1932

Abstract

The land surface comprises the smallest areal fraction of the Earth system's major components (e.g., versus atmosphere or ocean with cryosphere). As such, how is it that some of the largest sources of uncertainty in future climate projections are found in the terrestrial biosphere? This uncertainty stems from how the terrestrial biosphere is modeled with respect to the myriad of biogeochemical, physical, and dynamic processes represented (or not) in numerous models that contribute to projections of Earth's future. Here, we provide an overview of the processes included in terrestrial biosphere models (TBMs), including various approaches to representing any one given process, as well as the processes that are missing and/or uncertain. We complement this with a comprehensive review of individual TBMs, marking the differences, uniqueness, and recent and planned developments. To conclude, we summarize the latest results in benchmarking activities, particularly as linked to recent model intercomparison projects, and outline a path forward to reducing uncertainty in the contribution of the terrestrial biosphere to global atmospheric change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012913-093456
2014-10-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/energy/39/1/annurev-environ-012913-093456.html?itemId=/content/journals/10.1146/annurev-environ-012913-093456&mimeType=html&fmt=ahah

Literature Cited

  1. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W. 1.  et al. 2006. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 19:3337–53 [Google Scholar]
  2. Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A. 2.  et al. 2014. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27:511–26 [Google Scholar]
  3. Bodman RW, Rayner PJ, Karoly DJ. 3.  2013. Uncertainty in temperature projections reduced using carbon cycle and climate observations. Nat. Clim. Change 3:725–29 [Google Scholar]
  4. Baldocchi D. 4.  2008. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56:1–26 [Google Scholar]
  5. Keeling CD, Chin J, Whorf T. 5.  1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–49 [Google Scholar]
  6. Von Humboldt A. 6.  1849. Aspects of Nature, in Different Lands and Different Climates; With Scientific Elucidations Transl. EJ Sabine. Philadelphia: Lea and Blanchard
  7. Grisebach A. 7.  1872. Die Vegetation der Erde nach ihrer klimatischen Anordnung: Ein Abriss der vergleichenden Geographie der Pflanzen. Bd. I und II. Leipzig: Verlag von Wilhelm Engelmann
  8. Köppen W. 8.  1884. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Z 1:215–26 [Google Scholar]
  9. Holdridge LR. 9.  1947. Determination of world plant formations from simple climatic data. Science 105:367–88 [Google Scholar]
  10. Emanuel WR, Shugart HH, Stevenson MP. 10.  1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim. Change 7:29–43 [Google Scholar]
  11. Prentice I, Solomon A. 11.  1991. Vegetation models and global change. Global Changes of the Past RS Bradley 365–83 Boulder, CO: UCAR/Off. Interdisc. Earth Stud. [Google Scholar]
  12. VEMAP Memb. 12.  1995. Vegetation/Ecosystem Modeling and Analysis Project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob. Biogeochem. Cycles 9:407–37 [Google Scholar]
  13. Neilson R, Running S. 13.  1996. Global dynamic vegetation modelling: coupling biogeochemistry and biogeography models. Glob. Change Terr. Ecosyst. 2:451–65 [Google Scholar]
  14. Woodward FI, Lomas MR. 14.  2004. Vegetation dynamics—simulating responses to climatic change. Biol. Rev. 79:643–70 [Google Scholar]
  15. Watt AS. 15.  1947. Pattern and process in the plant community. J. Ecol. 35:1–22 [Google Scholar]
  16. Prentice I, Cowling S. 16.  2013. Dynamic global vegetation models. Encycl. Biodivers. 2:607–89 [Google Scholar]
  17. Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J. 17.  1999. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn. 15:183–203 [Google Scholar]
  18. Sellers PJ, Dickenson RE, Randall DA, Betts AK, Hall FG. 18.  et al. 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–9 [Google Scholar]
  19. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA. 19.  et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7:357–73 [Google Scholar]
  20. Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M. 20.  et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using 5 Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14:2015–39 [Google Scholar]
  21. Arora V. 21.  2002. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. 40:3–13-26 [Google Scholar]
  22. Prentice CI, Bondeau A, Cramer W, Harrison SP, Hickler T. 22.  et al. 2007. Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. Terrestrial Ecosystems in a Changing World JG Canadell 175–92 Berlin: Springer [Google Scholar]
  23. Moorcroft PR. 23.  2006. How close are we to a predictive science of the biosphere?. Trends Ecol. Evol. 21:400–7 [Google Scholar]
  24. Tang G, Bartlein PJ. 24.  2008. Simulating the climatic effects on vegetation: approaches, issues and challenges. Prog. Phys. Geogr. 32:543–56 [Google Scholar]
  25. Fisher RA. 25.  2013. Modelling plant ecology. Environmental Modelling: Finding Simplicity in Complexity J Wainwright, M Mulligan 207–20 Hoboken, NJ: Wiley-Blackwell, 2nd ed.. [Google Scholar]
  26. Raupach M, Barrett D, Briggs P, Kirby J. 26.  2005. Terrestrial biosphere models and forest-atmosphere interactions. Predictions in Ungauged Basins: International Perspectives on the State of the Art and Pathways Forward 301 S Frank, M Sivapalan, K Takeuchi, Y Tachikawa 239–91 Oxfordshire, UK: IAHS Press [Google Scholar]
  27. Eltahir EA, Bras RL. 27.  1996. Precipitation recycling. Rev. Geophys. 34:367–78 [Google Scholar]
  28. Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA. 28.  2006. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–38 [Google Scholar]
  29. Xu D-Q, Shen Y-K. 29.  1997. Midday depression of photosynthesis. Handbook of Photosynthesis M Pessarakli 451–59 New York: Marcel Dekker [Google Scholar]
  30. Sitch S, Cox PM, Collins WJ, Huntingford C. 30.  2007. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–94 [Google Scholar]
  31. Felzer B, Reilly J, Melillo J, Kicklighter D, Sarofim M. 31.  et al. 2005. Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Clim. Change 73:345–73 [Google Scholar]
  32. Farquhar GD, Caemmerer S, Berry JA. 32.  1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90 [Google Scholar]
  33. Collatz GJ, Ball JT, Grivet C, Berry JA. 33.  1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. Forest Meteorol. 54:107–36 [Google Scholar]
  34. Collatz GJ, Ribas-Carbo M, Berry JA. 34.  1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol. 19:519–38 [Google Scholar]
  35. Murray S, Watson I, Prentice I. 35.  2013. The use of dynamic global vegetation models for simulating hydrology and the potential integration of satellite observations. Prog. Phys. Geogr. 37:63–97 [Google Scholar]
  36. Schaefer KM, Schwalm CR, Williams CA, Arain M, Barr AG. 36.  et al. 2012. A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis. J. Geophys. Res. 117:G03010 doi: 10.1029/2012JG001960 [Google Scholar]
  37. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM. 37.  et al. 1993. Terrestrial ecosystem production: a process based model based on global satellite and surface data. Glob. Biogeochem. Cycles 7:811–41 [Google Scholar]
  38. McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL. 38.  et al. 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Glob. Biogeochem. Cycles 6:101–24 [Google Scholar]
  39. van der Tol C, Verhoef W, Rosema A. 39.  2009. A model for chlorophyll fluorescence and photo-synthesis at leaf scale. Agric. Forest Meteorol. 149:96–105 [Google Scholar]
  40. Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS. 40.  et al. 2011. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38:L17706 doi: 10.1029/2011GL048738 [Google Scholar]
  41. Joiner J, Guanter L, Lindstrot R, Voigt M, Vasilkov AP. 41.  et al. 2013. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. Discuss. 6:3883–930 [Google Scholar]
  42. Monteith JL. 42.  1965. Evaporation and the environment. Symp. Soc. Explor. Biol. 19:205–34 [Google Scholar]
  43. Fisher JB, Baldocchi DD, Misson L, Dawson TE, Goldstein AH. 43.  2007. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiol. 27:597–610 [Google Scholar]
  44. Fisher JB, Debiase TA, Qi Y, Xu M, Goldstein AH. 44.  2005. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ. Model. Software 20:783–96 [Google Scholar]
  45. Priestley CHB, Taylor RJ. 45.  1972. On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Weather Rev. 100:81–92 [Google Scholar]
  46. Shuttleworth WJ, Wallace JS. 46.  1985. Evaporation from sparse crops—an energy combination theory. Q. J. R. Meteorol. Soc. 111:839–55 [Google Scholar]
  47. Baldocchi D, Hutchison B, Matt D, McMillen R. 47.  1985. Canopy radiative transfer models for spherical and known leaf inclination angle distributions: a test in an oak-hickory forest. J. Appl. Ecol. 22:539–55 [Google Scholar]
  48. Lloyd J, Patino S, Paiva R, Nardoto G, Quesada C. 48.  et al. 2010. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7:1833–59 [Google Scholar]
  49. Friend AD, Stevens AK, Knox RG, Cannell MGR. 49.  1997. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol. Model. 77:233–55 [Google Scholar]
  50. Sellers P, Berry J, Collatz G, Field C, Hall F. 50.  1992. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 42:187–216 [Google Scholar]
  51. Friend A. 51.  2001. Modelling canopy CO2 fluxes: are ‘big-leaf'simplifications justified?. Glob. Ecol. Biogeogr. 10:603–19 [Google Scholar]
  52. Mercado LM, Huntingford C, Gash JH, Cox PM, Jogireddy V. 52.  2007. Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus B 59:553–65 [Google Scholar]
  53. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C. 53.  et al. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–17 [Google Scholar]
  54. Spitters C, Toussaint H, Goudriaan J. 54.  1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation. Agric. Forest Meteorol. 38:217–29 [Google Scholar]
  55. Brodersen CR, Vogelmann TC, Williams WE, Gorton HL. 55.  2008. A new paradigm in leaf-level photosynthesis: Direct and diffuse lights are not equal. Plant Cell Environ. 31:159–64 [Google Scholar]
  56. Wan Z. 56.  2008. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 112:59–74 [Google Scholar]
  57. Murray SJ. 57.  2014. Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources. Ecohydrology 7:102–14 [Google Scholar]
  58. Thom A. 58.  1971. Momentum absorption by vegetation. Q. J. R. Meteorol. Soc. 97:414–28 [Google Scholar]
  59. Cadule P, Friedlingstein P, Bopp L, Sitch S, Jones CD. 59.  et al. 2010. Benchmarking coupled climate-carbon models against long-term atmospheric CO2 measurements. Glob. Biogeochem. Cycles 24:GB2016 doi: 10.1029/2009GB003556 [Google Scholar]
  60. Poulter B, Heyder U, Cramer W. 60.  2009. Modeling the sensitivity of the seasonal cycle of GPP to dynamic LAI and soil depths in tropical rainforests. Ecosystems 12:517–33 [Google Scholar]
  61. Sellers PJ, Meeson BW, Hall FG, Asrar G, Murphy RE. 61.  et al. 1995. Remote sensing of the land surface for studies of global change: models—algorithms—experiments. Remote Sens. Environ. 51:3–26 [Google Scholar]
  62. Schwalm CR, Williams CA, Schaefer K, Anderson R, Arain MA. 62.  et al. 2010. A model-data intercomparison of CO2 exchange across North America: results from the North American Carbon Program site synthesis. J. Geophys. Res. 115:G00H5 [Google Scholar]
  63. Huntzinger DN, Post WM, Wei Y, Michalak AM, West TO. 63.  et al. 2012. North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecol. Model. 232:144–57 [Google Scholar]
  64. Woodward FI, Cramer W. 64.  1996. Plant functional types and climatic change: introduction. J. Veg. Sci. 7:306–8 [Google Scholar]
  65. Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra J-P. 65.  2010. Ecophysiological and bioclimatic foundations for a global plant functional classification. J. Veg. Sci. 21:300–17 [Google Scholar]
  66. Díaz S, Cabido M. 66.  1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8:463–74 [Google Scholar]
  67. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z. 67.  et al. 2004. The worldwide leaf economics spectrum. Nature 428:821–27 [Google Scholar]
  68. Prentice IC, Meng T, Wang H, Harrison SP, Ni J, Wang G. 68.  2011. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol. 190:169–80 [Google Scholar]
  69. Wright IJ, Reich PB, Cornelissen JH, Falster DS, Garnier E. 69.  et al. 2005. Assessing the generality of global leaf trait relationships. New Phytol. 166:485–96 [Google Scholar]
  70. Fyllas NM, Quesada CA, Lloyd J. 70.  2012. Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspect. Plant Ecol. Evol. Syst. 14:97–110 [Google Scholar]
  71. Kattge J, Diaz S, Lavorel S, Prentice I, Leadley P. 71.  et al. 2011. TRY—a global database of plant traits. Glob. Change Biol. 17:2905–35 [Google Scholar]
  72. Pavlick R, Drewry DT, Bohn K, Reu B, Kleidon A. 72.  2013. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences 10:4137–77 [Google Scholar]
  73. Poulter B, Ciais P, Hodson E, Lischke H, Maignan F. 73.  et al. 2011. Plant functional type mapping for earth system models. Geosci. Model Dev. 4:993–1010 [Google Scholar]
  74. Bonan GB, Levis S, Kergoat L, Oleson KW. 74.  2002. Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Glob. Biogeochem. Cycles 16:55–15-23 doi: 10.1029/2000GB001360 [Google Scholar]
  75. Fisher JB, Sikka M, Sitch S, Ciais P, Poulter B. 75.  et al. 2013. African tropical rainforest net carbon dioxide fluxes in the twentieth century. Philos. Trans. R. Soc. B 368:20120376 [Google Scholar]
  76. Thornley JHM, Cannell MGR. 76.  2000. Modelling the components of plant respiration: representation and realism. Ann. Bot. 85:55–67 [Google Scholar]
  77. Lloyd J, Taylor JA. 77.  1994. On the temperature dependence of soil respiration. Funct. Ecol. 8:315–23 [Google Scholar]
  78. Cannell MGR, Thornley JHM. 78.  2000. Modelling plant respiration: some guiding principles. Ann. Bot. 85:45–54 [Google Scholar]
  79. Phillips RP, Brzostek E, Midgley MG. 79.  2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199:41–51 [Google Scholar]
  80. Phillips RP, Erlitz Y, Bier R, Bernhardt ES. 80.  2008. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22:990–99 [Google Scholar]
  81. Fisher JB, Sitch S, Malhi Y, Fisher RA, Huntingford C, Tan S-Y. 81.  2010. Carbon cost of plant nitrogen acquisition: a mechanistic, globally-applicable model of plant nitrogen uptake and fixation. Glob. Biogeochem. Cycles 24:GB1054 doi: 10.1029/2009GB003621 [Google Scholar]
  82. Malhi Y, Doughty C, Galbraith D. 82.  2011. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R. Soc. B 366:3225–45 [Google Scholar]
  83. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 83.  2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193:30–50 [Google Scholar]
  84. Iwasa Y, Roughgarden J. 84.  1984. Shoot/root balance of plants: optimal growth of a system with many vegetative organs. Theor. Popul. Biol. 25:78–105 [Google Scholar]
  85. Ostle NJ, Smith P, Fisher RA, Woodward FI, Fisher JB. 85.  et al. 2009. Integrating plant-soil interactions into global carbon cycle models. J. Ecol. 97:851–63 [Google Scholar]
  86. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D. 86.  et al. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 10:603–28 [Google Scholar]
  87. Cox PM. 87.  2001. Description of the TRIFFID dynamic global vegetation model Hadley Cent. Tech. Note 24, Met Office, London. http://www.metoffice.gov.uk/media/pdf/9/h/HCTN_24.pdf
  88. Running SW, Hunt ER Jr. 88.  1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling Processes Between Leaf and Landscape Levels JR Ehrlinger, C Field 141–58 San Diego, CA: Academic [Google Scholar]
  89. Sitch S, Smith B, Prentice CI, Arneth A, Bondeau A. 89.  et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9:161–85 [Google Scholar]
  90. Haxeltine A, Prentice IC. 90.  1996. A general model for the light-use efficiency of primary production. Funct. Ecol. 10:551–61 [Google Scholar]
  91. Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC. 91.  et al. 2014. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment Studies. New Phytol. 202:3803–22 [Google Scholar]
  92. Ghimire B, Riley WJ, Koven CD. 92.  2013. Improving representation of nitrogen uptake, allocation, and carbon assimilation in the Community Land Model Presented at Am. Geophys. Union Fall Meet., Dec. 9–13, San Francisco
  93. Tarnocai C. 93.  2006. The effect of climate change on carbon in Canadian peatlands. Glob. Planet. Change 53:222–32 [Google Scholar]
  94. Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P. 94.  et al. 2011. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. USA 108:14769–74 [Google Scholar]
  95. Fisher JB, Badgley G, Blyth E. 95.  2012. Global nutrient limitation in terrestrial vegetation from remote sensing. Glob. Biogeochem. Cycles 26:GB3007 doi: 10.1029/2011GB004252 [Google Scholar]
  96. Davidson EA, Howarth RW. 96.  2007. Nutrients in synergy. Nature 449:1000–1 [Google Scholar]
  97. Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB. 97.  2003. Nitrogen and climate change. Science 302:1512–13 [Google Scholar]
  98. Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM. 98.  2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21:1–15 [Google Scholar]
  99. Zaehle S, Friend AD, Friedlingstein P, Dentener F, Peylin P, Schulz M. 99.  2010. Carbon and nitrogen cycle dynamics in the O-CN land surface model. II: The role of the nitrogen cycle in the historical terrestrial C balance. Glob. Biogeochem. Cycles 24:1–14 [Google Scholar]
  100. Thomas RQ, Zaehle S, Templer PH, Goodale CL. 100.  2013. Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations. Glob. Change Biol. 19:102986–98 [Google Scholar]
  101. Ryan MG, Law BE. 101.  2005. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27 [Google Scholar]
  102. Thompson MV, Randerson JT, Malmström CM, Field CB. 102.  1996. Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink?. Glob. Biogeochem. Cycles 10:711–26 [Google Scholar]
  103. Tuomi M, Vanhala P, Karhu K, Fritze H, Liski J. 103.  2008. Heterotrophic soil respiration—comparison of different models describing its temperature dependence. Ecol. Model. 211:182–90 [Google Scholar]
  104. Rustad LE, Huntington TG, Boone RD. 104.  2000. Controls on soil respiration: implications for climate change. Biogeochemistry 48:1–6 [Google Scholar]
  105. Hayes D, Turner D. 105.  2012. The need for “apples-to-apples” comparisons of carbon dioxide source and sink estimates. Eos Trans. Am. Geophys. Union 93:404–5 [Google Scholar]
  106. Chapin FS III, Woodwell G, Randerson JT, Rastetter EB, Lovett G. 106.  et al. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–50 [Google Scholar]
  107. Essery R, Morin S, Lejeune Y, Menard C. 107.  2013. A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour. 55:131–48 [Google Scholar]
  108. Fisher JB, Whittaker RH, Malhi Y. 108.  2011. ET come home: a critical evaluation of the use of evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 20:1–18 [Google Scholar]
  109. Fisher JB, Tu K, Baldocchi DD. 109.  2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112:901–19 [Google Scholar]
  110. Murray SJ, Foster PN, Prentice IC. 110.  2011. Evaluation of global continental hydrology as simulated by the Land-surface Processes and eXchanges Dynamic Global Vegetation Model. Hydrol. Earth Syst. Sci. 15:91–105 [Google Scholar]
  111. Murray SJ. 111.  2013. Present and future water resources in India: insights from satellite remote sensing and a dynamic global vegetation model. J. Earth Syst. Sci. 122:1–13 [Google Scholar]
  112. Moorcroft PR, Hurtt GC, Pacala SW. 112.  2001. A method for scaling vegetation dynamics: the Ecosystem Demography model (ED). Ecol. Monogr. 7:557–86 [Google Scholar]
  113. Haxeltine A, Prentice IC. 113.  1996. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10:693–709 [Google Scholar]
  114. Arora VK, Boer GJ. 114.  2006. Simulating competition and coexistence between plant functional types in a dynamic vegetation model. Earth Interact. 10:1–30 [Google Scholar]
  115. Cowling SA. 115.  1999. Simulated effects of low atmospheric CO2 on structure and composition of North American vegetation at the Last Glacial Maximum. Glob. Ecol. Biogeogr. 8:81–93 [Google Scholar]
  116. Bugmann H. 116.  2001. A review of forest gap models. Clim. Change 51:259–305 [Google Scholar]
  117. Piao S, Friedlingstein P, Ciais P, Zhou L, Chen A. 117.  2006. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett. 33:L23402 [Google Scholar]
  118. Schimel D, Stephens BB, Fisher JB. 118.  2014. The effect of increasing CO2 on the terrestrial carbon cycle Proc. Natl. Acad. Sci. USA. In press [Google Scholar]
  119. Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C. 119.  et al. 2013. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:341–44 [Google Scholar]
  120. Sala A, Piper F, Hoch G. 120.  2010. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186:274–81 [Google Scholar]
  121. Keane RE, Austin M, Field C, Huth A, Lexer MJ. 121.  et al. 2001. Tree mortality in gap models: application to climate change. Clim. Change 51:509–40 [Google Scholar]
  122. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N. 122.  et al. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytol. 178:719–39 [Google Scholar]
  123. McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M. 123.  2011. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26:523–32 [Google Scholar]
  124. Rothermel RC. 124.  1972. A mathematical model for predicting fire spread in wildland fuels Res. Pap. INT-115, US Dep. Agric., US Forest Serv., Ogden, UT
  125. Prentice I, Kelley D, Foster P, Friedlingstein P, Harrison S, Bartlein P. 125.  2011. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 25:GB3005 [Google Scholar]
  126. Thonicke K, Spessa A, Prentice I, Harrison S, Dong L, Carmona-Moreno C. 126.  2010. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7:1991–2011 [Google Scholar]
  127. Arora VK, Boer GJ. 127.  2005. Fire as an interactive component of dynamic vegetation models. J. Geophys. Res. 110:G02008 doi: 10.1029/2005JG000042 [Google Scholar]
  128. Arneth A, Sitch S, Bondeau A, Butterbach-Bahl K, Foster P. 128.  et al. 2010. From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences 7:121–49 [Google Scholar]
  129. Peñuelas J, Llusià J. 129.  2004. Plant VOC emissions: making use of the unavoidable. Trends Ecol. Evol. 19:402–4 [Google Scholar]
  130. Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B. 130.  et al. 2013. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10:753–88 [Google Scholar]
  131. Hamming RW. 131.  1950. Error detecting and error correcting codes. Bell Syst. Tech. J. 29:147–60 [Google Scholar]
  132. Huntzinger D, Schwalm C, Michalak A, Schaefer K, King A. 132.  et al. 2013. The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project—Part 1: Overview and experimental design. Geosci. Model Dev. 6:2121–33 [Google Scholar]
  133. Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P. 133.  et al. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 19:2117–32 [Google Scholar]
  134. Melillo JM, Borchers J, Chaney J, Fisher H, Fox S. 134.  et al. 1995. Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob. Biogeochem. Cycles 9:407–38 [Google Scholar]
  135. Natali SM, Schuur EAG, Rubin RL. 135.  2012. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100:488–98 [Google Scholar]
  136. Luo Y, Su BO, Currie WS, Dukes JS, Finzi A. 136.  et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–39 [Google Scholar]
  137. Fisher JB, Malhi Y, Torres IC, Metcalfe DB, Weg MJ. 137.  et al. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902 [Google Scholar]
  138. Chapin FS III, Bloom AJ, Field CB, Waring RH. 138.  1987. Plant responses to multiple environmental factors. Bioscience 37:49–57 [Google Scholar]
  139. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW. 139.  et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226 [Google Scholar]
  140. Baldocchi DD. 140.  2005. The role of biodiversity on the evaporation of forests. Forest Diversity and Function: Temperate and Boreal Systems 176 M Scherer-Lorenzen, C Körner, E-D Schulze 131–48 Berlin: Springer [Google Scholar]
  141. Harte J, Shaw R. 141.  1995. Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science 267:876–80 [Google Scholar]
  142. Shaver GR, Chapin FSI. 142.  1980. Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61:662–75 [Google Scholar]
  143. Fisher RA, Williams M, Da Costa AL, Malhi Y, Da Costa RF. 143.  et al. 2007. The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Glob. Change Biol. 13:2361–78 [Google Scholar]
  144. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP. 144.  et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 102:18052–56 [Google Scholar]
  145. Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P. 145.  et al. 2010. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol. 187:647–65 [Google Scholar]
  146. Shi M, Yang Z-L, Lawrence DM, Dickinson RE, Subin ZM. 146.  2013. Spin-up processes in the Community Land Model version 4 with explicit carbon and nitrogen components. Ecol. Model. 263:308–25 [Google Scholar]
  147. Henderson-Sellers A, Yang Z, Dickinson R. 147.  1993. The project for intercomparison of land-surface parameterization schemes. Bull. Am. Meteorol. Soc. 74:1335–49 [Google Scholar]
  148. Schimel DS, Braswell BH, Parton WJ. 148.  1997. Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proc. Natl. Acad. Sci. USA 94:8280–83 [Google Scholar]
  149. Schimel D, Melillo J, Tian H, McGuire AD, Kicklighter D. 149.  et al. 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–6 [Google Scholar]
  150. Kicklighter DW, Bruno M, Dönges S, Esser G, Heimann M. 150.  et al. 1999. A first-order analysis of the potential rôle of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models. Tellus B 51:343–66 [Google Scholar]
  151. Cramer W, Kicklighter D, Bondeau A, Moore B III, Churkina G. 151.  et al. 1999. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5:1–15 [Google Scholar]
  152. McGuire A, Sitch S, Clein J, Dargaville R, Esser G. 152.  et al. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 15:183–206 [Google Scholar]
  153. Nemry B, Francois L, Gérard JC, Bondeau A, Heimann M. 153.  1999. Comparing global models of terrestrial net primary productivity (NPP): analysis of the seasonal atmospheric CO2 signal. Glob. Change Biol. 5:65–76 [Google Scholar]
  154. Redelsperger J-L, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J. 154.  2006. African Monsoon Multidisciplinary Analysis: an international research project and field campaign. Bull. Am. Meteorol. Soc. 87:1739–46 [Google Scholar]
  155. de Gonçalves LGG, Borak JS, Costa MH, Saleska SR, Baker I. 155.  et al. 2013. Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agric. Forest Meteorol. 182–183:111–27 [Google Scholar]
  156. Sitch S, Friedlingstein P, Gruber N, Jones SD, Murray-Tortarolo G. 156.  et al. 2013. Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosci. Discuss. 10:20113–77 [Google Scholar]
  157. Hurtt G, Chini L, Frolking S, Betts R, Feddema J. 157.  et al. 2011. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109:117–61 [Google Scholar]
  158. Luo YQ, Randerson JT, Abramowitz G, Bacour C, Blyth E. 158.  et al. 2012. A framework for benchmarking land models. Biogeosciences 9:3857–74 [Google Scholar]
  159. Schwalm CR, Huntzinger DN, Michalak AM, Fisher JB, Kimball JS. 159.  et al. 2013. Sensitivity of inferred climate model skill to choice of benchmarking datasets and evaluation decisions. Environ. Res. Lett. 8:024028 [Google Scholar]
  160. Kelley DI, Prentice IC, Harrison SP, Wang H, Simard M. 160.  et al. 2013. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10:3313–40 [Google Scholar]
  161. Randerson JT, Hoffman FM, Thornton PE, Mahowald NM, Lindsay K. 161.  et al. 2009. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob. Change Biol. 15:2462–84 [Google Scholar]
  162. Blyth E, Clark D, Ellis R, Huntingford C, Los S. 162.  et al. 2011. A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale. Geosci. Model Dev. 4:255–69 [Google Scholar]
  163. Kelley DI, Prentice IC, Harrison SP, Wang H, Simard M. 163.  et al. 2012. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10:3313–40 [Google Scholar]
  164. Abramowitz G. 164.  2012. Towards a public, standardized, diagnostic benchmarking system for land surface models. Geosci. Model Dev. 5:819–27 [Google Scholar]
  165. Knutti R. 165.  2010. The end of model democracy?. Clim. Change 102:395–404 [Google Scholar]
  166. Keller M, Schimel DS, Hargrove WW, Hoffman FM. 166.  2008. A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ. 6:282–84 [Google Scholar]
  167. Schimel D, Fisher JB, Pavlick R, Asner GP, Saatchi S. 167.  et al. 2014. Observing terrestrial ecosystems and the carbon cycle. Glob. Change Biol. In press
/content/journals/10.1146/annurev-environ-012913-093456
Loading
/content/journals/10.1146/annurev-environ-012913-093456
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error