1932

Abstract

Global change includes a substantial increase in the frequency and intensity of extreme high temperatures (EHTs), which influence insects at almost all levels. The number of studies showing the ecological importance of EHTs has risen in recent years, but the knowledge is rather dispersed in the contemporary literature. In this article, we review the biological and ecological effects of EHTs actually experienced in the field, i.e., when coupled to fluctuating thermal regimes. First, we characterize EHTs in the field. Then, we summarize the impacts of EHTs on insects at various levels and the processes allowing insects to buffer EHTs. Finally, we argue that the mechanisms leading to positive or negative impacts of EHTs on insects can only be resolved from integrative approaches considering natural thermal regimes. Thermal extremes, perhaps more than the gradual increase in mean temperature, drive insect responses to climate change, with crucial impacts on pest management and biodiversity conservation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-041520-074454
2021-01-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/en/66/1/annurev-ento-041520-074454.html?itemId=/content/journals/10.1146/annurev-ento-041520-074454&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason BE et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111:D05109
    [Google Scholar]
  2. 2. 
    Altermatt F. 2010. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B 277:1281–87
    [Google Scholar]
  3. 3. 
    Angilletta MJ. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis Oxford, UK: Oxford Univ. Press
  4. 4. 
    Atkinson D. 1994. Temperature and organism size: a biological law for ectotherms?. Adv. Ecol. Res. 25:1–58
    [Google Scholar]
  5. 5. 
    Bai CM, Ma G, Cai WZ, Ma CS 2019. Independent and combined effects of daytime heat stress and nighttime recovery determine thermal performance. Biol. Open 8:bio038141
    [Google Scholar]
  6. 6. 
    Bailey LD, van de Pol M 2016. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85:85–96
    [Google Scholar]
  7. 7. 
    Barton BT, Schmitz OJ. 2009. Experimental warming transforms multiple predator effects in a grassland food web. Ecol. Lett. 12:1317–25
    [Google Scholar]
  8. 8. 
    Barton BT, Schmitz OJ. 2018. Opposite effects of daytime and nighttime warming on top-down control of plant diversity. Ecology 99:13–20
    [Google Scholar]
  9. 9. 
    Battisti A, Stastny M, Buffo E, Larsson S 2006. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob. Change Biol. 12:662–71
    [Google Scholar]
  10. 10. 
    Battisti A, Stastny M, Netherer S, Robinet C, Schopf A et al. 2005. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15:2084–96
    [Google Scholar]
  11. 11. 
    Bokhorst S, Phoenix GK, Bjerke JW, Callaghan TV, Huyerbrugman F, Berg MP 2012. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Glob. Change Biol. 18:1152–62
    [Google Scholar]
  12. 12. 
    Bonebrake TC, Boggs CL, Stamberger JA, Deutsch C, Ehrlich PR 2014. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts. Proc. R. Soc. B 281:20141264
    [Google Scholar]
  13. 13. 
    Bowler K. 2018. Heat death in poikilotherms: Is there a common cause?. J. Therm. Biol. 76:77–79
    [Google Scholar]
  14. 14. 
    Bowler K, Terblanche JS. 2008. Insect thermal tolerance: What is the role of ontogeny, ageing and senescence?. Biol. Rev. 83:339–55
    [Google Scholar]
  15. 15. 
    Bozinovic F, Bastías DA, Boher F, Clavijobaquet S, Estay SA, Angilletta MJ 2011. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool. 84:543–52
    [Google Scholar]
  16. 16. 
    Buckley LB, Huey RB. 2016. How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integr. Comp. Biol. 56:98–109
    [Google Scholar]
  17. 17. 
    Buckley LB, Huey RB. 2016. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22:3829–42
    [Google Scholar]
  18. 18. 
    Cahon T, Caillon R, Pincebourde S 2018. Do aphids alter leaf surface temperature patterns during early infestation?. Insects 9:34
    [Google Scholar]
  19. 19. 
    Caillon R, Suppo C, Casas J, Woods AH, Pincebourde S 2014. Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods. Funct. Ecol. 28:1449–58
    [Google Scholar]
  20. 20. 
    CaraDonna PJ, Cunningham JL, Iler AM 2018. Experimental warming in the field delays phenology and reduces body mass, fat content and survival: implications for the persistence of a pollinator under climate change. Funct. Ecol. 32:2345–56
    [Google Scholar]
  21. 21. 
    Cerda X, Retana J, Manzaneda A 1998. The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117:404–12
    [Google Scholar]
  22. 22. 
    Chen B, Feder ME, Kang L 2018. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol. Ecol. 27:3040–54
    [Google Scholar]
  23. 23. 
    Chen C, Gols R, Biere A, Harvey JA 2019. Differential effects of climate warming on reproduction and functional responses on insects in the fourth trophic level. Funct. Ecol. 33:693–702
    [Google Scholar]
  24. 24. 
    Chen YY, Zhang W, Ma G, Ma CS 2019. More stressful event does not always depress subsequent life performance. J. Integr. Agric. 18:2321–29
    [Google Scholar]
  25. 25. 
    Chown SL, Nicolson SW. 2004. Insect Physiological Ecology: Mechanisms and Patterns Oxford, UK: Oxford Univ. Press
  26. 26. 
    Chown SL, Sorensen JG, Terblanche JS 2011. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57:1070–84
    [Google Scholar]
  27. 27. 
    Colinet H, Sinclair BJ, Vernon P, Renault D 2015. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60:123–40
    [Google Scholar]
  28. 28. 
    Crespo-Pérez V, Regniere J, Chuine I, Rebaudo F, Dangles O 2015. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Glob. Change Biol. 21:82–96
    [Google Scholar]
  29. 29. 
    De Frenne P, Rodriguez-Sanchez F, Coomes DA, Baeten L, Verstraeten G et al. 2013. Microclimate moderates plant responses to macroclimate warming. PNAS 110:18561–65
    [Google Scholar]
  30. 30. 
    De Frenne P, Zellweger F, Rodríguez-Sánchez F, Scheffers BR, Hylander K et al. 2019. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3:744–49
    [Google Scholar]
  31. 31. 
    Denny M. 2017. The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen's inequality. J. Exp. Biol. 220:139–46
    [Google Scholar]
  32. 32. 
    Denny M, Hunt L, Miller L, Harley C 2009. On the prediction of extreme ecological events. Ecol. Monogr. 79:397–421
    [Google Scholar]
  33. 33. 
    Diamond SE. 2017. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change. Ann. N. Y. Acad. Sci. 1389:5–19
    [Google Scholar]
  34. 34. 
    Dowd WW, Denny MW. 2020. A series of unfortunate events: characterizing the contingent nature of physiological extremes using long-term environmental records. Proc. R. Soc. B 287:20192333
    [Google Scholar]
  35. 35. 
    Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO 2000. Climate extremes: observations, modeling, and impacts. Science 289:2068–74
    [Google Scholar]
  36. 36. 
    Ern R. 2019. A mechanistic oxygen- and temperature-limited metabolic niche framework. Philos. Trans. R. Soc. B 374:20180540
    [Google Scholar]
  37. 37. 
    Esperk T, Kjaersgaard A, Walters RJ, Berger D, Blanckenhorn WU 2016. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?. J. Evol. Biol. 29:900–15
    [Google Scholar]
  38. 38. 
    Evans EW, Carlile NR, Innes MB, Pitigala N 2013. Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch. J. Appl. Entomol. 137:383–91
    [Google Scholar]
  39. 39. 
    Fan YL, Wernegreen JJ. 2013. Can't take the heat: High temperature depletes bacterial endosymbionts of ants. Microb. Ecol. 66:727–33
    [Google Scholar]
  40. 40. 
    Feder ME, Blair NT, Figueras H 1997. Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae. Funct. Ecol. 11:90–100
    [Google Scholar]
  41. 41. 
    Folk DG, Zwollo P, Rand DM, Gilchrist GW 2006. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. J. Exp. Biol. 209:3964–73
    [Google Scholar]
  42. 42. 
    Forster J, Hirst AG, Atkinson D 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. PNAS 109:19310–14
    [Google Scholar]
  43. 43. 
    Franken O, Huizinga M, Ellers J, Berg MP 2018. Heated communities: large inter- and intraspecific variation in heat tolerance across trophic levels of a soil arthropod community. Oecologia 186:311–22
    [Google Scholar]
  44. 44. 
    García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. PNAS 113:680–85
    [Google Scholar]
  45. 45. 
    Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R 2011. Declining body size: a third universal response to warming?. Trends Ecol. Evol. 26:285–91
    [Google Scholar]
  46. 46. 
    Gibbs AG, Louie AK, Ayala JA 1998. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: Is thermal acclimation beneficial?. J. Exp. Biol. 201:71–80
    [Google Scholar]
  47. 47. 
    Gillespie DR, Nasreen A, Moffat CE, Clarke P, Roitberg BD 2012. Effects of simulated heat waves on an experimental community of pepper plants, green peach aphids and two parasitoid species. Oikos 121:149–59
    [Google Scholar]
  48. 48. 
    Giron D, Dubreuil G, Bennett A, Dedeine F, Dicke M et al. 2018. Promises and challenges in insect-plant interactions. Entomol. Exp. Appl. 166:319–43
    [Google Scholar]
  49. 49. 
    Goodsman DW, Grosklos G, Aukema BH, Whitehouse C, Bleiker KP et al. 2018. The effect of warmer winters on the demography of an outbreak insect is hidden by intraspecific competition. Glob. Change Biol. 24:3620–28
    [Google Scholar]
  50. 50. 
    Gunderson AR, Stillman JH. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282:20150401
    [Google Scholar]
  51. 51. 
    Halbritter AH, De Boeck HJ, Eycott AE, Reinsch S, Robinson DA et al. 2020. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods Ecol. Evol. 11:22–37
    [Google Scholar]
  52. 52. 
    Hangartner S, Hoffmann AA. 2016. Evolutionary potential of multiple measures of upper thermal tolerance in Drosophila melanogaster.Funct. Ecol 30:442–52
    [Google Scholar]
  53. 53. 
    Harmon JP, Moran NA, Ives AR 2009. Species response to environmental change: impacts of food web interactions and evolution. Science 323:1347–50
    [Google Scholar]
  54. 54. 
    Helmuth B, Kingsolver JG, Carrington E 2005. Biophysics, physiological ecology, and climate change: Does mechanism matter?. Annu. Rev. Physiol. 67:177–201
    [Google Scholar]
  55. 55. 
    Hendrix DL, Salvucci ME. 1998. Polyol metabolism in homopterans at high temperatures: accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies (Aleyrodidae: Homoptera). Comp. Biochem. Physiol. A 120:487–94
    [Google Scholar]
  56. 56. 
    Higgins JK, MacLean HJ, Buckley LB, Kingsolver JG 2014. Geographic differences and microevolutionary changes in thermal sensitivity of butterfly larvae in response to climate. Funct. Ecol. 28:982–89
    [Google Scholar]
  57. 57. 
    Hill MP, Chown SL, Hoffmann AA 2013. A predicted niche shift corresponds with increased thermal resistance in an invasive mite. Halotydeus destructor. Glob. Ecol. Biogeogr. 22:942–51
    [Google Scholar]
  58. 58. 
    Hoffmann AA, Chown SL, Clusella-Trullas S 2013. Upper thermal limits in terrestrial ectotherms: How constrained are they?. Funct. Ecol. 27:934–49
    [Google Scholar]
  59. 59. 
    Huey RB, Hertz PE, Sinervo B 2003. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161:357–66
    [Google Scholar]
  60. 60. 
    Huey RB, Kingsolver JG. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4:131–35
    [Google Scholar]
  61. 61. 
    IPCC. 2013. Technical summary. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley 1–127 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  62. 62. 
    Isbell F, Craven D, Connolly J, Loreau M, Schmid B et al. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–77
    [Google Scholar]
  63. 63. 
    Jensen A, Alemu T, Alemneh T, Pertoldi C, Bahrndorff S et al. 2019. Thermal acclimation and adaptation across populations in a broadly distributed soil arthropod. Funct. Ecol. 33:833–45
    [Google Scholar]
  64. 64. 
    Karl I, Stoks R, De Block M, Janowitz SA, Fischer K 2011. Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Glob. Change Biol. 17:676–87
    [Google Scholar]
  65. 65. 
    Kearney M, Porter WP. 2016. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40:664–74
    [Google Scholar]
  66. 66. 
    Kearney M, Shine R, Porter WP 2009. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. PNAS 106:3835–40
    [Google Scholar]
  67. 67. 
    Kellermann V, Overgaard J, Hoffmann AA, Flojgaard C, Svenning JC, Loeschcke V 2012. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. PNAS 109:16228–33
    [Google Scholar]
  68. 68. 
    Kellermann V, Sgro CM. 2018. Evidence for lower plasticity in CTMAX at warmer developmental temperatures. J. Evol. Biol. 31:1300–12
    [Google Scholar]
  69. 69. 
    Kellermann V, van Heerwaarden B 2019. Terrestrial insects and climate change: adaptive responses in key traits. Physiol. Entomol. 44:99–115
    [Google Scholar]
  70. 70. 
    Kellermann V, van Heerwaarden B, Sgro CM 2017. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc. R. Soc. B 284:20170447
    [Google Scholar]
  71. 71. 
    Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T et al. 2016. Collapse of insect gut symbiosis under simulated climate change. mBio 7:e01578–16
    [Google Scholar]
  72. 72. 
    King AM, MacRae TH. 2015. Insect heat shock proteins during stress and diapause. Annu. Rev. Entomol. 60:59–75
    [Google Scholar]
  73. 73. 
    Kingsolver JG, Buckley LB. 2017. Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philos. Trans. R. Soc. B 372:20160147
    [Google Scholar]
  74. 74. 
    Kingsolver JG, Diamond SE, Buckley LB 2013. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27:1415–23
    [Google Scholar]
  75. 75. 
    Kingsolver JG, MacLean HJ, Goddin SB, Augustine KE 2016. Plasticity of upper thermal limits to acute and chronic temperature variation in Manducasexta larvae. J. Exp. Biol. 219:1290–94
    [Google Scholar]
  76. 76. 
    Kingsolver JG, Woods A, Buckley LB, Potter KA, MacLean HJ, Higgins JK 2011. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51:719–32
    [Google Scholar]
  77. 77. 
    Klockmann M, Günter F, Fischer K 2017. Heat resistance throughout ontogeny: Body size constrains thermal tolerance. Glob. Change Biol. 23:686–96
    [Google Scholar]
  78. 78. 
    Koussoroplis AM, Pincebourde S, Wacker A 2017. Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments. Ecol. Monogr. 87:178–97
    [Google Scholar]
  79. 79. 
    Kudo G, Ida TY. 2013. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94:2311–20
    [Google Scholar]
  80. 80. 
    Lawton JH. 1983. Plant architecture and the diversity of phytophagous insects. Annu. Rev. Entomol. 28:23–29
    [Google Scholar]
  81. 81. 
    Lehmann P, Javal M, Terblanche JS 2019. Oxygen limitation is not the cause of death during lethal heat exposure in an insect. Biol. Lett. 15:20180701
    [Google Scholar]
  82. 82. 
    Liang LN, Zhang W, Ma G, Hoffmann A, Ma CS 2014. A single hot event stimulates adult performance but reduces egg survival in the oriental fruit moth. Grapholitha molesta. PLOS ONE 9:e116339
    [Google Scholar]
  83. 83. 
    Lindo Z. 2015. Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biol. Biochem. 91:271–78
    [Google Scholar]
  84. 84. 
    Lister BC, Garcia A. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. PNAS 115:E10397–406
    [Google Scholar]
  85. 85. 
    Loeschcke V, Hoffmann AA. 2007. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. Am. Nat. 169:175–83
    [Google Scholar]
  86. 86. 
    Loeschcke V, Krebs RA. 1996. Selection for heat‐shock resistance in larval and in adult Drosophilabuzzatii: comparing direct and indirect responses. Evolution 50:2354–59
    [Google Scholar]
  87. 87. 
    Lopez-Martinez G, Denlinger DL. 2008. Regulation of heat shock proteins in the apple maggot Rhagoletispomonella during hot summer days and overwintering diapause. Physiol. Entomol. 33:346–52
    [Google Scholar]
  88. 88. 
    Ma CS, Hau B, Poehling HM 2004. The effect of heat stress on the survival of the rose grain aphid, Metopolophiumdirhodum (Hemiptera: Aphididae). Eur. J. Entomol. 101:327–31
    [Google Scholar]
  89. 89. 
    Ma CS, Wang L, Zhang W, Rudolf V 2018. Resolving biological impacts of multiple heat waves: interaction of hot and recovery days. Oikos 127:622–33
    [Google Scholar]
  90. 90. 
    Ma G, Bai CM, Wang XJ, Majeed MZ, Ma CS 2018. Behavioural thermoregulation alters microhabitat utilization and demographic rates in ectothermic invertebrates. Anim. Behav. 142:49–57
    [Google Scholar]
  91. 91. 
    Ma G, Hoffmann AA, Ma CS 2015. Daily temperature extremes play an important role in predicting thermal effects. J. Exp. Biol. 218:2289–96
    [Google Scholar]
  92. 92. 
    Ma G, Ma CS. 2012. Climate warming may increase aphids’ dropping probabilities in response to high temperatures. J. Insect Physiol. 58:1456–62
    [Google Scholar]
  93. 93. 
    Ma G, Ma CS. 2012. Effect of acclimation on heat-escape temperatures of two aphid species: implications for estimating behavioral response of insect to climate warming. J. Insect Physiol. 58:303–9
    [Google Scholar]
  94. 94. 
    Ma G, Rudolf V, Ma CS 2015. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Change Biol. 21:1794–808
    [Google Scholar]
  95. 95. 
    Macagno ALM, Zattara EE, Ezeakudo O, Moczek AP, Ledonrettig C 2018. Adaptive maternal behavioral plasticity and developmental programming mitigate the transgenerational effects of temperature in dung beetles. Oikos 127:1319–29
    [Google Scholar]
  96. 96. 
    Martinet B, Lecocq T, Smet J, Rasmont P 2015. A protocol to assess insect resistance to heat waves, applied to bumblebees (Bombuslatreille, 1802). PLOS ONE 10:e0118591
    [Google Scholar]
  97. 97. 
    May ML. 1979. Insect thermoregulation. Annu. Rev. Entomol. 24:313–49
    [Google Scholar]
  98. 98. 
    McKechnie AE, Wolf BO. 2019. The physiology of heat tolerance in small endotherms. Physiology 34:302–13
    [Google Scholar]
  99. 99. 
    Meehl GA, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–97
    [Google Scholar]
  100. 100. 
    Merrill RM, Gutierrez D, Lewis OT, Gutierrez J, Diez SB, Wilson RJ 2008. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J. Anim. Ecol. 77:145–55
    [Google Scholar]
  101. 101. 
    Mitchell KA, Hoffmann AA. 2010. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila.Funct. Ecol 24:694–700
    [Google Scholar]
  102. 102. 
    Mitton JB, Ferrenberg SM. 2012. Mountain pine beetle develops an unprecedented summer generation in response to climate warming. Am. Nat. 179:163–71
    [Google Scholar]
  103. 103. 
    Montllor CB, Maxmen A, Purcell AH 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphonpisum under heat stress. Ecol. Entomol. 27:189–95
    [Google Scholar]
  104. 104. 
    Montserrat M, Guzman C, Sahun RM, Belda JE, Hormaza JI 2013. Pollen supply promotes, but high temperatures demote, predatory mite abundance in avocado orchards. Agric. Ecosyst. Environ. 164:155–61
    [Google Scholar]
  105. 105. 
    Nguyen TT, Michaud D, Cloutier C 2009. A proteomic analysis of the aphid Macrosiphumeuphorbiae under heat and radiation stress. Insect Biochem. Mol. Biol. 39:20–30
    [Google Scholar]
  106. 106. 
    O'Sullivan J, MacMillan HA, Overgaard J 2017. Heat stress is associated with disruption of ion balance in the migratory locust. Locusta migratoria. J. Therm. Biol. 68:177–85
    [Google Scholar]
  107. 107. 
    Overgaard J, Kearney MR, Hoffmann AA 2014. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Change Biol. 20:1738–50
    [Google Scholar]
  108. 108. 
    Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S et al. 2013. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19:2373–80
    [Google Scholar]
  109. 109. 
    Piessens K, Adriaens D, Jacquemyn H, Honnay O 2009. Synergistic effects of an extreme weather event and habitat fragmentation on a specialised insect herbivore. Oecologia 159:117–26
    [Google Scholar]
  110. 110. 
    Pike DA, Webb JK, Shine R 2012. Hot mothers, cool eggs: Nest-site selection by egg-guarding spiders accommodates conflicting thermal optima. Funct. Ecol. 26:469–75
    [Google Scholar]
  111. 111. 
    Pincebourde S, Casas J. 2015. Warming tolerance across insect ontogeny: influence of joint shifts in microclimates and thermal limits. Ecology 96:986–97
    [Google Scholar]
  112. 112. 
    Pincebourde S, Casas J. 2016. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key. J. Insect Physiol. 84:137–53
    [Google Scholar]
  113. 113. 
    Pincebourde S, Casas J. 2019. Narrow safety margin in the phyllosphere during thermal extremes. PNAS 116:5588–96
    [Google Scholar]
  114. 114. 
    Pincebourde S, Murdock CC, Vickers M, Sears MW 2016. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr. Comp. Biol. 56:45–61
    [Google Scholar]
  115. 115. 
    Pincebourde S, Sinoquet H, Combes D, Casas J 2007. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. J. Anim. Ecol. 76:424–38
    [Google Scholar]
  116. 116. 
    Pincebourde S, Suppo C. 2016. The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity. Integr. Comp. Biol. 56:85–97
    [Google Scholar]
  117. 117. 
    Porras MF, Navas CA, Marden JH, Mescher MC, De Moraes CM et al. 2020. Enhanced heat tolerance of viral-infected aphids leads to niche expansion and reduced interspecific competition. Nat. Commun. 11:1184
    [Google Scholar]
  118. 118. 
    Portner H. 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–46
    [Google Scholar]
  119. 119. 
    Posledovich D, Toftegaard T, Wiklund C, Ehrlen J, Gotthard K 2018. Phenological synchrony between a butterfly and its host plants: experimental test of effects of spring temperature. J. Anim. Ecol. 87:150–61
    [Google Scholar]
  120. 120. 
    Potter KA, Davidowitz G, Woods HA 2011. Cross-stage consequences of egg temperature in the insect Manducasexta. Funct. Ecol 25:548–56
    [Google Scholar]
  121. 121. 
    Potter KA, Woods A, Pincebourde S 2013. Microclimatic challenges in global change biology. Glob. Change Biol. 19:2932–39
    [Google Scholar]
  122. 122. 
    Prange HD. 1990. Temperature regulation by respiratory evaporation in grasshoppers. J. Exp. Biol. 154:463–74
    [Google Scholar]
  123. 123. 
    Radchuk V, Turlure C, Schtickzelle N 2013. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82:275–85
    [Google Scholar]
  124. 124. 
    Robinet C, Roques A. 2010. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5:132–42
    [Google Scholar]
  125. 125. 
    Ruel JJ, Ayres MP. 1999. Jensen's inequality predicts effects of environmental variation. Trends Ecol. Evol. 14:361–66
    [Google Scholar]
  126. 126. 
    Saudreau M, Ezanic A, Adam B, Caillon R, Walser P, Pincebourde S 2017. Temperature heterogeneity over leaf surfaces: the contribution of the lamina microtopography. Plant Cell Environ 40:2174–88
    [Google Scholar]
  127. 127. 
    Sentis A, Hemptinne JL, Brodeur J 2013. Effects of simulated heat waves on an experimental plant-herbivore-predator food chain. Glob. Change Biol. 19:833–42
    [Google Scholar]
  128. 128. 
    Sentis A, Hemptinne JL, Brodeur J 2017. Non-additive effects of simulated heat waves and predators on prey phenotype and transgenerational phenotypic plasticity. Glob. Change Biol. 23:4598–608
    [Google Scholar]
  129. 129. 
    Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS et al. 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19:1372–85
    [Google Scholar]
  130. 130. 
    Sinclair BJ, Vernon P, Klok CJ, Chown SL 2003. Insects at low temperatures: an ecological perspective. Trends Ecol. Evol. 18:257–62
    [Google Scholar]
  131. 131. 
    Slimen B, Najar T, Ghram A, Abdrrabba M 2016. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 100:401–12
    [Google Scholar]
  132. 132. 
    Smith MD. 2011. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99:656–63
    [Google Scholar]
  133. 133. 
    Stevenson RD. 1985. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126:362–86
    [Google Scholar]
  134. 134. 
    Stillman JH. 2019. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34:86–100
    [Google Scholar]
  135. 135. 
    Stuhldreher G, Hermann G, Fartmann T 2014. Cold-adapted species in a warming world—an explorative study on the impact of high winter temperatures on a continental butterfly. Entomol. Exp. Appl. 151:270–79
    [Google Scholar]
  136. 136. 
    Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE et al. 2011. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120:1–8
    [Google Scholar]
  137. 137. 
    Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK et al. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111:5610–15
    [Google Scholar]
  138. 138. 
    Tougeron K, Damien M, Le Lann C, Brodeur J, van Baaren J 2018. Rapid responses of winter aphid-parasitoid communities to climate warming. Front. Ecol. Evol. 6:173
    [Google Scholar]
  139. 139. 
    Tseng M, Kaur KM, Pari SS, Sarai K, Chan D et al. 2018. Decreases in beetle body size linked to climate change and warming temperatures. J. Anim. Ecol. 87:647–59
    [Google Scholar]
  140. 140. 
    Vallières R, Rochefort S, Berthiaume R, Hébert C, Bauce É 2015. Effect of simulated fall heat waves on cold hardiness and winter survival of hemlock looper, Lambdinafiscellaria (Lepidoptera: Geometridae). J. Insect Physiol. 73:60–69
    [Google Scholar]
  141. 141. 
    van Heerwaarden B, Kellermann V, Sgro CM 2016. Limited scope for plasticity to increase upper thermal limits. Funct. Ecol. 30:1947–56
    [Google Scholar]
  142. 142. 
    Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG et al. 2014. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281:20132016
    [Google Scholar]
  143. 143. 
    Verberk WC, Bilton DT. 2013. Respiratory control in aquatic insects dictates their vulnerability to global warming. Biol. Lett. 9:20130473
    [Google Scholar]
  144. 144. 
    Walsh BS, Parratt SR, Hoffmann AA, Atkinson D, Snook RR et al. 2019. The impact of climate change on fertility. Trends Ecol. Evol. 34:249–59
    [Google Scholar]
  145. 145. 
    Wehner R, Wehner S. 2011. Parallel evolution of thermophilia: daily and seasonal foraging patterns of heat-adapted desert ants: Cataglyphis and Ocymyrmex species. Physiol. Entomol. 36:271–81
    [Google Scholar]
  146. 146. 
    Woods HA. 2013. Ontogenetic changes in the body temperature of an insect herbivore. Funct. Ecol. 27:1322–31
    [Google Scholar]
  147. 147. 
    Woods HA, Dillon ME, Pincebourde S 2015. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54:86–97
    [Google Scholar]
  148. 148. 
    Xing K, Hoffmann A, Ma CS 2014. Does thermal variability experienced at the egg stage influence life history traits across life cycle stages in a small invertebrate?. PLOS ONE 9:e99500
    [Google Scholar]
  149. 149. 
    Zani PA, Cohnstaedt LW, Corbin D, Bradshaw WE, Holzapfel CM 2005. Reproductive value in a complex life cycle: heat tolerance of the pitcher-plant mosquito. Wyeomyia smithii. J. Evol. Biol. 18:101–5
    [Google Scholar]
  150. 150. 
    Zhang B, Leonard SP, Li Y, Moran NA 2019. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. PNAS 116:24712–18
    [Google Scholar]
  151. 151. 
    Zhang W, Chang XQ, Hoffmann AA, Zhang S, Ma CS 2015. Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output. Sci. Rep. 5:10436
    [Google Scholar]
  152. 152. 
    Zhang W, Rudolf V, Ma CS 2015. Stage-specific heat effects: Timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia 179:947–57
    [Google Scholar]
  153. 153. 
    Zhang W, Zhao F, Hoffmann AA, Ma CS 2013. A single hot event that does not affect survival but decreases reproduction in the diamondback moth. Plutella xylostella. PLOS ONE 8:e75923
    [Google Scholar]
  154. 154. 
    Zhao F, Hoffmann AA, Xing K, Ma CS 2017. Life stages of an aphid living under similar thermal conditions differ in thermal performance. J. Insect Physiol. 99:1–7
    [Google Scholar]
  155. 155. 
    Zhao F, Zhang W, Hoffmann AA, Ma CS 2014. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. J. Anim. Ecol. 83:769–78
    [Google Scholar]
  156. 156. 
    Zhu L, Wang L, Ma CS 2019. Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects. J. Insect Physiol. 112:48–56
    [Google Scholar]
/content/journals/10.1146/annurev-ento-041520-074454
Loading
/content/journals/10.1146/annurev-ento-041520-074454
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error