1932

Abstract

The use of the functional feeding group–damage type system for analyzing arthropod and pathogen interactions with plants has transformed our understanding of herbivory in fossil plant assemblages by providing data, analyses, and interpretation of the local, regional, and global patterns of a 420-Myr history. The early fossil record can be used to answer major questions about the oldest evidence for herbivory, the early emergence of herbivore associations on land plants, and later expansion on seed plants. The subsequent effects of the Permian–Triassic ecological crisis on herbivore diversity, the resulting formation of biologically diverse herbivore communities on gymnosperms, and major shifts in herbivory ensuing from initial angiosperm diversification are additional issues that need to be addressed. Studies ofherbivory resulting from more recent transient spikes and longer-term climate trends provide important data that are applied to current global change and include herbivore community responses to latitude, altitude, and habitat. Ongoing paleoecological themes remaining to be addressed include the antiquity of modern interactions, differential herbivory between ferns and angiosperms, and origins of modern tropical forests. The expansion of databases that include a multitude of specimens; improvements in sampling strategies; development of new analytical methods; and, importantly, the ability to address conceptually stimulating ecological and evolutionary questions have provided new impetus in this rapidly advancing field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120120-102849
2023-01-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120120-102849.html?itemId=/content/journals/10.1146/annurev-ento-120120-102849&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adroit B, Girard V, Kunzmann L, Terral J-F, Wappler T. 2018. Plant-insect interactions patterns in three European paleoforests of the late-Neogene–early Quaternary. PeerJ 6:e5075
    [Google Scholar]
  2. 2.
    Adroit B, Malekhosseini M, Girard V, Abedi M, Rajaei H et al. 2018. Changes in pattern of plant-insect interactions on the Persian ironwood (Parrotia persica, Hamamelidaceae) over the last 3 million years. Rev. Palaeobot. Palynol. 258:22–35
    [Google Scholar]
  3. 3.
    Adroit B, Teodoridis V, Güner TH, Denk T. 2021. Patterns of insect damage types reflect complex environmental signal in Miocene forest biomes of Central Europe and the Mediterranean. Glob. Planet. Change 199:103451
    [Google Scholar]
  4. 4.
    Adroit B, Wappler T, Terral JF, Ali AA, Girard V 2016. Bernasso, a paleoforest from the early Pleistocene: new input from plant-insect interactions (Hérault, France). Palaeogeogr. Palaeoclim. Palaeoecol 446:78–84
    [Google Scholar]
  5. 5.
    Adroit B, Zhuang X, Wappler T, Terral J-F, Wang B 2020. A case of long-term herbivory: specialized feeding trace on Parrotia (Hamamelidaceae) plant species. R. Soc. Open Sci. 7:201449
    [Google Scholar]
  6. 6.
    Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR et al. 2006. Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia 149:221–32
    [Google Scholar]
  7. 7.
    Arens NC, Gleason JP 2016. Insect folivory in an angiosperm-dominated flora from the mid-Cretaceous of Utah, U.S.A. Palaios 31:71–80
    [Google Scholar]
  8. 8.
    Azevedo-Schmidt LE, Dunn RE, Mercer J, Dechesne M, Currano ED. 2019. Plant and insect herbivore community variation across the Paleocene-Eocene boundary in the Hanna Basin, southeastern Wyoming. PeerJ 7:e7798
    [Google Scholar]
  9. 9.
    Barbosa dos Santos T, Pinheiro ERS, Iannuzzi R. 2020. First evidence of seed predation by arthropods from Gondwana and its early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). Palaios 35:292–301
    [Google Scholar]
  10. 10.
    Baselga A, Orme CDL. 2012. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3:808–12
    [Google Scholar]
  11. 11.
    Beck AL, Labandeira CC. 1998. Early Permian insect folivory on gigantopterid-dominated riparian flora from north-central Texas. Palaeogeogr. Palaeoclim. Palaeoecol. 142:139–73
    [Google Scholar]
  12. 12.
    Béthoux O, Galtier J, Nel A. 2004. Earliest evidence of insect endophytic oviposition. Palaios 19:408–13
    [Google Scholar]
  13. 13.
    Bomfleur B, Decombeix A-L, Escapa IH, Schwendemann AB, Axsmith B. 2013. Whole-plant concept and environmental reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. Int. J. Plant Sci. 174:425–44
    [Google Scholar]
  14. 14.
    Cariglino B. 2018. Patterns of insect-mediated damage in a Permian Glossopteris flora from Patagonia (Argentina). Palaeogeogr. Palaeoclim. Palaeoecol. 507:39–51
    [Google Scholar]
  15. 15.
    Carvalho M, Jaramillo C, de la Parra F, Caballero-Rodríguez D, Herrera F et al. 2021. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science 372:63–68
    [Google Scholar]
  16. 16.
    Carvalho M, Wilf P, Barrios H, Windsor DM, Currano ED et al. 2014. Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PLOS ONE 9:5e94950
    [Google Scholar]
  17. 17.
    Cenci R, Adami-Rodrigues K. 2017. Record of gall abundance as a possible episode of radiation and speciation of galling insects, Triassic, Southern Brazil. Rev. Bras. Paleontol. 20:279–86
    [Google Scholar]
  18. 18.
    Chaloner WG, Scott AC, Stephenson J. 1991. Fossil evidence for plant-arthropod interactions in the Palaeozoic and Mesozoic. Phil. Trans. R. Soc. Lond. B 333:177–86
    [Google Scholar]
  19. 19.
    Clapham ME, Karr JA, Nicholson DB, Ross AJ, Mayhew PJ. 2016. Ancient origin of high taxonomic richness among insects. Proc. R. Soc. B 283:20152476
    [Google Scholar]
  20. 20.
    Correia P, Labandeira CC, Bashforth AR, Šimůnek Z, Cleal CJ et al. 2020. The history of herbivory on sphenophytes: a new calamitalean with an insect gall from the upper Pennsylvanian of Portugal and a review of arthropod herbivory on an ancient lineage. Int. J. Plant Sci. 183:387–418
    [Google Scholar]
  21. 21.
    Currano ED. 2009. Patchiness and long-term change in early Eocene insect feeding damage. Paleobiology 35:484–98
    [Google Scholar]
  22. 22.
    Currano ED 2019. Paper 32: Response of plant-insect associations to Paleocene-Eocene Warming 1999, P. Wilf and C.C. Labandeira. Foundations of Paleoecology: Classic Papers with Commentaries SK Lyons, AK Behrensmeyer, PJ Wagner 531–36 Chicago: Univ. Chicago Press
    [Google Scholar]
  23. 23.
    Currano ED, Azevedo-Schmidt LE, Maccracken SA, Swain A. 2021. Scars on fossil leaves: an exploration of ecological patterns in plant-insect herbivore associations during the Age of Angiosperms. Palaeogeogr. Palaeoclim. Palaeoecol. 582:110636
    [Google Scholar]
  24. 24.
    Currano ED, Jacobs BF. 2021. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate of insect herbivore communities. Glob. Planet. Change 207:103635
    [Google Scholar]
  25. 25.
    Currano ED, Jacobs BF, Pan AD, Tabor NJ. 2011. Inferring ecological disturbance in the fossil record: a case study from the late Oligocene of Ethiopia. Palaeogeogr. Palaeoclim. Palaeoecol. 309:242–52
    [Google Scholar]
  26. 26.
    Currano ED, Labandeira CC, Wilf P. 2010. Fossilized insect folivory tracks temperature for six million years. Ecol. Monogr. 80:547–67
    [Google Scholar]
  27. 27.
    Currano ED, Laker R, Flynn AG, Fogt KK, Stradtman H, Wing SL. 2016. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record. Ecol. Evol. 6:4318–31
    [Google Scholar]
  28. 28.
    Currano ED, Pinheiro DRS, Buchwaldt R, Clyde WC, Miller IM 2019. Endemism in Wyoming plant and insect herbivore communities during the early Eocene hothouse. Paleobiology 45:421–35
    [Google Scholar]
  29. 29.
    Currano ED, Wilf P, Wing S, Labandeira CC, Lovelock EC, Royer DL. 2008. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. PNAS 105:1960–64
    [Google Scholar]
  30. 30.
    Deng W, Su T, Wappler T, Liu J, Li S et al. 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene-Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Glob. Planet. Change 194:103293
    [Google Scholar]
  31. 31.
    Ding Q, Labandeira CC, Ren D. 2015. Insect herbivory, plant-host specialization and tissue partitioning on mid-Mesozoic broadleaved conifers of Northeastern China. Palaeogeogr. Palaeoclim. Palaeoecol. 440:259–73
    [Google Scholar]
  32. 32.
    Donovan M, Lucas SG. 2021. Insect herbivory on the Late Pennsylvanian Kinney Brick Quarry flora, New Mexico, USA. N. M. Mus. Nat. Hist. Sci. Bull. 84:193–207
    [Google Scholar]
  33. 33.
    Donovan MP, Wilf P, Iglesias A, Cúneo NR, Labandeira CC. 2020. Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. . Commun. Biol. 3:708
    [Google Scholar]
  34. 34.
    Donovan MP, Wilf P, Labandeira CC, Johnson KR, Peppe DJ. 2014. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PLOS ONE 9:7e103542
    [Google Scholar]
  35. 35.
    Doorenweerd C, van Nieukerken NJ, Sohn J-C, Labandeira CC. 2015. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963.296–334
    [Google Scholar]
  36. 36.
    Dunne JA, Labandeira CC, Williams RJ. 2014. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc. R. Soc. B 281:20133280
    [Google Scholar]
  37. 37.
    Estévez-Gallardo P, Sender LM, Mayoral E, Diez JB. 2019. First evidence of insect herbivory on Albian aquatic angiosperms of the NE Iberian Peninsula. Trans. R. Soc. Edinb. Earth Envirion. Sci. 108:429–35
    [Google Scholar]
  38. 38.
    Feng Z, Su T, Yang JY, Chen YX, Wei HB et al. 2014. Evidence for insect-mediated skeletonization on an extant fern family from the Upper Triassic of China. Geology 42:407–10
    [Google Scholar]
  39. 39.
    Feng Z, Wang J, Rößler R, Ślipiński A, Labandeira C. 2018. Late Permian wood-borings reveal an intricate network of ecological relationships. Nat. Commun. 8:556
    [Google Scholar]
  40. 40.
    Fernández JA, Chiesa JO 2020. Plant-insect interactions in the fossil flora of the Bajo de Veliz Formation (Gzhelian-Asselian): San Luis, Argentina. Ichnos 27:156–66
    [Google Scholar]
  41. 41.
    Filho EBS, Adami-Rodrigues K, de Lima FJ, Bantim RAM, Wappler T et al. 2019. Evidence of plant-insect interaction in the Early Cretaceous Flora from the Crato Formation, Araripe Basin, Northeast Brazil. Hist. Biol. 31:7926–37
    [Google Scholar]
  42. 42.
    Fuentes-Jacques L, Hanson-Snortum P, Hernández-Ortiz V, Díaz-Castelazo C, Mehltreter K. 2020. A global review and network analysis of phytophagous insect interactions with ferns and lycophytes. Plant Ecol 223:127–40
    [Google Scholar]
  43. 43.
    Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–33
    [Google Scholar]
  44. 44.
    Gandolfo MA, Zamaloa MC. 2021. Southern high-latitude plant-insect interactions from the Miocene of Tierra del Fuego, Argentina. Int. J. Plant Sci. 182:523–32
    [Google Scholar]
  45. 45.
    Giraldo LA, Carvalho MR, Herrera F, Labandeira CC. 2022. Ancient trouble in paradise: Seed beetle predation on coconuts from middle-late Paleocene rainforests of Colombia. Rev. Palaeobot. Palynol. 300:104630
    [Google Scholar]
  46. 46.
    Giraldo LA, Labandeira C, Herrera F, Carvalho M. 2021. Rich and specialized plant-insect associations in a middle-late Paleocene (58–60 Ma) Neotropical rainforest (Bogotá Formation, Colombia). Ameghiniana 58:75–99
    [Google Scholar]
  47. 47.
    Givulescu R. 1981. Pathological elements on fossil leaves from Chiuzbaia (galls, mines and other insect traces). Dari Seama Inst. Geol. Geofiz. Sedin. Paleontol. 68:123–33
    [Google Scholar]
  48. 48.
    Grauvogel-Stamm L, Kelber KP. 1996. Plant-insect interactions and coevolution during the Triassic in Western Europe. Paleontol. Lomb. 5:5–23
    [Google Scholar]
  49. 49.
    Halali S, Brakefield PM, Collins SC, Brattström O. 2019. To mate, or not to mate: The evolution of reproductive diapause facilitates insect radiation into African savannahs in the Late Miocene. J. Anim. Ecol. 89:1230–41
    [Google Scholar]
  50. 50.
    Hamilton JG, Zangerl AR, Berenbaum MR, Pippen J, Aldea M, DeLucia EH. 2004. Insect herbivory in an intact forest understory under experimental CO2 enrichment. Oecologia 138:566–73
    [Google Scholar]
  51. 51.
    Hazra M, Hazra T, Spicer RA, Sarkar SK, Spicer TEV et al. 2020. In situ occurrence of a gall midge (Insecta, Diptera, Cecidomyiidae) on fossilized angiosperm leaf cuticle fragments from the Pliocene sediments of eastern India. J. Asia-Pac. Entomol. 23:762–71
    [Google Scholar]
  52. 52.
    Hazra T, Adroit B, Hazra M, Spicer RA, Spicer TEV et al. 2022. New discovery of rare insect damage in the Pliocene of India reinforces the biogeographic history of Eurasian ecosystems. Rev. Palaeobot. Palynol. 298:104589
    [Google Scholar]
  53. 53.
    Hughes DP, Wappler T, Labandeira CC. 2011. Ancient death-grip leaf scars reveal ant-fungal parasitism. Biol. Lett. 7:67–70
    [Google Scholar]
  54. 54.
    Iannuzzi R, Labandeira CC. 2008. The oldest record and early history of insect folivory. Ann. Entomol. Soc. Am. 101:79–94
    [Google Scholar]
  55. 55.
    Kergoat GJ, Condamine FL, Toussaint EFA, Capdevielle-Dulac C, Clamens A-L et al. 2018. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nat. Commun. 9:5089
    [Google Scholar]
  56. 56.
    Khan MA, Spicer RA, Spicer TEV, Bera S. 2014. Fossil evidence of insect folivory in the eastern Himalayan Neogene Siwalik forests. Palaeogeogr. Palaeoclim. Palaeoecol. 410:264–77
    [Google Scholar]
  57. 57.
    Knor S, Skuhravá M, Wappler T, Prokop J. 2013. Galls and gall makers on plant leaves from the lower Miocene (Burdigalian) of the Czech Republic: systematic and palaeoecological implications. Rev. Palaeobot. Palynol. 188:38–51
    [Google Scholar]
  58. 58.
    Krassilov V, Karasev E. 2008. First evidence of plant-arthropod interaction at the Permian-Triassic boundary in the Volga Basin, European Russia. Alavesia 2:247–52
    [Google Scholar]
  59. 59.
    Kump LR. 2018. Prolonged Late Permian–Early Triassic hyperthermal: failure of climate regulation?. Philos. Trans. R. Soc. A 376:20170078
    [Google Scholar]
  60. 60.
    Kustatscher E, Franz M, Heunisch C, Reich M, Wappler T. 2014. Floodplain habitats of braided river systems: depositional environment, flora and fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany). Palaeobiol. Palaeoenviron. 94:237–70
    [Google Scholar]
  61. 61.
    Laaß M, Hauschke N. 2019. First evidence of borings in calamitean stems and other plant-arthropod interactions from the late Pennsylvanian of the Saale Basin. Hallesches Jahrb. Geowiss. 46:43–45
    [Google Scholar]
  62. 62.
    Labandeira CC 2002. The history of associations between plants and animals. Plant-Animal Interactions: An Evolutionary Approach C Herrera, O Pellmyr 26–74248–61 Oxford, UK: Blackwell
    [Google Scholar]
  63. 63.
    Labandeira CC 2007. Assessing the fossil record of plant-insect associations: ichnodata versus body-fossil data. Sediment–Organism Interactions: A Multifaceted Ichnology RG Bromley, MA Mángano, JF Genise, RN Melchor 9–26 SEPM Spec. Publ 88 Tulsa, OK: SEPM
    [Google Scholar]
  64. 64.
    Labandeira CC 2012. Evidence for outbreaks from the fossil record of insect herbivory. Insect Outbreaks Revisited, eds. P Barbosa, D Letourneau, A Agrawal 269–90 Oxford, UK: Blackwell
    [Google Scholar]
  65. 65.
    Labandeira CC. 2021. Ecology and evolution gall-inducing arthropods: the pattern from the terrestrial fossil record. Front. Ecol. Evol. 9:632449
    [Google Scholar]
  66. 66.
    Labandeira CC, Allen EG. 2007. Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other Late Paleozoic floras. Palaeogeogr. Palaeoclim. Palaeoecol. 247:197–219
    [Google Scholar]
  67. 67.
    Labandeira CC, Anderson JM, Anderson HM 2018. Expansion of arthropod herbivory in Late Triassic South Africa: the Molteno Biota, Aasvoëlberg 411 site and developmental biology of a gall. The Late Triassic World LH Tanner, pp. 623–719. Top. Geobiol 46 Berlin: Springer
    [Google Scholar]
  68. 68.
    Labandeira CC, Dilcher DL, Davis DR, Wagner DL. 1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. PNAS 91:1278–82
    [Google Scholar]
  69. 69.
    Labandeira CC, Johnson KR, Lang P. 2002. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound. Geol. Soc. Am. Spec. Pap. 361:297–327
    [Google Scholar]
  70. 70.
    Labandeira CC, Johnson KR, Wilf P. 2002. Impact of the terminal Cretaceous event on plant-insect associations. PNAS 99:2061–66
    [Google Scholar]
  71. 71.
    Labandeira CC, Kustatscher E, Wappler T. 2016. Floral assemblages and patterns of insect herbivory during the Permian to Triassic of Northeastern Italy. PLOS ONE 11:11e0165205
    [Google Scholar]
  72. 72.
    Labandeira CC, Li L 2021. The history of insect parasitism and the Mid-Mesozoic Parasitoid Revolution. The Evolution and Fossil Record of Parasitism K De Baets, JW Huntley 377–532 Top. Geobiol 49 Berlin: Springer
    [Google Scholar]
  73. 73.
    Labandeira CC, Phillips TL. 1996. A Carboniferous insect gall: insight into early ecologic history of the Holometabola. PNAS 93:8470–74
    [Google Scholar]
  74. 74.
    Labandeira CC, Prevec R. 2014. Plant paleopathology and the roles of pathogens and insects. Int. J. Paleopathol. 4:1–16
    [Google Scholar]
  75. 75.
    Labandeira CC, Rodríguez-Tovar FJ, Uchman A 2016. The end-Cretaceous extinction and ecosystem change. The Trace-Fossil Record of Major Evolutionary Events, Vol. 2: Mesozoic and Cenozoic MG Mángano, LA Buatois 265–300 Top. Geobiol. 40 Berlin: Springer
    [Google Scholar]
  76. 76.
    Labandeira CC, Sepkoski JJ Jr. 1993. Insect diversity in the fossil record. Science 261:310–15
    [Google Scholar]
  77. 77.
    Labandeira CC, Tremblay SL, Bartowski KE, Hernick LV. 2014. Middle Devonian liverwort herbivory and antiherbivore defence. New Phytol 202:247–58
    [Google Scholar]
  78. 78.
    Labandeira CC, Wilf P, Johnson KR, Marsh F. 2007. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Washington, DC: Smithsonian Inst. Version 3.0—Spring 2007
  79. 79.
    Lara MB, Cariglino B, Zavattieri AM. 2016. Palaeoenvironmental interpretation of an Upper Triassic deposit in southwestern Gondwana (Argentina) based on an insect fauna, plant assemblage, and their interactions. Palaeogeogr. Palaeoclim. Palaeoecol. 476:163–80
    [Google Scholar]
  80. 80.
    Lin X, Labandeira CC, Meng Q, Ding Q, Ren D. 2019. Exploiting nondietary resources in deep time: patterns of oviposition on mid-Mesozoic plants from Northeastern China. Int. J. Plant Sci. 180:411–57
    [Google Scholar]
  81. 81.
    Liu HY, Wei HB, Chen J, Guo Y, Zhou Y et al. 2020. A latitudinal gradient of plant-insect interactions during the late Permian (Lopingian) in terrestrial ecosystems? New evidence from Southwestern China. Glob. Planet. Change 192:103248
    [Google Scholar]
  82. 82.
    Lloyd GT, Davis KE, Pisani D, Tarver JE, Ruta M et al. 2008. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275:2483–90
    [Google Scholar]
  83. 83.
    Maccracken SA, Labandeira CC. 2020. The Middle Permian South Ash Pasture assemblage of north-central Texas: coniferophyte and gigantopterid herbivory and longer-term herbivory trends. Int. J. Plant Sci. 181:342–62
    [Google Scholar]
  84. 84.
    Maccracken SA, Miller IM, Labandeira CC. 2019. Late Cretaceous domatia reveal the antiquity of plant-mite mutualisms in flowering plants. Biol. Lett. 15:20190657
    [Google Scholar]
  85. 85.
    Maccracken SA, Sohn JC, Miller IM, Labandeira CC. 2021. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. J. Syst. Palaeontol. 19:131–44
    [Google Scholar]
  86. 86.
    Marchetti L, Forte G, Bernardi M, Wappler T, Hartkopf-Fröder C et al. 2015. Reconstruction of a Late Cisuralian (Early Permian) floodplain lake environment: palaeontology and sedimentology of the Tregiovo Basin (Trentino-Alto Adige, Northern Italy). Palaeogeogr. Palaeoclim. Palaeoecol. 440:180–200
    [Google Scholar]
  87. 87.
    McCoy VE, Wappler T, Labandeira CC 2021. Exceptional fossilization of ecological interactions: plant defenses during the four major expansions of arthropod herbivory in the fossil record. Fossilization: Understanding the Material Nature of Ancient Plants and Animals CT Gee, VE McCoy, M Sander 187–220 Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  88. 88.
    Möller AL, Kaulfuss U, Lee DE, Wappler T. 2018. High richness of insect herbivory from the early Miocene Hindon Maar crater, Otago, New Zealand. PeerJ 5:e2985
    [Google Scholar]
  89. 89.
    Müller C, Wappler T, Kunzmann L. 2018. Insect herbivory patterns in late Eocene coastal lowland riparian associations from central Germany. Palaeogeogr. Palaeoclim. Palaeoecol. 491:170–84
    [Google Scholar]
  90. 90.
    Na YL, Sun CL, Wang HS, Dilcher DL, Yang ZY et al. 2018. Insect herbivory and plant defense on ginkgoalean and bennettitalean leaves of the Middle Jurassic Daohugou Flora from Northeast China and their paleoclimatic implications. Palaeoworld 27:202–10
    [Google Scholar]
  91. 91.
    Opler PA. 1973. Fossil lepidopterous leaf mines demonstrate the age of some insect-plant relationships. Science 179:1321–23
    [Google Scholar]
  92. 92.
    Peris D, Labandeira CC, Delclòs X, Barrón E, Rust J, Wang B 2020. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23:100913
    [Google Scholar]
  93. 93.
    Pinheiro ERS, Gallego J, Iannuzzi R, Cúneo R. 2015. First report of feeding traces of Permian Botrychiopsis leaves from Western Gondwana. Palaios 30:613–19
    [Google Scholar]
  94. 94.
    Poinar G Jr., Kerp H, Haas H 2008. Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants. Nematology 10:9–14
    [Google Scholar]
  95. 95.
    Pott C, McLoughlin S, Wu S, Friis EM. 2012. Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: mechanical defense against herbivorous arthropods. Rev. Palaeobot. Palynol. 169:48–60
    [Google Scholar]
  96. 96.
    Prevec R, Labandeira CC, Neveling J, Gastaldo RA, Looy CV, Bamford M. 2009. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev. Palaeobot. Palynol. 156:454–93
    [Google Scholar]
  97. 97.
    Robledo JM, Sarzetti LC, Anzótegui LM. 2015. Phytophagy on fossil ferns from Argentina (Palo Pintado Formation, late Miocene): a review of their fossil record and ichnotaxonomy. Rev. Bras. Paleontol. 18:225–38
    [Google Scholar]
  98. 98.
    Root RB. 1973. Organization of a plant-arthropod association in simple and diverse habitats. The fauna of collards. Ecol. Monogr. 43:95–124
    [Google Scholar]
  99. 99.
    Schachat SR, Labandeira CC, Chaney DS. 2015. Insect herbivory from early Permian Mitchell Creek Flats of north-central Texas: opportunism in a balanced component community. Palaeogeogr. Palaeoclim. Palaeoecol. 440:830–47
    [Google Scholar]
  100. 100.
    Schachat SR, Labandeira CC, Gordon J, Chaney D, Levi S et al. 2014. Plant-insect interactions from Early Permian (Kungurian) Colwell Creek Pond, north-central Texas: the early spread of herbivory in clastic environments. Int. J. Plant Sci. 175:855–90
    [Google Scholar]
  101. 101.
    Schachat SR, Labandeira CC, Maccracken SA. 2018. The importance of sampling standardization for comparisons of insect herbivory in deep time: a case study from the late Paleozoic. R. Soc. Open Sci. 5:171991
    [Google Scholar]
  102. 102.
    Schachat SR, Maccracken SA, Labandeira CC. 2020. Sampling fossil floras for the study of insect herbivory: How many leaves is enough?. Foss. Rec. 23:15–32
    [Google Scholar]
  103. 103.
    Schachat SH, Payne JL, Boyce CK. 2022. Linking host plants to damage types in the fossil record of insect herbivory. bioRxiv 2021.11.05.467393. https://doi.org/10.1101/2021.11.05.467393
    [Crossref]
  104. 104.
    Schachat SR, Payne JL, Boyce CK, Labandeira CC. 2021. Generating and testing hypotheses about the fossil record of insect herbivory with a theoretical ecospace. Rev. Palaeobot. Palynol. 297:104564
    [Google Scholar]
  105. 105.
    Scott AC, Stephenson J, Chaloner WG. 1992. Interaction and coevolution of plants and arthropods during the Palaeozoic and Mesozoic. Philos. Trans. R. Soc. Lond. B 335:129–65
    [Google Scholar]
  106. 106.
    Scott AC, Taylor TN. 1983. Plant/animal interactions during the Upper Carboniferous. Bot. Rev. 49:259–307
    [Google Scholar]
  107. 107.
    Shcherbakov DE. 2008. Insect recovery after the Permian/Triassic crisis. Alavesia 2:125–31
    [Google Scholar]
  108. 108.
    Slater BJ, McLoughlin S, Hilton J. 2012. Animal-plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. Palaeogeogr. Palaeoclim. Palaeoecol363–64109–26
    [Google Scholar]
  109. 109.
    Smith DM, Nufio CR. 2004. Levels of herbivory in two Costa Rican rain forests: implications for studies of fossil herbivory. Biotropica 36:318–26
    [Google Scholar]
  110. 110.
    Straus A. 1977. Gallen, Minen, und andere Fraßspuren im Pliokän von Willershausen am Harz. Verhand. Bot. Ver. Prov. Brandenburg 113:43–80
    [Google Scholar]
  111. 111.
    Stull GW, Labandeira CC, DiMichele WA, Chaney DS. 2013. The “seeds” on Padgettia readi are insect galls: reassignment of the plant to Odontopteris, the gall to Ovofoligallites n. gen., and the evolutionary implications thereof. J. Paleontol. 87:217–31
    [Google Scholar]
  112. 112.
    Swain A, Azevedo-Schmidt L, Maccracken SA, Currano E, Dunne J et al. 2022. Sampling bias and the robustness of ecological metrics for plant-damage-type association networks. bioRxiv 2022.07.23.501238. https://doi.org/10.1101/2022.07.23.501238
    [Crossref]
  113. 113.
    Swain A, Maccracken SA, Fagan WF, Labandeira CC. 2022. Understanding the ecology of plant-insect herbivore interactions in the fossil record through bipartite networks. Paleobiology 48:223960
    [Google Scholar]
  114. 114.
    Wang X, Ding QL, Santos AA, Wappler T. 2022. Nilssoniopteris longifolius Chang from the Middle-Late Jurassic of China: implications for Bennettitales-insect interactions. Rev. Palaeobot. Palynol. 297:104582
    [Google Scholar]
  115. 115.
    Wang YJ, Labandeira CC, Shih CK, Ding QL, Wang C et al. 2012. Jurassic mimicry between a hangingfly and ginkgo from China. PNAS 109:20514–19
    [Google Scholar]
  116. 116.
    Wappler T, Currano ED, Wilf P, Rust J, Labandeira CC. 2009. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proc. R. Soc. B 276:4271–77
    [Google Scholar]
  117. 117.
    Wappler T, Denk T. 2010. Herbivory in early Tertiary Arctic forests. Palaeogeogr. Palaeoclim. Palaeoecol. 310:283–95
    [Google Scholar]
  118. 118.
    Wappler T, Kustatscher E, Dellantonio E. 2015. Plant-insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)—initial pattern and response to abiotic environmental perturbations. PeerJ 3:e921
    [Google Scholar]
  119. 119.
    Wappler T, Labandeira CC, Rust J, Frankenhäuser H, Wilde V. 2012. Testing for the effects and consequences of mid Paleogene climate change on insect herbivory. PLOS ONE 7:7e40744
    [Google Scholar]
  120. 120.
    Wilf P, Labandeira CC. 1999. Plant-insect associations respond to Paleocene-Eocene warming. Geol. Foren. Forhandl. 122:178–80
    [Google Scholar]
  121. 121.
    Wilf P, Labandeira CC, Johnson KR, Coley PD, Cutter AD. 2001. Insect herbivory, plant defense, and early Cenozoic climate change. PNAS 98:6221–26
    [Google Scholar]
  122. 122.
    Wilf P, Labandeira CC, Johnson KR, Cúneo NR. 2005. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. PNAS 102:1944–48
    [Google Scholar]
  123. 123.
    Wilf P, Labandeira CC, Johnson KR, Ellis B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:1112–15
    [Google Scholar]
  124. 124.
    Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM et al. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993–96
    [Google Scholar]
  125. 125.
    Wing SL, Herrera F, Jaramillo C, Gómez C, Wilf P et al. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. PNAS 106:18627–32
    [Google Scholar]
  126. 126.
    Xiao L, Labandeira CC, Ben-Dov Y, Maccracken SA, Shih C et al. 2021. Early Cretaceous mealybug herbivory on a laurel highlights the deep-time history of angiosperm-scale insect associations. New Phytol 232:1414–23
    [Google Scholar]
  127. 127.
    Xiao L, Labandeira CC, Dilcher DL, Ren D. 2021. Florivory of Early Cretaceous flowers by functionally diverse insects: Implications for early angiosperm pollination. Proc. R. Soc. B 288:20210320
    [Google Scholar]
  128. 128.
    Xiao L, Labandeira CC, Dilcher DL, Ren D. 2022. Arthropod and fungal herbivory at the dawn of angiosperm diversification: the Rose Creek plant assemblage of Nebraska, USA. Cret. Res. 131:105088
    [Google Scholar]
  129. 129.
    Xiao L, Labandeira CC, Dilcher DL, Ren D. 2022. Data, metrics, and methods for arthropod and fungal herbivory at the dawn of angiosperm diversification: the Rose Creek plant assemblage of Nebraska, U.S.A. Data Brief 42:108170
    [Google Scholar]
  130. 130.
    Xiao L, Labandeira CC, Ren D. 2022. Insect herbivory immediately before the eclipse of the gymnosperms: the Dawangzhangzi plant assemblage of Northeastern China. Insect Sci 29:1483520
    [Google Scholar]
  131. 131.
    Xu Q, Jin J, Labandeira CC 2018. Williamson Drive: herbivory of a north-central Texas flora of latest Pennsylvanian age showing discrete component-community structure, early expansion of piercing and sucking, and plant counterdefenses. Rev. Palaeobot. Palynol. 251:28–72
    [Google Scholar]
  132. 132.
    Zhang SH, Chen TY, Zeng X, Yu Y, Zhang Y, Xie SP. 2018. Plant-insect associations from the upper Miocene of Lincang, Yunnan, China. Rev. Palaeobot. Palynol. 259:55–62
    [Google Scholar]
  133. 133.
    Zhou WM, Chen BY, Sun W, He XZ, Hilton J, Wang J 2020. A new gigantopterid genus from the late Permian of the Daha Coalfield, Tibetan Plateau and its implication on plant-insect interactions. Hist. Biol. 33:3228–40
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120120-102849
Loading
/content/journals/10.1146/annurev-ento-120120-102849
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error