1932

Abstract

Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-070720-074650
2021-01-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/en/66/1/annurev-ento-070720-074650.html?itemId=/content/journals/10.1146/annurev-ento-070720-074650&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aminetzach YT. 2005. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309:5735764–67
    [Google Scholar]
  2. 2. 
    Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R et al. 2019. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 20:1187
    [Google Scholar]
  3. 3. 
    Barrón MG, Fiston-Lavier A-S, Petrov DA, González J 2014. Population genomics of transposable elements in Drosophila. Annu. Rev. Genet 48:561–81
    [Google Scholar]
  4. 4. 
    Bartolomé C, Bello X, Maside X 2009. Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 10:R22
    [Google Scholar]
  5. 5. 
    Bartolomé C, Maside X, Charlesworth B 2002. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol. Biol. Evol 19:6926–37
    [Google Scholar]
  6. 6. 
    Bast J, Schaefer I, Schwander T, Maraun M, Scheu S, Kraaijeveld K 2016. No accumulation of transposable elements in asexual arthropods. Mol. Biol. Evol. 33:3697–706
    [Google Scholar]
  7. 7. 
    Bergman CM, Quesneville H, Anxolabéhère D, Ashburner M 2006. Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol 7:11R112
    [Google Scholar]
  8. 8. 
    Biémont C. 2010. A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186:41085–93
    [Google Scholar]
  9. 9. 
    Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B et al. 1992. HeT-A, a transposable element specifically involved in “healing” broken chromosome ends in Drosophila melanogaster. Mol. Cell. Biol 12:93910–18
    [Google Scholar]
  10. 10. 
    Blumenstiel JP, Chen X, He M, Bergman CM 2014. An age-of-allele test of neutrality for transposable element insertions. Genetics 196:2523–38
    [Google Scholar]
  11. 11. 
    Bonasio R, Zhang G, Ye C, Mutti NS, Fang X et al. 2010. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:59951068–71
    [Google Scholar]
  12. 12. 
    Bourgeois Y, Boissinot S. 2019. On the population dynamics of junk: a review on the population genomics of transposable elements. Genes 10:6419
    [Google Scholar]
  13. 13. 
    Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A et al. 2018. Ten things you should know about transposable elements. Genome Biol 19:199
    [Google Scholar]
  14. 14. 
    Bowen NJ, McDonald JF. 2001. Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. Genome Res 11:91527–40
    [Google Scholar]
  15. 15. 
    Brennecke J, Aravin AA, Stark A, Dus M, Kellis M et al. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:61089–103
    [Google Scholar]
  16. 16. 
    Brown EJ, Nguyen AH, Bachtrog D 2019. The Y chromosome contributes to sex-specific aging in Drosophila. bioRxiv 156042. https://doi.org/10.1101/156042
    [Crossref]
  17. 17. 
    Bucheton A, Paro R, Sang HM, Pelisson A, Finnegan DJ 1984. The molecular basis of I-R hybrid dysgenesis in Drosophila melanogaster: identification, cloning, and properties of the I factor. Cell 38:1153–63
    [Google Scholar]
  18. 18. 
    Chalopin D, Volff J-N, Galiana D, Anderson JL, Schartl M 2015. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 23:3545–60
    [Google Scholar]
  19. 19. 
    Chang C-H, Chavan A, Palladino J, Wei X, Martins NMC et al. 2019. Islands of retroelements are major components of Drosophila centromeres. PLOS Biol 17:5e3000241
    [Google Scholar]
  20. 20. 
    Chen B, Zhang B, Xu L, Li Q, Jiang F et al. 2017. Transposable element-mediated balancing selection at Hsp90 underlies embryo developmental variation. Mol. Biol. Evol. 34:1127–39
    [Google Scholar]
  21. 21. 
    Chung H, Bogwitz MR, McCart C, Andrianopoulos A, ffrench-Constant RH et al. 2007. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 175:31071–77
    [Google Scholar]
  22. 22. 
    Cordaux R, Batzer MA. 2009. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10:691–703
    [Google Scholar]
  23. 23. 
    Cosby RL, Chang N-C, Feschotte C 2019. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev 33:17–181098–116
    [Google Scholar]
  24. 24. 
    Craig NL, Chandler M, Gellert M, Lambowitz AM, Rice PA, Sandmeyer SB 2015. Mobile DNA III Sterlin, VA: Am. Soc. Microbiol.
  25. 25. 
    Cridland JM, Macdonald SJ, Long AD, Thornton KR 2013. Abundance and distribution of transposable elements in two Drosophila QTL mapping resources. Mol. Biol. Evol. 30:102311–27
    [Google Scholar]
  26. 26. 
    Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E et al. 2002. A single p450 allele associated with insecticide resistance in Drosophila. Science 297:55902253–56
    [Google Scholar]
  27. 27. 
    Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A 1990. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124:339–55
    [Google Scholar]
  28. 28. 
    De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA et al. 2013. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:2247–56
    [Google Scholar]
  29. 29. 
    De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA 2013. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging 5:12867–83
    [Google Scholar]
  30. 30. 
    Dennis S, Sheth U, Feldman JL, English KA, Priess JR 2012. C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLOS Pathogens 8:3e1002591
    [Google Scholar]
  31. 31. 
    Driver CJ, McKechnie SW. 1992. Transposable elements as a factor in the aging of Drosophila melanogaster. Ann. N. Y. Acad. Sci 673:83–91
    [Google Scholar]
  32. 32. 
    Drosophila 12 Genomes Consort. Clark AG, Eisen MB, Smith DR, Bergman CM et al. 2007. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:7167203–18
    [Google Scholar]
  33. 33. 
    Eickbush T. 2002. Fruit flies and humans respond differently to retrotransposons. Curr. Opin. Genet. Dev. 12:6669–74
    [Google Scholar]
  34. 34. 
    Ellison CE, Bachtrog D. 2013. Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 342:6160846–50
    [Google Scholar]
  35. 35. 
    Ellison CE, Bachtrog D. 2015. Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements. eLife 4:e05899
    [Google Scholar]
  36. 36. 
    Elsner D, Meusemann K, Korb J 2018. Longevity and transposon defense, the case of termite reproductives. PNAS 115:215504–9
    [Google Scholar]
  37. 37. 
    Fabrick JA, Mathew LG, Tabashnik BE, Li X 2011. Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm, Pectinophora gossypiella: CR1 retrotransposon and Bt resistance. Insect Mol. Biol. 20:5651–65
    [Google Scholar]
  38. 38. 
    Fagegaltier D, Bougé A-L, Berry B, Poisot É, Sismeiro O et al. 2009. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. PNAS 106:5021258–63
    [Google Scholar]
  39. 39. 
    Feschotte C, Pritham EJ. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41:331–68
    [Google Scholar]
  40. 40. 
    Fonseca PM, Moura RD, Wallau GL, Loreto ELS 2019. The mobilome of Drosophila incompta, a flower-breeding species: comparison of transposable element landscapes among generalist and specialist flies. Chromosome Res 27:3203–19
    [Google Scholar]
  41. 41. 
    Fraser MJ, Smith GE, Summers MD 1983. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J. Virol. 47:287–300
    [Google Scholar]
  42. 42. 
    Gadau J, Helmkampf M, Nygaard S, Roux J, Simola DF et al. 2012. The genomic impact of 100 million years of social evolution in seven ant species. Trends Genet 28:114–21
    [Google Scholar]
  43. 43. 
    Gahan LJ, Gould F, Heckel DG 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:5531857–60
    [Google Scholar]
  44. 44. 
    Gavotte L, Mercer DR, Stoeckle JJ, Dobson SL 2010. Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level. J. Invertebr. Pathol. 105:3341–46
    [Google Scholar]
  45. 45. 
    Gilbert C, Feschotte C. 2018. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr. Opin. Genet. Dev. 49:15–24
    [Google Scholar]
  46. 46. 
    Gilbert C, Peccoud J, Chateigner A, Moumen B, Cordaux R, Herniou EA 2016. Continuous influx of genetic material from host to virus populations. PLOS Genet 12:e1005838
    [Google Scholar]
  47. 47. 
    Gilbert C, Schaack S, Pace JK, Brindley PJ, Feschotte C 2010. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 464:1347–50
    [Google Scholar]
  48. 48. 
    Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V et al. 2016. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat. Commun. 7:12410
    [Google Scholar]
  49. 49. 
    Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L et al. 2013. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat. Immunol 14:396–403
    [Google Scholar]
  50. 50. 
    González J, Karasov TL, Messer PW, Petrov DA 2010. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLOS Genet 6:4e1000905
    [Google Scholar]
  51. 51. 
    González J, Lenkov K, Lipatov M, Macpherson JM, Petrov DA 2008. High rate of recent transposable element–induced adaptation in Drosophila melanogaster. PLOS Biol 6:10e251
    [Google Scholar]
  52. 52. 
    González J, Macpherson JM, Petrov DA 2009. A recent adaptive transposable element insertion near highly conserved developmental loci in Drosophila melanogaster. Mol. Biol. Evol 26:91949–61
    [Google Scholar]
  53. 53. 
    Goubert C, Henri H, Minard G, Valiente Moro C, Mavingui P et al. 2017. High-throughput sequencing of transposable element insertions suggests adaptive evolution of the invasive Asian tiger mosquito towards temperate environments. Mol. Ecol. 26:153968–81
    [Google Scholar]
  54. 54. 
    Guio L, Barrón MG, González J 2014. The transposable element Bari-Jheh mediates oxidative stress response in Drosophila. Mol. Ecol 23:82020–30
    [Google Scholar]
  55. 55. 
    Han M-J, Zhou Q-Z, Zhang H-H, Tong X, Lu C et al. 2016. iMITEdb: the genome-wide landscape of miniature inverted-repeat transposable elements in insects. Database 2016:baw148
    [Google Scholar]
  56. 56. 
    Handler AM, McCombs SD, Fraser MJ, Saul SH 1998. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. PNAS 95:137520–25
    [Google Scholar]
  57. 57. 
    Hanlon S, Hawley R. 2018. B chromosomes in the Drosophila genus. Genes 9:10470
    [Google Scholar]
  58. 58. 
    Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T et al. 2018. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat. Ecol. Evol. 2:3557–66
    [Google Scholar]
  59. 59. 
    Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O 2003. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:174523–33
    [Google Scholar]
  60. 60. 
    Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:5591129–49
    [Google Scholar]
  61. 61. 
    Honeybee Genome Seq. Consort. 2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:7114931–49
    [Google Scholar]
  62. 62. 
    Hua-Van A, Le Rouzic A, Boutin TS, Filee J, Capy P 2011. The struggle for life of the genome's selfish architects. Biol. Direct. 6:19
    [Google Scholar]
  63. 63. 
    Int. Aphid Genomics Consort. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLOS Biol 8:2e1000313
    [Google Scholar]
  64. 64. 
    Joshi D, McFadden MJ, Bevins D, Zhang F, Xi Z 2014. Wolbachia strain wAlbB confers both fitness costs and benefit on Anopheles stephensi. Parasites Vectors 7:1336
    [Google Scholar]
  65. 65. 
    Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R et al. 2002. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3:12research0084
    [Google Scholar]
  66. 66. 
    Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S et al. 2016. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochem. Mol. Biol. 76:118–47
    [Google Scholar]
  67. 67. 
    Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D et al. 2015. Social evolution: genomic signatures of evolutionary transitions from solitary to group living. Science 348:62391139–43
    [Google Scholar]
  68. 68. 
    Kapitonov VV, Jurka J. 2003. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. PNAS 100:116569–74
    [Google Scholar]
  69. 69. 
    Kelleher ES. 2016. Reexamining the P-element invasion of Drosophila melanogaster through the lens of piRNA silencing. Genetics 203:41513–31
    [Google Scholar]
  70. 70. 
    Kelley JL, Peyton JT, Fiston-Lavier A-S, Teets NM, Yee M-C et al. 2014. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat. Commun. 5:4611
    [Google Scholar]
  71. 71. 
    Kidwell MG, Kidwell JF. 1975. Cytoplasm-chromosome interactions in Drosophila melanogaster. Nature 253:5494755–56
    [Google Scholar]
  72. 72. 
    Kofler R. 2019. Dynamics of transposable element invasions with piRNA clusters. Mol. Biol. Evol. 36:71457–72
    [Google Scholar]
  73. 73. 
    Kofler R, Betancourt AJ, Schlötterer C 2012. Sequencing of pooled DNA samples (pool-seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLOS Genet 8:1e1002487
    [Google Scholar]
  74. 74. 
    Kofler R, Nolte V, Schlötterer C 2015. Tempo and mode of transposable element activity in Drosophila. PLOS Genet 11:7e1005406
    [Google Scholar]
  75. 75. 
    Korb J, Poulsen M, Hu H, Li C, Boomsma JJ et al. 2015. A genomic comparison of two termites with different social complexity. Front. Genet. 6:9
    [Google Scholar]
  76. 76. 
    Kraaijeveld K, Zwanenburg B, Hubert B, Vieira C, De Pater S et al. 2012. Transposon proliferation in an asexual parasitoid. Mol. Ecol. 21:163898–906
    [Google Scholar]
  77. 77. 
    Kuraku S, Qiu H, Meyer A 2012. Horizontal transfers of Tc1 elements between teleost fishes and their vertebrate parasites, lampreys. Genome Biol. Evol. 4:929–36
    [Google Scholar]
  78. 78. 
    Le Rouzic A, Dupas S, Capy P 2007. Genome ecosystem and transposable elements species. Gene 390:1–2214–20
    [Google Scholar]
  79. 79. 
    Lerat E, Goubert C, Guirao‐Rico S, Merenciano M, Dufour A et al. 2019. Population‐specific dynamics and selection patterns of transposable element insertions in European natural populations. Mol. Ecol. 28:61506–22
    [Google Scholar]
  80. 80. 
    Lerman DN, Feder ME. 2005. Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. Mol. Biol. Evol 22:3776–83
    [Google Scholar]
  81. 81. 
    Lewis SH, Quarles KA, Yang Y, Tanguy M, Frézal L et al. 2018. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat. Ecol. Evol. 2:1174–81
    [Google Scholar]
  82. 82. 
    Linheiro RS, Bergman CM. 2012. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLOS ONE 7:2e30008
    [Google Scholar]
  83. 83. 
    Lower SS, Johnston JS, Stanger-Hall KF, Hjelmen CE, Hanrahan SJ et al. 2017. Genome size in North American fireflies: substantial variation likely driven by neutral processes. Genome Biol. Evol. 9:61499–512
    [Google Scholar]
  84. 84. 
    Lucas ER, Keller L. 2018. New explanation for the longevity of social insect reproductives: transposable element activity. PNAS 115:215317–18
    [Google Scholar]
  85. 85. 
    Magwire MM, Bayer F, Webster CL, Cao C, Jiggins FM 2011. Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a duplication. PLOS Genet 7:10e1002337
    [Google Scholar]
  86. 86. 
    Majumdar S, Rio DC. 2015. P transposable elements in Drosophila and other eukaryotic organisms. Microbiol. Spectr. 3:2MDNA3-0004–2014
    [Google Scholar]
  87. 87. 
    Marais GAB, Gaillard J-M, Vieira C, Plotton I, Sanlaville D et al. 2018. Sex gap in aging and longevity: Can sex chromosomes play a role. Biol. Sex Differ. 9:33
    [Google Scholar]
  88. 88. 
    Mateo L, Ullastres A, González J 2014. A transposable element insertion confers xenobiotic resistance in Drosophila. PLOS Genet 10:8e1004560
    [Google Scholar]
  89. 89. 
    Maumus F, Fiston-Lavier AS, Quesneville H 2015. Impact of transposable elements on insect genomes and biology. Curr. Opin. Insect Sci. 7:30–36
    [Google Scholar]
  90. 90. 
    Maxwell PH, Burhans WC, Curcio MJ 2011. Retrotransposition is associated with genome instability during chronological aging. PNAS 108:5120376–81
    [Google Scholar]
  91. 91. 
    McClintock B. 1950. The origin and behavior of mutable loci in maize. PNAS 36:6344–55
    [Google Scholar]
  92. 92. 
    Merenciano M, Ullastres A, de Cara MAR, Barrón MG, González J 2016. Multiple independent retroelement insertions in the promoter of a stress response gene have variable molecular and functional effects in Drosophila. PLOS Genet 12:8e1006249
    [Google Scholar]
  93. 93. 
    Miesen P, Joosten J, van Rij RP 2016. PIWIs go viral: arbovirus-derived piRNAs in vector mosquitoes. PLOS Pathogens 12:12e1006017
    [Google Scholar]
  94. 94. 
    Miller WJ, McDonald JF, Nouaud D, Anxolabéhère D 1999. Molecular domestication: more than a sporadic episode in evolution. Genetica 107:1–3197–207
    [Google Scholar]
  95. 95. 
    Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA et al. 2015. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347:62171258522
    [Google Scholar]
  96. 96. 
    Nene V, Wortman JR, Lawson D, Haas B, Kodira C et al. 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:58321718–23
    [Google Scholar]
  97. 97. 
    Oliver KR, Greene WK. 2012. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol. Evol. 2:112912–33
    [Google Scholar]
  98. 98. 
    Ortiz MF, Wallau GL, Graichen DA, Loreto EL 2015. An evaluation of the ecological relationship between Drosophila species and their parasitoid wasps as an opportunity for horizontal transposon transfer. Mol. Genet. Genom. 290:67–78
    [Google Scholar]
  99. 99. 
    Osanai-Futahashi M, Suetsugu Y, Mita K, Fujiwara H 2008. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 38:121046–57
    [Google Scholar]
  100. 100. 
    Pardue M-L, DeBaryshe PG. 2011. Retrotransposons that maintain chromosome ends. PNAS 108:5120317–24
    [Google Scholar]
  101. 101. 
    Paricio N, Pèrez-Alonso M, Martinez-Sebastián MJ, de Frutos R 1991. P sequences of Drosophila subobscura lack exon 3 and may encode a 66 kd repressor-like protein. Nucleic Acids Res 19:246713–18
    [Google Scholar]
  102. 102. 
    Peccoud J, Loiseau V, Cordaux R, Gilbert C 2017. Massive horizontal transfer of transposable elements in insects. PNAS 114:184721–26
    [Google Scholar]
  103. 103. 
    Peng JC, Karpen GH. 2007. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9:125–35
    [Google Scholar]
  104. 104. 
    Petersen M, Armisén D, Gibbs RA, Hering L, Khila A et al. 2019. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol. Biol. 19:111
    [Google Scholar]
  105. 105. 
    Petrov DA, Fiston-Lavier A-S, Lipatov M, Lenkov K, Gonzalez J 2011. Population genomics of transposable elements in Drosophila melanogaster. Mol. Biol. Evol 28:51633–44
    [Google Scholar]
  106. 106. 
    Poirier EZ, Goic B, Tomé-Poderti L, Frangeul L, Boussier J et al. 2018. Dicer-2-dependent generation of viral DNA from defective genomes of RNA viruses modulates antiviral immunity in insects. Cell Host Microbe 23:3353–65.e8
    [Google Scholar]
  107. 107. 
    Quesneville H, Nouaud D, Anxolabehere D 2005. Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. Mol. Biol. Evol. 22:3741–46
    [Google Scholar]
  108. 108. 
    Rahman R, Chirn G, Kanodia A, Sytnikova YA, Brembs B et al. 2015. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes. Nucleic Acids Res 43:2210655–72
    [Google Scholar]
  109. 109. 
    Ray DA, Grimshaw JR, Halsey MK, Korstian JM, Osmanski AB et al. 2019. Simultaneous TE analysis of 19 heliconiine butterflies yields novel insights into rapid TE-based genome diversification and multiple SINE births and deaths. Genome Biol Evol 11:82162–77
    [Google Scholar]
  110. 110. 
    Rech GE, Bogaerts-Márquez M, Barrón MG, Merenciano M, Villanueva-Cañas JL et al. 2019. Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLOS Genet 15:2e1007900
    [Google Scholar]
  111. 111. 
    Reiss D, Mialdea G, Miele V, de Vienne DM, Peccoud J et al. 2019. Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot. PLOS Genet 15:2e1007965
    [Google Scholar]
  112. 112. 
    Remnant EJ, Good RT, Schmidt JM, Lumb C, Robin C et al. 2013. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster. PNAS 110:3614705–10
    [Google Scholar]
  113. 113. 
    Rius N, Guillen Y, Delprat A, Kapusta A, Feschotte C, Ruiz A 2016. Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes. BMC Genom 17:344
    [Google Scholar]
  114. 114. 
    Robillard É, Le Rouzic A, Zhang Z, Capy P, Hua-Van A 2016. Experimental evolution reveals hyperparasitic interactions among transposable elements. PNAS 113:5114763–68
    [Google Scholar]
  115. 115. 
    Rostant WG, Wedell N, Hosken DJ 2012. Transposable elements and insecticide resistance. Adv. Genet. 78:169–201
    [Google Scholar]
  116. 116. 
    Sadd BM, Barribeau SM, Bloch G, de Graaf DC, Dearden P et al. 2015. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol 16:76
    [Google Scholar]
  117. 117. 
    Saint-Leandre B, Nguyen SC, Levine MT 2019. Diversification and collapse of a telomere elongation mechanism. Genome Res 29:6920–31
    [Google Scholar]
  118. 118. 
    Schaack S, Pritham EJ, Wolf A, Lynch M 2010. DNA transposon dynamics in populations of Daphnia pulex with and without sex. Proc. Biol. Sci. 277:16922381–87
    [Google Scholar]
  119. 119. 
    Schmidt JM, Good RT, Appleton B, Sherrard J, Raymant GC et al. 2010. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLOS Genet 6:6e1000998
    [Google Scholar]
  120. 120. 
    Schrader L, Kim JW, Ence D, Zimin A, Klein A et al. 2014. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 5:5495
    [Google Scholar]
  121. 121. 
    Sessegolo C, Burlet N, Haudry A 2016. Strong phylogenetic inertia on genome size and transposable element content among 26 species of flies. Biol. Lett. 12:820160407
    [Google Scholar]
  122. 122. 
    Siguier P, Gourbeyre E, Chandler M 2014. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38:5865–91
    [Google Scholar]
  123. 123. 
    Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S et al. 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:4465–76
    [Google Scholar]
  124. 124. 
    Spradling A, Rubin G. 1982. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:4570341–47
    [Google Scholar]
  125. 125. 
    Stapley J, Santure AW, Dennis SR 2015. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 24:92241–52
    [Google Scholar]
  126. 126. 
    Suen G, Teiling C, Li L, Holt C, Abouheif E et al. 2011. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLOS Genet 7:2e1002007
    [Google Scholar]
  127. 127. 
    Suh A, Witt CC, Menger J, Sadanandan KR, Podsiadlowski L et al. 2016. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nat. Commun. 7:11396
    [Google Scholar]
  128. 128. 
    Szitenberg A, Cha S, Opperman CH, Bird DM, Blaxter ML, Lunt DH 2016. Genetic drift, not life history or RNAi, determine long-term evolution of transposable elements. Genome Biol. Evol. 8:92964–78
    [Google Scholar]
  129. 129. 
    Talla V, Suh A, Kalsoom F, Dincă V, Vila R et al. 2017. Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol. Evol. 9:102491–505
    [Google Scholar]
  130. 130. 
    Tassetto M, Kunitomi M, Andino R 2017. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169:2314–25.e13
    [Google Scholar]
  131. 131. 
    Tassetto M, Kunitomi M, Whitfield ZJ, Dolan PT, Sánchez-Vargas I et al. 2019. Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. eLife 8:e41244
    [Google Scholar]
  132. 132. 
    Ullastres A, Petit N, González J 2015. Exploring the phenotypic space and the evolutionary history of a natural mutation in Drosophila melanogaster. Mol. Biol. Evol 32:71800–14
    [Google Scholar]
  133. 133. 
    van Rij RP, Saleh M-C, Berry B, Foo C, Houk A et al. 2006. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20:212985–95
    [Google Scholar]
  134. 134. 
    van't Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J et al. 2016. The industrial melanism mutation in British peppered moths is a transposable element. Nature 534:7605102–5
    [Google Scholar]
  135. 135. 
    Venner S, Miele V, Terzian C, Biémont C, Daubin V et al. 2017. Ecological networks to unravel the routes to horizontal transposon transfers. PLOS Biol 15:2e2001536
    [Google Scholar]
  136. 136. 
    Vogt A, Goldman AD, Mochizuki K, Landweber LF 2013. Transposon domestication versus mutualism in ciliate genome rearrangements. PLOS Genet 9:8e1003659
    [Google Scholar]
  137. 137. 
    Walsh AM, Kortschak RD, Gardner MG, Bertozzi T, Adelson DL 2013. Widespread horizontal transfer of retrotransposons. PNAS 110:31012–16
    [Google Scholar]
  138. 138. 
    Wang L, Wang J, Ma Y, Wan P, Liu K et al. 2019. Transposon insertion causes cadherin mis-splicing and confers resistance to Bt cotton in pink bollworm from China. Sci. Rep. 9:7479
    [Google Scholar]
  139. 139. 
    Wang S, Lorenzen MD, Beeman RW, Brown SJ 2008. Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol 9:3R61
    [Google Scholar]
  140. 140. 
    Wang X, Fang X, Yang P, Jiang X, Jiang F et al. 2014. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5:2957
    [Google Scholar]
  141. 141. 
    Wang X, Liu X. 2016. Close ecological relationship among species facilitated horizontal transfer of retrotransposons. BMC Evol. Biol. 16:201
    [Google Scholar]
  142. 142. 
    White JA, Kelly SE, Cockburn SN, Perlman SJ, Hunter MS 2011. Endosymbiont costs and benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity 106:4585–91
    [Google Scholar]
  143. 143. 
    Whitfield ZJ, Dolan PT, Kunitomi M, Tassetto M, Seetin MG et al. 2017. The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome. Curr. Biol. 27:223511–19.e7
    [Google Scholar]
  144. 144. 
    Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P et al. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8:12973–82
    [Google Scholar]
  145. 145. 
    Wood JG, Helfand SL. 2013. Chromatin structure and transposable elements in organismal aging. Front. Genet. 4:274
    [Google Scholar]
  146. 146. 
    Wood JG, Jones BC, Jiang N, Chang C, Hosier S et al. 2016. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. PNAS 113:4011277–82
    [Google Scholar]
  147. 147. 
    Woronik A, Tunström K, Perry MW, Neethiraj R, Stefanescu C et al. 2019. A transposable element insertion is associated with an alternative life history strategy. Nat. Commun. 10:15757
    [Google Scholar]
  148. 148. 
    Wu C, Lu J. 2019. Diversification of transposable elements in arthropods and its impact on genome evolution. Genes 10:5338
    [Google Scholar]
  149. 149. 
    Xiao J-H, Yue Z, Jia L-Y, Yang X-H, Niu L-H et al. 2013. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biol 14:12R141
    [Google Scholar]
  150. 150. 
    Zanni V, Eymery A, Coiffet M, Zytnicki M, Luyten I et al. 2013. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters. PNAS 110:4919842–47
    [Google Scholar]
/content/journals/10.1146/annurev-ento-070720-074650
Loading
/content/journals/10.1146/annurev-ento-070720-074650
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error