1932

Abstract

Apart from model organisms, 13- and 17-year periodical cicadas (Hemiptera: Cicadidae: ) are among the most studied insects in evolution and ecology. They are attractive subjects because they predictably emerge in large numbers; have a complex biogeography shaped by both spatial and temporal isolation; and include three largely sympatric, parallel species groups that are, in a sense, evolutionary replicates. are also relatively easy to capture and manipulate, and their spectacular, synchronized mass emergences facilitate outreach and citizen science opportunities. Since the last major review, studies of have revealed insights into reproductive character displacement and the nature of species boundaries, provided additional examples of allochronic speciation, found evidence for repeated and parallel (but noncontemporaneous) evolution of 13- and 17-year life cycles, quantified the amount and direction of gene flow through time, revealed phylogeographic patterning resulting from paleoclimate change, examined the timing of juvenile development, and created hypotheses for the evolution of life-cycle control and the future effects of climate changeon life cycles. New ecological studies have supported and questioned the role of prime numbers in ecology and evolution, found bidirectional shifts in population size over generations, quantified the contribution of to nutrient flow in forest ecosystems, and examined behavioral and biochemical interactions between and their fungal parasites and bacterial endosymbionts.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Advances in the Evolution and Ecology of 13- and 17-Year Periodical Cicadas
Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-072121-061108
2022-01-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-072121-061108.html?itemId=/content/journals/10.1146/annurev-ento-072121-061108&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alexander RD. 1975. Natural selection and specialized chorusing behavior in acoustical insects. Insects, Science, and Society D Pimentel 35–77 New York: Academic
    [Google Scholar]
  2. 2. 
    Alexander RD, Moore TE 1962. The evolutionary relationships of 17-year and 13-year cicadas, and three new species (Homoptera: Cicadidae, Magicicada) Misc. Publ. 121, Mus. Zool., Univ. Mich Ann Arbor:First to suggest that there are six species of Magicicada and present hypotheses for the evolution of species and broods; provided a table of emergence dates.
    [Google Scholar]
  3. 3. 
    Beasley DAE, Benson EP, Welch SM, Reid LS, Mousseau TA 2012. The use of citizen scientists to record and map 13-year periodical cicadas (Hemiptera: Cicadidae: Magicicada) in South Carolina. Fla. Entomol. 95:489–91
    [Google Scholar]
  4. 4. 
    Bennett GM, Moran NA. 2015. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. PNAS 112:10169–76
    [Google Scholar]
  5. 5. 
    Blackwood JC, Machta J, Meyer AD, Noble AE, Hastings A, Liebhold AM 2018. Competition and stragglers as mediators of developmental synchrony in periodical cicadas. Am. Nat. 192:479–89
    [Google Scholar]
  6. 6. 
    Bourguignon T, Kinjo Y, Villa-Martín P, Coleman NV, Tang Q et al. 2020. Increased mutation rate is linked to genome reduction in prokaryotes. Curr. Biol. 30:3848–55.e4
    [Google Scholar]
  7. 7. 
    Boyce GR, Gluck-Thaler E, Slot JC, Stajich JE, Davis WJ et al. 2019. Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens. Fungal Ecol 41:147–64
    [Google Scholar]
  8. 8. 
    Bryce D, Aspinwall N 1975. Sympatry of two broods of the periodical cicada (Magicicada) in Missouri. Am. Midland Nat. 93:450–54
    [Google Scholar]
  9. 9. 
    Bulmer MG. 1977. Periodical insects. Am. Nat. 111:1099–117
    [Google Scholar]
  10. 10. 
    Butlin RK, Galindo J, Grahame JW. 2008. Sympatric, parapatric or allopatric: the most important way to classify speciation?. Philos. Trans. R. Soc. B 363:2997–3007
    [Google Scholar]
  11. 11. 
    Campbell MA, Łukasik P, Meyer MC, Buckner M, Simon C et al. 2018. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. mBio 9:e02104-18Described how and why transmission of Hodgkinia endosymbionts by Magicicada mothers requires extra effort.
    [Google Scholar]
  12. 12. 
    Campbell MA, Łukasik P, Simon C, McCutcheon JP 2017. Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr. Biol. 27:3568–75.e3
    [Google Scholar]
  13. 13. 
    Campbell MA, Van Leuven JT, Meister RC, Carey KM, Simon C, McCutcheon JP 2015. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. PNAS 112:10192–99
    [Google Scholar]
  14. 14. 
    Clay K, Shelton AL, Winkle C. 2009. Differential susceptibility of tree species to oviposition by periodical cicadas. Ecol. Entomol. 34:277–86
    [Google Scholar]
  15. 15. 
    Clay K, Shelton AL, Winkle C. 2009. Effects of oviposition by periodical cicadas on tree growth. Can. J. For. Res. 39:1688–97
    [Google Scholar]
  16. 16. 
    Cook WM, Holt RD. 2002. Periodical cicada (Magicicada cassini) oviposition damage: visually impressive yet dynamically irrelevant. Am. Midland Nat. 147:214–24
    [Google Scholar]
  17. 17. 
    Cooley JR. 2001. Long-range acoustical signals, phonotaxis, and risk in the sexual pair-forming behaviors of Okanagana canadensis and O. rimosa (Hemiptera: Cicadidae). Ann. Entomol. Soc. Am. 94:755–60
    [Google Scholar]
  18. 18. 
    Cooley JR. 2007. Decoding asymmetries in reproductive character displacement. Proc. Acad. Nat. Sci. Phila 156:89–96
    [Google Scholar]
  19. 19. 
    Cooley JR. 2015. The distribution of periodical cicada (Magicicada) Brood I in 2012, with previously unreported disjunct populations (Hemiptera: Cicadidae). Am. Entomol. 61:52–57
    [Google Scholar]
  20. 20. 
    Cooley JR, Arguedas N, Bonaros E, Bunker GJ, Chiswell SM et al. 2018. The periodical cicada four-year acceleration hypothesis revisited: evidence for life cycle decelerations and an updated map for Brood V (Hemiptera: Magicicada spp.). PeerJ 6:e5282
    [Google Scholar]
  21. 21. 
    Cooley JR, Kritsky G, Edwards MD, Zyla JD, Marshall DC et al. 2011. Periodical cicadas (Magicicada spp.): the distribution of Broods XIV in 2008 and “XV” in 2009. Am. Entomol. 57:144–51
    [Google Scholar]
  22. 22. 
    Cooley JR, Kritsky G, Zyla JD, Edwards MJ, Simon C et al. 2009. The distribution of periodical cicada Brood X. Am. Entomol. 55:106–12
    [Google Scholar]
  23. 23. 
    Cooley JR, Marshall DC 2001. Sexual signaling in periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae). Behaviour 138:827–55Described wing-flick signaling in periodical cicadas, resolving some of the outstanding questions surrounding the uniquely complex courtship behaviors of these insects.
    [Google Scholar]
  24. 24. 
    Cooley JR, Marshall DC. 2004. Thresholds or comparisons: mate choice criteria and sexual selection in a periodical cicada, Magicicada septendecim (Hemiptera: Cicadidae). Behaviour 141:647–73
    [Google Scholar]
  25. 25. 
    Cooley JR, Marshall DC, Hill KBR 2018. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci. Rep. 8:1432
    [Google Scholar]
  26. 26. 
    Cooley JR, Marshall DC, Hill KBR, Simon C. 2006. Reconstructing asymmetrical reproductive character displacement in a periodical cicada contact zone. J. Evol. Biol. 19:855–68
    [Google Scholar]
  27. 27. 
    Cooley JR, Marshall DC, Richards AF, Alexander RD, Irwin MD et al. 2013. The distribution of periodical cicada Brood III in 1997, with special emphasis on Illinois (Hemiptera: Magicicada spp.). Am. Entomol. 59:9–14
    [Google Scholar]
  28. 28. 
    Cooley JR, Marshall DC, Simon C 2004. The historical contraction of periodical cicada Brood VII (Hemiptera: Cicadidae: Magicicada). J. N. Y. Entomol. Soc. 112:198–204
    [Google Scholar]
  29. 29. 
    Cooley JR, Neckermann ML, Bunker GJ, Marshall DC, Simon C 2013. At the limits: habitat suitability modeling of northern 17-year periodical cicada extinctions (Hemiptera: Magicicada spp.). Glob. Ecol. Biogeogr. 22:410–21
    [Google Scholar]
  30. 30. 
    Cooley JR, Simon C, Maier C, Marshall DC, Yoshimura J et al. 2015. The distribution of periodical cicada (Magicicada) Brood II in 2013: Disjunct emergences suggest complex origins. Am. Entomol. 61:245–51
    [Google Scholar]
  31. 31. 
    Cooley JR, Simon C, Marshall DC, Slon K, Ehrhardt C. 2001. Allochronic speciation, secondary contact, and reproductive character displacement in periodical cicadas (Hemiptera: Magicicada spp.): genetic, morphological, and behavioural evidence. Mol. Ecol. 10:661–71
    [Google Scholar]
  32. 32. 
    Cox RT, Carlton CE. 1988. Paleoclimatic influences in the evolution of periodical cicadas (Insecta: Homoptera: Cicadidae: Magicicada spp.). Am. Midland Nat. 120:183–93
    [Google Scholar]
  33. 33. 
    Cox RT, Carlton CE. 2003. A comment on gene introgression versus en masse cycle switching in the evolution of 13-year and 17-year life cycles in periodical cicadas. Evolution 57:428–32
    [Google Scholar]
  34. 34. 
    de Assis RA, Malavazi MC 2019. A simple model of periodic reproduction: selection of prime periods. Mathematics Applied to Engineering, Modelling, and Social Issues FT Smith, H Dutta, JN Mordeson 421–38 Berlin: Springer
    [Google Scholar]
  35. 35. 
    Du Z, Hasegawa H, Cooley JR, Simon C, Yoshimura J et al. 2019. Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups. Mol. Biol. Evol. 36:1187–200Used mitochondrial genomic data to show that periodical cicadas are divided into Eastern, Midwestern, Mississippi Valley, and Southern populations that likely refuged separately during the Pleistocene.
    [Google Scholar]
  36. 36. 
    Duffels JP, Ewart A. 1988. The Cicadas of the Fiji, Samoa, and Tonga Islands, Their Taxonomy and Biogeography (Homoptera: Cicadoidea) Leiden, Neth.: E.J. Brill
  37. 37. 
    Dugdale JS, Fleming CA. 1969. Two New Zealand cicadas collected on Cook's Endeavour Voyage, with description of a new genus. N. Z. J. Sci. 12:929–57
    [Google Scholar]
  38. 38. 
    Dunning D, Byers J, Zanger C. 1979. Courtship in two species of periodical cicada, Magicicada septendecim and Magicicada cassini. Anim. Behav. 27:1073–90
    [Google Scholar]
  39. 39. 
    Dybas HS. 1969. The 17-year cicada: a four-year mistake? Bull. Field Mus. . Nat. Hist 40:10–12
    [Google Scholar]
  40. 40. 
    Dybas HS, Davis DD. 1962. A population census of seventeen-year periodical cicadas (Homoptera: Cicadidae: Magicicada). Ecology 43:432–44
    [Google Scholar]
  41. 41. 
    English LD, English JJ, Dukes RN, Smith KG. 2006. Timing of 13-year periodical cicada (Homoptera: Cicadidae) emergence determined 9 months before emergence. Environ. Entomol. 35:245–48
    [Google Scholar]
  42. 42. 
    Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. 2013. Robust demographic inference from genomic and SNP data. PLOS Genet 9:e1003905
    [Google Scholar]
  43. 43. 
    Flory SL, Mattingly WB 2008. Response of host plants to periodical cicada oviposition damage. Oecologia 156:649–56
    [Google Scholar]
  44. 44. 
    Fontaine KM, Cooley JR, Simon C. 2007. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.). PLOS ONE 9:e892
    [Google Scholar]
  45. 45. 
    Fujisawa T, Koyama T, Kakishima S, Cooley JR, Simon C et al. 2018. Triplicate parallel life cycle divergence despite gene flow in periodical cicadas. Commun. Biol. 1:26Determined that there are four reproductively isolated species lineages of periodical cicadas (Tre, Neosep, Cassini, and Decula) and that, within each of these lineages (except Tre), there is evidence of gene flow between 13- and 17-year life cycles.
    [Google Scholar]
  46. 46. 
    Gilbert C, Klass C 2006. Decrease in geographic range of the Finger Lakes brood (Brood VII) of the periodical cicada (Hemiptera: Cicadidae: Magicicada spp.). J. N. Y. Entomol. Soc. 114:78–85
    [Google Scholar]
  47. 47. 
    Goles E, Schulz O, Markus M. 2000. A biological generator of prime numbers. Nonlinear Phenom. Complex Syst. 3:208–13
    [Google Scholar]
  48. 48. 
    Grant PR. 2005. The priming of periodical cicada life cycles. Trends Ecol. Evol. 20:169–74
    [Google Scholar]
  49. 49. 
    Gwynne DT. 1987. Sex-biased predation and the risky mate-locating behavior of male tick-tock cicadas (Homoptera: Cicadidae). Anim. Behav. 35:571–76
    [Google Scholar]
  50. 50. 
    Hajong SR. 2013. Mass emergence of a cicada (Homoptera: Cicadidae) and its capture methods and consumption by villagers in Ri-bhoi district of Meghalaya. J. Entomol. Res. 37:341–43
    [Google Scholar]
  51. 51. 
    Hajong SR, Yaakop S. 2013. Chremistica ribhoi sp. n. (Hemiptera: Cicadidae) from North-East India and its mass emergence. Zootaxa 3702:493–500
    [Google Scholar]
  52. 52. 
    Hayes B. 2004. Bugs that count. Am. Sci. 92:401–5
    [Google Scholar]
  53. 53. 
    Heath JE. 1968. Thermal synchronization of emergence in periodical “17-year” cicadas (Homoptera, Cicadidae, Magicicada). Am. Midland Nat. 80:440–48
    [Google Scholar]
  54. 54. 
    Heliövaara K, Vaisanen R, Simon C. 1994. Evolutionary ecology of periodical insects. Trends Ecol. Evol. 9:475–80
    [Google Scholar]
  55. 55. 
    Higgie M, Chenoweth S, Blows MW. 2000. Natural selection and the reinforcement of mate recognition. Science 290:519–21
    [Google Scholar]
  56. 56. 
    Hill KBR, Simon C, Marshall DC, Chambers GK 2009. Surviving glacial ages within the Biotic Gap: phylogeography of the New Zealand cicada Maoricicada campbelli. J. Biogeogr. 36:675–92
    [Google Scholar]
  57. 57. 
    Kakishima S, Liang Y, Ito T, Yang T-YA, Lu PL et al. 2019. Evolutionary origin of a periodical mass-flowering plant. Ecol. Evol. 9:4373–81
    [Google Scholar]
  58. 58. 
    Kakishima S, Yoshimura J, Murata H, Murata J. 2011. 6-Year periodicity and variable synchronicity in a mass-flowering plant. PLOS ONE 6:e28140
    [Google Scholar]
  59. 59. 
    Karban R. 1981. Effects of local density on fecundity and mating speed for periodical cicadas. Oecologia 51:260–64
    [Google Scholar]
  60. 60. 
    Karban R. 1982. Increased reproductive success at high densities and predator satiation for periodical cicadas. Ecology 63:321–28
    [Google Scholar]
  61. 61. 
    Karban R. 1983. Sexual selection, body size and sex-related mortality in the cicada Magicicada cassini. Am. Midland Nat. 109:324–30
    [Google Scholar]
  62. 62. 
    Karban R 2014. Transient habitats limit development time for periodical cicadas. Ecology 95:3–8Showed that population density of periodical cicadas varies over time and space by monitoring the emergences of a set of study populations over three generations.
    [Google Scholar]
  63. 63. 
    Karban R, Black CA, Weinbaum SA 2000. How 17-year cicadas keep track of time. Ecol. Lett. 3:253–56Provided evidence that periodical cicadas count years by monitoring plant growth over seasons.
    [Google Scholar]
  64. 64. 
    Koenig WD, Liebhold AM. 2003. Regional impacts of periodical cicadas on oak radial increment. Can. J. For. Res. 33:1084–89
    [Google Scholar]
  65. 65. 
    Koenig WD, Liebold AM. 2005. Effects of periodical cicada emergences on abundance and synchrony of avian populations. Ecology 86:1873–82
    [Google Scholar]
  66. 66. 
    Kohler U, Lakes-Harlan R. 2001. Auditory behaviour of a parasitoid fly (Emblemasoma auditrix, Sarcophagidae, Diptera). J. Comp. Physiol. A 187:581–87
    [Google Scholar]
  67. 67. 
    Koyama T, Ito H, Fujisawa T, Ikeda H, Kakishima S et al. 2016. Genomic divergence and lack of introgressive hybridization between two 13-year periodical cicadas supports life-cycle switching in the face of climate change. Mol. Ecol. 25:5543–56
    [Google Scholar]
  68. 68. 
    Koyama T, Ito H, Kakishima S, Yoshimura J, Cooley JR et al. 2015. Geographic body size variation in the periodical cicadas (Magicicada): implications for life cycle divergence and local adaptation. J. Evol. Biol. 28:1270–77
    [Google Scholar]
  69. 69. 
    Kritsky G. 1987. An historical analysis of periodical cicadas in Indiana (Homoptera: Cicadidae). Proc. Indiana Acad. Sci. 97:295–322
    [Google Scholar]
  70. 70. 
    Kritsky G. 1988. The 1987 emergence of the periodical cicada (Homoptera: Cicadidae: Magicicada spp.: Brood X) in Ohio. Ohio J. Sci. 88:168–70
    [Google Scholar]
  71. 71. 
    Kritsky G. 2004. Periodical Cicadas: The Plague and the Puzzle . Indianapolis: Indiana Acad. Sci.
  72. 72. 
    Kritsky G. 2021. Periodical Cicadas: The Brood X Edition Columbus: Ohio Biol. Surv.
  73. 73. 
    Kritsky G, Troutman R, Mozgai D, Simon C, Chiswell SM et al. 2017. Evolution and geographic extent of a surprising northern disjunct population of 13-year cicada Brood XXII (Hemiptera: Cicadidae, Magicicada). Am. Entomol. 63:E15–20
    [Google Scholar]
  74. 74. 
    Kritsky G, Webb J, Folsom M, Pfeister M. 2005. Observations on periodical cicadas (Brood X) in Indiana and Ohio in 2004 (Hemiptera: Cicadidae: Magicicada spp.). Proc. Indiana Acad. Sci. 114:65–69
    [Google Scholar]
  75. 75. 
    Kritsky G, Young FN. 1992. Observations on periodical cicadas (Brood XIV) in Indiana in 1991 (Homoptera: Cicadidae). Proc. Indiana Acad. Sci. 101:59–61
    [Google Scholar]
  76. 76. 
    Kye G, Machta J, Abbott KC, Hastings A, Huffmyer W et al. 2021. Sharp boundary formation and invasion between spatially adjacent periodical cicada broods. J. Theor. Biol. 515:110600
    [Google Scholar]
  77. 77. 
    Lakes-Harlan R, de Vries T. 2014. Experimental infection of a periodical cicada (Magicicada cassinii) with a parasitoid (Emblemasoma auditrix) of a proto-periodical cicada (Okanagana rimosa). BMC Ecol 14:31
    [Google Scholar]
  78. 78. 
    Lakes-Harlan R, Stolting H, Moore TE. 2000. Phonotactic behaviour of a parasitoid fly (Emblemasoma auditrix, Diptera, Sarcophagidae) in response to the calling song of its host Cicada (Okanagana rimosa, Homoptera, Cicadidae).. Zool.-Anal. Complex Syst 103:31–39
    [Google Scholar]
  79. 79. 
    Lane DH 1995. The recognition concept of species applied in an analysis of putative hybridization in New Zealand cicadas of the genus Kikihia (Insecta: Hemiptera: Tibicinidae). Speciation and the Recognition Concept: Theory and Application DM Lambert, HG Spencer 367–421 Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  80. 80. 
    Lehmann-Zeibarth N, Heideman PP, Shapiro RA, Stoddart SL, Hsiao CCL et al. 2005. Evolution of periodicity in periodical cicadas. Evolution 86:3200–11
    [Google Scholar]
  81. 81. 
    Lesnik JJ, Stull V. 2019. The colonial/imperial history of insect food avoidance in the United States. Ann. Entomol. Soc. Am. 112:560–65
    [Google Scholar]
  82. 82. 
    Lloyd M. 1987. A successful rearing of 13-year periodical cicadas beyond their present range and beyond that of 17-year cicadas. Am. Midland Nat. 117:362–68
    [Google Scholar]
  83. 83. 
    Lloyd M, Dybas HS. 1966. The periodical cicada problem. I. Population ecology. Evolution 20:133–49
    [Google Scholar]
  84. 84. 
    Lloyd M, Dybas HS 1966. The periodical cicada problem. II. Evolution. Evolution 20:466–505Devised a scheme for the evolution of 17-year broods by one- and four-year accelerations and entrainment of individuals from one brood to another.
    [Google Scholar]
  85. 85. 
    Lloyd M, Kritsky G, Simon C 1983. A simple Mendelian model for 13- and 17-year life cycles of periodical cicadas, with historical evidence of hybridization between them. Evolution 37:1162–80
    [Google Scholar]
  86. 86. 
    Lloyd M, White JA 1976. Sympatry of periodical cicada broods and the hypothetical four-year acceleration. Evolution 30:786–801Expanded the four-year acceleration hypothesis and proposed that a four-year slow-growth phase in the early instars could be eliminated to produce 13-year cicadas.
    [Google Scholar]
  87. 87. 
    Lovett B, Macias A, Stajich JE, Cooley J, Eilenberg J et al. 2020. Behavioral betrayal: how select fungal parasites enlist living insects to do their bidding. PLOS Pathog 16:e1008598
    [Google Scholar]
  88. 88. 
    Łukasik P, Nazario K, Van Leuven JT, Campbell MA, Meyer M et al. 2018. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. PNAS 115:E226–35
    [Google Scholar]
  89. 89. 
    Machta J, Blackwood JC, Noble A, Liebhold AM, Hastings A. 2018. A hybrid model for the population dynamics of periodical cicadas. Bull. Math. Biol. 81:1122–42
    [Google Scholar]
  90. 90. 
    Macias AM, Geiser DM, Stajich JE, Łukasik P, Veloso C et al. 2020. Evolutionary relationships among Massospora spp. (Entomophthorales), obligate pathogens of cicadas. Mycologia 112:1060–74
    [Google Scholar]
  91. 91. 
    Maier CT. 1980. A mole's eye view of seventeen-year periodical cicada nymphs, Magicicada septendecim (Hemiptera: Homoptera: Cicadidae). Ann. Entomol. Soc. Am. 73:142–52
    [Google Scholar]
  92. 92. 
    Maier CT. 1985. Brood VI of 17-year periodical cicadas, Magicicada spp. (Hemiptera: Homoptera: Cicadidae): new evidence from Connecticut (USA), the hypothetical 4-year deceleration, and the status of the brood. J. N. Y. Entomol. Soc. 93:1019–26
    [Google Scholar]
  93. 93. 
    Maier CT. 1996. Connecticut is awaiting the return of the periodical cicada. Front. Plant Sci. 48:4–6
    [Google Scholar]
  94. 94. 
    Mallet J, Besansky N, Hahn MW. 2016. How reticulated are species?. BioEssays 38:140–49
    [Google Scholar]
  95. 95. 
    Manter JA 1974. Brood XI of the periodical cicada seems doomed. 25th Anniversary Memoirs of the Connecticut Entomological Society RL Beard 99–100 New Haven: Conn. Entomol. Soc.
    [Google Scholar]
  96. 96. 
    Marlatt CL. 1902. New nomenclature for the broods of the periodical cicada Rep., Div. Entomol., U.S. Dept. Agric Washington, DC:
  97. 97. 
    Marlatt CL. 1923. The periodical cicada Bull. 71, Div. Entomol., U.S. Dept. Agric Washington, DC:
  98. 98. 
    Marshall DC. 2001. Periodical cicada (Homoptera: Cicadidae) life-cycle variations, the historical emergence record, and the geographic stability of brood distributions. Ann. Entomol. Soc. Am. 94:386–99
    [Google Scholar]
  99. 99. 
    Marshall DC, Cooley JR 2000. Reproductive character displacement and speciation in periodical cicadas, with description of a new species, 13-year Magicicada neotredecim. Evolution 54:1313–25Explained the lack of gene flow between M. tredecim and M. neotredecim by reproductive character displacement in male signal and female response; described M. neotredecim.
    [Google Scholar]
  100. 100. 
    Marshall DC, Cooley JR, Hill KBR. 2011. Developmental plasticity of life-cycle length in thirteen-year periodical cicadas (Hemiptera: Cicadidae). Ann. Entomol. Soc. Am. 104:443–50
    [Google Scholar]
  101. 101. 
    Marshall DC, Cooley JR, Simon C. 2003. Holocene climate shifts, life-cycle plasticity, and speciation in periodical cicadas: a reply to Cox and Carlton. Evolution 57:433–37
    [Google Scholar]
  102. 102. 
    Marshall DC, Hill KBR. 2009. Versatile aggressive mimicry of cicadas by an Australian predatory katydid. PLOS ONE 4:e4185
    [Google Scholar]
  103. 103. 
    Marshall DC, Hill KBR, Cooley JR. 2017. Multimodal life cycle variation in 13- and 17-year periodical cicadas (Magicicada spp.). J. Kans. Entomol. Soc. 90:211–26
    [Google Scholar]
  104. 104. 
    Marshall DC, Hill KBR, Cooley JR, Simon C. 2011. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand cicadas (genus Kikihia). Syst. Biol. 60:482–502
    [Google Scholar]
  105. 105. 
    Marshall DC, Moulds M, Hill KBR, Price B, Wade E et al. 2018. A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily level classification. Zootaxa 4424:1–64
    [Google Scholar]
  106. 106. 
    Marshall DC, Slon K, Cooley JR, Hill KBR, Simon C. 2008. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation. Mol. Phylogenet. Evol. 48:1054–66
    [Google Scholar]
  107. 107. 
    Martin A, Simon C 1988. Anomalous distribution of nuclear and mitochondrial DNA markers in periodical cicadas. Nature 336:237–39Used mtDNA, allozymes, and a color polymorphism to discover a northern genetic lineage of 13-year cicadas that was derived recently from 17-year cicadas.
    [Google Scholar]
  108. 108. 
    Martin A, Simon C 1990. Differing levels of among-population divergence in the mitochondrial DNA of periodical cicadas related to historical biogeography. Evolution 44:1066–80
    [Google Scholar]
  109. 109. 
    Martin A, Simon C 1990. Temporal variation in insect life cycles and its evolutionary significance: lessons from periodical cicadas. BioScience 40:359–67
    [Google Scholar]
  110. 110. 
    Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M et al. 2018. Recurrent symbiont recruitment from fungal parasites in cicadas. PNAS 115:E5970–79
    [Google Scholar]
  111. 111. 
    McCutcheon JP, Boyd BM, Dale C. 2019. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29:R485–95
    [Google Scholar]
  112. 112. 
    McCutcheon JP, McDonald BR, Moran NA. 2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. PNAS 106:15394–99
    [Google Scholar]
  113. 113. 
    McCutcheon JP, McDonald BR, Moran NA. 2009. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLOS Genet 5:e1000565
    [Google Scholar]
  114. 114. 
    Moran NA, Tran P, Gerardo NM 2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71:8802–10
    [Google Scholar]
  115. 115. 
    Moulds MS. 2003. An appraisal of the cicadas of the genus Abricta Stål and allied genera (Hemiptera: Auchenorrhyncha: Cicadidae). Rec. Aust. Mus. 55:245–304
    [Google Scholar]
  116. 116. 
    Moulds MS. 2005. An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna. Rec. Aust. Mus. 57:375–446
    [Google Scholar]
  117. 117. 
    Nariai Y, Hayashi S, Morita S, Umenura Y, Tainaka K-I et al. 2011. Life cycle shift by gene introduction under an Allee effect in periodical cicadas. PLOS ONE 6:e18347
    [Google Scholar]
  118. 118. 
    Niijima K, Nii M, Yoshimura J. 2021. Eight-year periodical outbreaks of the train millipede. R. Soc. Open Sci. 8:201399
    [Google Scholar]
  119. 119. 
    Pechuman LL. 1968. The periodical cicada, Brood VII (Homoptera: Cicadidae: Magicicada). Trans. Am. Entomol. Soc. 94:137–53
    [Google Scholar]
  120. 120. 
    Pechuman LL 1984. The periodical cicada: Brood VII revisited (Homoptera: Cicadidae). Entomol. News 96:59–60
    [Google Scholar]
  121. 121. 
    Petino Zappala MA, Ortiz VE, Fanara JJ. 2018. Study of natural genetic variation in early fitness traits reveals decoupling between larval and pupal developmental time in Drosophila melanogaster. Evol. Biol. 45:437–48
    [Google Scholar]
  122. 122. 
    Popple LW, Marshall DC. 2016. Australian cicadas: worth a closer listen. Wildl. Aust. 53:24–26
    [Google Scholar]
  123. 123. 
    Pray CL, Nowlin WH, Vanni MJ. 2009. Deposition and decomposition of periodical cicadas (Homoptera: Cicadidae: Magicicada) in woodland aquatic ecosystems. J. North Am. Benthol. Soc. 28:181–95
    [Google Scholar]
  124. 124. 
    Raup MJ, Sargent C, Harding N, Kritsky G. 2020. Combining data from citizen scientists and weather stations to define emergence of periodical cicadas, Magicicada Davis spp. (Hemiptera: Cicadidae). Md. Entomol. 7:31–42
    [Google Scholar]
  125. 125. 
    Román-Kustas J, Hoffman JB, Alonso D, Reed JH, Gonsalves AE et al. 2020. Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation. Microchem. J. 158:105089
    [Google Scholar]
  126. 126. 
    Schniederkötter K, Lakes-Harlan R. 2004. Infection behavior of a parasitoid fly, Emblemasoma auditrix, and its host cicada Okanagana rimosa. J. Insect Sci. 4:36
    [Google Scholar]
  127. 127. 
    Simon C. 1983. Morphological differentiation in wing venation among broods of 13- and 17-year periodical cicadas. Evolution 37:104–15
    [Google Scholar]
  128. 128. 
    Simon C. 1988. Evolution of 13- and 17-year periodical cicadas. Bull. Entomol. Soc. Am. 34:163–76
    [Google Scholar]
  129. 129. 
    Simon C 1992. Discriminant analysis of the year-classes of periodical cicadas based on wing morphometric data enhanced by molecular information. Ordinations in the Study of Morphology, Evolution, and Systematics of Insects: Applications and Quantitative Genetic Rationales JT Sorensen, RG Footit 309–22 Amsterdam: Elsevier
    [Google Scholar]
  130. 130. 
    Simon C, Karban R, Lloyd M 1981. Patchiness, density, and aggregative behavior in sympatric allochronic populations of 17-year cicadas. Ecology 62:1525–35
    [Google Scholar]
  131. 131. 
    Simon C, Lloyd M 1982. Disjunct synchronic populations of 17-year periodical cicadas: relicts or evidence of polyphyly?. J. N. Y. Entomol. Soc. 90:275–301
    [Google Scholar]
  132. 132. 
    Simon C, Tang J, Dalwadi S, Staley G, Deniega J, Unnasch TR 2000. Genetic evidence for assortative mating between 13-year cicadas and sympatric “17-year cicadas with 13-year life cycles” provides support for allochronic speciation. Evolution 54:1326–36Used abdominal color and mtDNA evidence to suggest a lack of gene flow at contact zones between M. tredecim and M. neotredecim Brood XXIII lineages.
    [Google Scholar]
  133. 133. 
    Smits A, Cooley JR, Westerman E. 2010. Twig to root: eggnest density and underground nymph distribution in a periodical cicada (Hemiptera: Magicicada septendecim L.). Entomol. Am 116:73–77
    [Google Scholar]
  134. 134. 
    Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. 2006. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15:4261–93
    [Google Scholar]
  135. 135. 
    Soper R. 1974. The genus Massospora entomopathogenic for cicadas. Part I. Taxonomy of the genus. Mycotaxon 1974.13–40
    [Google Scholar]
  136. 136. 
    Sota T, Yamamoto S, Cooley JR, Hill KBR, Simon C, Yoshimura J 2013. Different histories of divergence into 13- and 17-year life cycles among three periodical cicada lineages. PNAS 110:6919–24Demonstrated noncontemporaneous, parallel formation of 13- and 17-year species in the Decim, Cassini, and Decula species groups.
    [Google Scholar]
  137. 137. 
    Speer JH, Clay K, Bishop G, Creech M 2010. The effect of periodical cicadas on growth of five tree species in Midwestern deciduous forests. Am. Midland Nat. 164:173–86
    [Google Scholar]
  138. 138. 
    Strang CA. 2013. Geography and history of periodical cicadas (Hemiptera: Cicadidae) in DuPage County, Illinois. Great Lakes Entomol 46:193–203
    [Google Scholar]
  139. 139. 
    Tanaka Y, Yoshimura J, Simon C, Cooley JR, Tainaka K. 2009. The Allee effect in the selection for prime-numbered cycles in periodical cicadas. PNAS 106:8975–79
    [Google Scholar]
  140. 140. 
    Toivonen J, Fromhage L. 2019. Evolutionary hysteresis and ratchets in the evolution of periodical cicadas. Am. Nat. 194:38–46
    [Google Scholar]
  141. 141. 
    Toivonen J, Fromhage L. 2020. Hybridization selects for prime-numbered life cycles in Magicicada: an individual-based simulation model of a structured periodical cicada population. Ecol. Evol. 10:5259–69
    [Google Scholar]
  142. 142. 
    Urban JM, Cryan JR. 2012. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol. Biol. 12:87
    [Google Scholar]
  143. 143. 
    Van Leuven JT, Meister RC, Simon C, McCutcheon JP 2014. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158:1270–80
    [Google Scholar]
  144. 144. 
    Wade EJ. 2014. Species and hybridization: understanding the exchange of nuclear and mitochondrial DNA in song-delimited cicada species complexes PhD Diss., Univ. Conn. Storrs:
  145. 145. 
    Waneka G, Vasquez YM, Bennett GM, Sloan DB. 2021. Mutational pressure drives differential genome conservation in two bacterial endosymbionts of sap feeding insects. bioRxiv 2020.07.29.225037. https://doi.org/10.1101/2020.07.29.225037
    [Crossref]
  146. 146. 
    Watling D. 2012. MaiVeikau: Tales of Fijian Wildlife Suva, Fiji: Shell Fiji Ltd. , 2nd ed..
  147. 147. 
    Webb GF. 2001. The prime number periodical cicada problem. Discrete Contin. Dyn. Syst. B 1:387–99
    [Google Scholar]
  148. 148. 
    West-Eberhard MJ. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
  149. 149. 
    Whiles MR, Callaham MA Jr., Meyer CK, Brock BL, Charlton RE. 2001. Emergence of periodical cicadas (Magicicada cassini) from a Kansas riparian forest: densities, biomass and nitrogen flux. Am. Midland Nat. 145:176–87
    [Google Scholar]
  150. 150. 
    White J. 1980. Resource partitioning by ovipositing cicadas. Am. Nat. 115:1–28
    [Google Scholar]
  151. 151. 
    White J. 1981. Flagging: hosts defences versus oviposition strategies in periodical cicadas (Magicicada spp., Cicadidae, Homoptera). Can. Entomol 113:727–38
    [Google Scholar]
  152. 152. 
    White J, Lloyd M. 1981. On the stainability and mortality of periodical cicada eggs. Am. Midland Nat. 106:219–28
    [Google Scholar]
  153. 153. 
    White JA 1973. Viable hybrid young from crossmated periodical cicadas. Ecology 54:573–80Demonstrated that the Decim, Cassini, and Decula lineages could be experimentally cross-mated and produce eggs that hatch.
    [Google Scholar]
  154. 154. 
    White JA, Lloyd M. 1975. Growth rates of 17- and 13-year periodical cicadas. Am. Midland Nat. 94:127–43
    [Google Scholar]
  155. 155. 
    Williams KS, Simon C. 1995. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 40:269–95
    [Google Scholar]
  156. 156. 
    Williams KS, Smith KG, Stephen FM. 1993. Emergence of 13-yr periodical cicadas (Cicadidae: Magicicada): phenology, mortality, and predator satiation. Ecology 74:1143–52
    [Google Scholar]
  157. 157. 
    Yang LH. 2004. Periodical cicadas as resource pulses in North American forests. Science 306:1565–67
    [Google Scholar]
  158. 158. 
    Yang LH. 2005. Interactions between a detrital resource pulse and a detritivore community. Oecologia 147:522–32
    [Google Scholar]
  159. 159. 
    Yang LH. 2006. Periodical cicadas use light for oviposition site selection. Proc. R. Soc. B 273:2993–3000
    [Google Scholar]
  160. 160. 
    Yang LH. 2008. Pulses of dead periodical cicadas increase herbivory of American bellflowers. Ecology 89:1497–502
    [Google Scholar]
  161. 161. 
    Yang LH. 2012. Resource pulses of dead periodical cicadas increase the growth of American bellflower rosettes under competitive and non-competitive conditions. Arthropod-Plant Interact 7:93–98
    [Google Scholar]
  162. 162. 
    Yang LH, Karban R. 2009. Long-term habitat selection and chronic root herbivory: explaining the relationship between periodical cicada density and tree growth. Am. Nat. 173:105–12
    [Google Scholar]
  163. 163. 
    Yang LH, Karban R. 2019. The effects of pulsed fertilization and chronic herbivory by periodical cicadas on tree growth. Ecology 100:e02705
    [Google Scholar]
  164. 164. 
    Yoshimura J. 1997. The evolutionary origins of periodical cicadas during Ice Ages. Am. Nat. 149:112–24
    [Google Scholar]
  165. 165. 
    Yoshimura J, Hayashi T, Tanaka Y, Tainaka K, Simon C 2009. Selection of prime-number intervals in a numerical model of periodical cicada evolution. Evolution 63:288–94
    [Google Scholar]
  166. 166. 
    Zhang Z, Wang H, Wang Y, Xi F, Wang H et al. 2021. Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth. Plant J 106:435–53
    [Google Scholar]
/content/journals/10.1146/annurev-ento-072121-061108
Loading
/content/journals/10.1146/annurev-ento-072121-061108
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error