [Google Scholar]
  89. Lejeune O, Couteron P, Lefever R. 89.  1999. Short range co-operativity competing with long range inhibition explains vegetation patterns. Acta Oecol. 20:171–83 [Google Scholar]
  90. Lepage M. 90.  1984. Distribution, density and evolution of Macrotermes bellicosus nests (Isoptera: Macrotermitinae) in the north-east of Ivory Coast. J. Anim. Ecol. 53:107–17 [Google Scholar]
  91. Levick SR, Asner GP, Chadwick OA, Khomo LM, Rogers KH. 91.  et al. 2010. Regional insight into savanna hydrogeomorphology from termite mounds. Nat. Commun. 1:65 [Google Scholar]
  92. Levick SR, Asner GP, Kennedy-Bowdoin T, Knapp DE. 92.  2010. The spatial extent of termite influences on herbivore browsing in an African savanna. Biol. Conserv. 143:2462–67 [Google Scholar]
  93. Levin SA. 93.  1974. Dispersion and population interactions. Am. Nat. 108:207–28 [Google Scholar]
  94. Levin SA. 94.  1992. The problem of pattern and scale in ecology. Ecology 73:1943–67 [Google Scholar]
  95. Levin SA, Segel LA. 95.  1985. Pattern generation in space and aspect. SIAM Rev. 27:45–67 [Google Scholar]
  96. Levings SC, Traniello J. 96.  1981. Territoriality, nest dispersion, and community structure in ants. Psyche 88:265–319 [Google Scholar]
  97. Liu Q-X, Doelman A, Rottschäfer V, de Jager M, Herman PM. 97.  et al. 2013. Phase separation explains a new class of self-organized spatial patterns in ecological systems. PNAS 110:11905–10 [Google Scholar]
  98. Liu Q-X, Herman PMJ, Mooij WM, Huisman J, Scheffer M. 98.  et al. 2014. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5:5234 [Google Scholar]
  99. Liu Q-X, Rietkerk M, Herman P, Piersma T, Fryxell JM. de Koppel J. 99. , van 2016. Phase separation driven by density-dependent movement: a novel mechanism for ecological patterns. Phys. Life Rev. In press. http://dx.doi.org/10.1016/j.plrev.2016.07.009
  100. Liu Q-X, Weerman EJ, Herman PMJ, Olff H, van de, Koppel J. 100.  2012. Alternative mechanisms alter the emergent properties of self-organization in mussel beds. Proc. R. Soc. B 279:2744–53 [Google Scholar]
  101. Macfadyen WA. 101.  1950. Vegetation patterns in the semi-desert plains of British Somaliland. Geogr. J. 114:199–211 [Google Scholar]
  102. MacMahon JA, Mull JF, Crist TO. 102.  2000. Harvester ants (Pogonomyrmex spp.): their community and ecosystem influences. Annu. Rev. Ecol. Syst. 31:265–91 [Google Scholar]
  103. Marimon BS, Colli GR, Marimon-Junior BH, Mews HA, Eisenlohr PV. 103.  et al. 2015. Ecology of floodplain Campos de murundus savanna in southern Amazonia. Int. J. Plant Sci. 176:670–81 [Google Scholar]
  104. McKey D, Rostain S, Iriarte J, Glaser B, Birk JJ. 104.  et al. 2010. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. PNAS 107:7823–28 [Google Scholar]
  105. Meron E. 105.  2016. Pattern formation: a missing link in the study of ecosystem response to environmental changes. Math. Biosci. 271:1–18 [Google Scholar]
  106. Meron E, Gilad E, von Hardenberg J, Shachak M, Zarmi Y. 106.  2004. Vegetation patterns along a rainfall gradient. Chaos Solitons Fractals 19:367–76 [Google Scholar]
  107. Meyer VW, Braack L, Biggs HC, Ebersohn C. 107.  1999. Distribution and density of termite mounds in the northern Kruger National Park, with specific reference to those constructed by Macrotermes Holmgren (Isoptera: Termitidae).. Afr. Entomol. 7:123–30 [Google Scholar]
  108. Midgley JJ. 108.  2010. More mysterious mounds: origins of the Brazilian Campos de murundus. Plant Soil 336:1–2 [Google Scholar]
  109. Midgley JJ, Harris C, Harington A, Potts AJ. 109.  2012. Geochemical perspective on origins and consequences of heuweltjie formation in the southwestern Cape, South Africa. S. Afr. J. Geol. 115:577–88 [Google Scholar]
  110. Moore JM, Picker MD. 110.  1991. Heuweltjies (earth mounds) in the Clanwilliam district, Cape Province, South Africa: 4000-year-old termite nests. Oecologia 86:424–32 [Google Scholar]
  111. Murray JD. 111.  1989. Mathematical Biology Berlin: Springer-Verlag
  112. Oliveira-Filho D, Teixeira A. 112.  1992. The vegetation of Brazilian “murundus”—the island-effect on the plant community. J. Trop. Ecol. 8:465–86 [Google Scholar]
  113. Page KM, Maini PK, Monk NAM. 113.  2005. Complex pattern formation in reaction-diffusion systems with spatially varying parameters. Phys. D 202:95–115 [Google Scholar]
  114. Palmer TM. 114.  2004. Wars of attrition: Colony size determines competitive outcomes in a guild of African acacia ants. Anim. Behav. 68:993–1004 [Google Scholar]
  115. Peters RP, Mech LD. 115.  1975. Scent-marking in wolves. Am. Sci. 63:628–37 [Google Scholar]
  116. Pomeroy D. 116.  2005. Dispersion and activity patterns of three populations of large termite mounds in Kenya. J. East Afr. Nat. Hist. 94:319–41 [Google Scholar]
  117. Pomeroy D. 117.  2005. Stability of termite mound populations in a variable environment. J. East Afr. Nat. Hist. 94:343–61 [Google Scholar]
  118. Pomeroy DE. 118.  1976. Studies on a population of large termite mounds in Uganda. Ecol. Entomol. 1:49–61 [Google Scholar]
  119. Potts JR, Harris S, Giuggioli L. 119.  2012. Territorial dynamics and stable home range formation for central place foragers. PLOS ONE 7:e34033 [Google Scholar]
  120. Pringle RM, Doak DF, Brody AK, Jocqué R, Palmer TM. 120.  2010. Spatial pattern enhances ecosystem functioning in an African savanna. PLOS Biol. 8:e1000377 [Google Scholar]
  121. Prugh LR, Brashares JS. 121.  2011. Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways. J. Anim. Ecol. 81:667–78 [Google Scholar]
  122. Renard D, Birk JJ, Zangerlé A, Lavelle P, Glaser B. 122.  et al. 2013. Ancient human agricultural practices can promote activities of contemporary non-human soil ecosystem engineers: a case study in coastal savannas of French Guiana. Soil Biol. Biochem. 62:46–56 [Google Scholar]
  123. Rietkerk M, Boerlijst MC, van Langevelde F, HilleRisLambers R. de Koppel J. 123. , van et al. 2002. Self-organization of vegetation in arid ecosystems. Am. Nat. 160:524–30 [Google Scholar]
  124. Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J. 124.  2004. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–29 [Google Scholar]
  125. Rietkerk M, Ouedraogo T, Kumar L, Sanou S, Van Langevelde F. 125.  et al. 2002. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel. Plant Soil 239:69–77 [Google Scholar]
  126. Rietkerk M, van de Koppel J. 126.  2008. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23:169–75 [Google Scholar]
  127. Ryti RT, Case TJ. 127.  1992. The role of neighborhood competition in the spacing and diversity of ant communities. Am. Nat. 139:355–74 [Google Scholar]
  128. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR. 128.  et al. 2009. Early-warning signals for critical transitions. Nature 461:53–59 [Google Scholar]
  129. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 129.  2001. Catastrophic shifts in ecosystems. Nature 413:591–96 [Google Scholar]
  130. Schooley RL, Wiens JA. 130.  2001. Dispersion of kangaroo rat mounds at multiple scales in New Mexico, USA. Landsc. Ecol. 16:267–277 [Google Scholar]
  131. Schuurman G, Dangerfield JM. 131.  1997. Dispersion and abundance of Macrotermes michaelseni colonies: a limited role for intraspecific competition. J. Trop. Ecol. 13:39–49 [Google Scholar]
  132. Seymour CL, Milewski AV, Mills AJ, Joseph GS, Cumming GS. 132.  et al. 2014. Do the large termite mounds of Macrotermes concentrate micronutrients in addition to macronutrients in nutrient-poor African savanna?. Soil Biol. Biochem. 68:95–105 [Google Scholar]
  133. Sheffer E, von Hardenberg J, Yizhaq H, Shachak M, Meron E. 133.  2012. Emerged or imposed: a theory on the role of physical templates and self-organisation for vegetation patchiness. Ecol. Lett. 16:127–39 [Google Scholar]
  134. Sherratt JA. 134.  2015. Using wavelength and slope to infer the historical origin of semiarid vegetation bands. PNAS 112:4202–7 [Google Scholar]
  135. Sileshi GW, Arshad MA, Konaté S, Nkunika POY. 135.  2010. Termite-induced heterogeneity in African savanna vegetation: mechanisms and patterns. J. Veg. Sci. 21:923–37 [Google Scholar]
  136. Simberloff D, King L, Dillon P, Lowrie S, Lorence D, Schilling E. 136.  1978. Holes in the doughnut theory: the dispersions of antlions. Brenesia 14–15:13–46 [Google Scholar]
  137. Spain AV, Sinclair DF, Diggle PJ. 137.  1986. Spatial distributions of the mounds of harvester and forager termites (Isoptera: Termitidae) at four locations in tropical North-Eastern Australia. Acta Oecolog 7:335–52 [Google Scholar]
  138. Sparagivna AC. 138.  2016. Patterned vegetation created by red harvester ants and evidenced in satellite images. HAL hal-01289240. https://hal.archives-ouvertes.fr/hal-01289240
  139. Tanemura M, Hasegawa M. 139.  1980. Geometrical models of territory. I. Models for synchronous and asynchronous settlement of territories. J. Theor. Biol. 82:477–96 [Google Scholar]
  140. Tarnita CE, Bonachela JA, Sheffer E, Guyton JA, Coverdale TC. 140.  et al. 2016. A theoretical foundation for multi-scale regular vegetation patterns. Nature. In press. doi: 10.1038/nature20801
  141. Thiery JM, d'Herbes JM, Valentin C. 141.  1995. A model simulating the genesis of banded vegetation patterns in Niger. J. Ecol. 83:497–507 [Google Scholar]
  142. Thompson DW. 142.  2014 (1917). On Growth and Form JT Bonner. Cambridge, UK: Cambridge Univ. Press. Abr. ed.
  143. Thorne BL, Breisch NL, Muscedere ML. 143.  2003. Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. PNAS 100:12808–13 [Google Scholar]
  144. Thorne BL, Haverty MI. 144.  1991. A review of intracolony, intraspecific, and interspecific agonism in termites. Sociobiology 19:115–45 [Google Scholar]
  145. Tinley KL. 145.  1977. Framework of the Gorongosa ecosystem, Mozambique PhD thesis. Univ. Pretoria, S. Afr.
  146. Tongway DJ, Valentin C, Seghieri J. 146.  2001. Banded Vegetation Patterning in Arid and Semiarid Environments: Ecological Processes and Consequences for Management New York: Springer-Verlag
  147. Traniello J, Leuthold RH. 147.  2000. Behavior and ecology of foraging in termites. See Ref. 1 141–68
  148. Tschinkel WR. 148.  2010. The foraging tunnel system of the Namibian desert termite, Baucaliotermes hainesi. J. Insect Sci. 10:65 [Google Scholar]
  149. Tschinkel WR. 149.  2012. The life cycle and life span of Namibian fairy circles. PLOS ONE 7:e38056 [Google Scholar]
  150. Tschinkel WR. 150.  2015. Experiments testing the causes of Namibian fairy circles. PLOS ONE 10:e0140099 [Google Scholar]
  151. Turing AM. 151.  1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237:37–72 [Google Scholar]
  152. Valentin C, d'Herbès J-M, Poesen J. 152.  1999. Soil and water components of banded vegetation patterns. Catena 37:1–24 [Google Scholar]
  153. van de Koppel J, Crain CM. 153.  2006. Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh. Am. Nat. 168:E136–47 [Google Scholar]
  154. van de Koppel J, Gascoigne JC, Theraulaz G, Rietkerk M, Mooij WM, Herman PMJ. 154.  2008. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 322:736–39 [Google Scholar]
  155. van de Koppel J, Rietkerk M, Dankers N, Herman PMJ. 155.  2005. Scale-dependent feedback and regular spatial patterns in young mussel beds. Am. Nat. 165:E66–77 [Google Scholar]
  156. Vlieghe K, Picker M, Ross-Gillespie V, Erni B. 156.  2015. Herbivory by subterranean termite colonies and the development of fairy circles in SW Namibia. Ecol. Entomol. 40:42–49 [Google Scholar]
  157. Walsh FJ, Sparrow AD, Kendrick P, Schofield J. 157.  2016. Fairy circles or ghosts of termitaria? Pavement termites as alternative causes of circular patterns in vegetation of desert Australia. PNAS 113:E5365–67 [Google Scholar]
  158. Wood TG, Sands WA. 158.  1978. The role of termites in ecosystems. Production Ecology of Ants and Termites MV Brian 245–93 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  159. Yizhaq H, Gilad E, Meron E. 159.  2005. Banded vegetation: biological productivity and resilience. Phys. A 356:139–44 [Google Scholar]
  160. Zelnik YR, Meron E, Bel G. 160.  2015. Gradual regime shifts in fairy circles. PNAS 112:12327–31 [Google Scholar]
  161. Zhang H, Sinclair R. 161.  2015. Namibian fairy circles and epithelial cells share emergent geometric order. Ecol. Complex. 22:32–35 [Google Scholar]
  162. Zangerlé A, Renard D, Iriarte J, Jimenez LES, Montoya K. 162.  et al. 2016. The surales, self-organized earth-mound landscapes made by earthworms in a seasonal tropical wetland. PLOS ONE 11:e0154269 [Google Scholar]
/content/journals/10.1146/annurev-ento-031616-035413
Loading
/content/journals/10.1146/annurev-ento-031616-035413
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error