1932

Abstract

Land-management options for greenhouse gas removal (GGR) include afforestation or reforestation (AR), wetland restoration, soil carbon sequestration (SCS), biochar, terrestrial enhanced weathering (TEW), and bioenergy with carbon capture and storage (BECCS). We assess the opportunities and risks associated with these options through the lens of their potential impacts on ecosystem services (Nature's Contributions to People; NCPs) and the United Nations Sustainable Development Goals (SDGs). We find that all land-based GGR options contribute positively to at least some NCPs and SDGs. Wetland restoration and SCS almost exclusively deliver positive impacts. A few GGR options, such as afforestation, BECCS, and biochar potentially impact negatively some NCPs and SDGs, particularly when implemented at scale, largely through competition for land. For those that present risks or are least understood, more research is required, and demonstration projects need to proceed with caution. For options that present low risks and provide cobenefits, implementation can proceed more rapidly following no-regrets principles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-101718-033129
2019-10-17
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/energy/44/1/annurev-environ-101718-033129.html?itemId=/content/journals/10.1146/annurev-environ-101718-033129&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Intergovernmental Panel on Climate Change (IPCC) 2018. Special Report on Global Warming of 1.5°C Cambridge, UK: Cambridge Univ. Press https://www.ipcc.ch/sr15/
  2. 2. 
    Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) 2018. The Assessment Report on Land Degradation and Restoration. Summary for Policy Makers Bonn, Ger: IPBES https://www.ipbes.net/system/tdf/spm_3bi_ldr_digital.pdf?file=1&type=node&id=28335
  3. 3. 
    Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT et al. 2018. Assessing Nature's Contributions to People. Science 359:270–72
    [Google Scholar]
  4. 4. 
    Millennium Ecosystem Assessment (MEA) 2005. Ecosystems and Human Well-being: Synthesis Washington, DC: Island Press
  5. 5. 
    United Nations (UN) 2018. The United Nations Sustainable Development Goals New York: UN https://sustainabledevelopment.un.org/?menu=1300
  6. 6. 
    Smith P, Davis SJ, Creutzig F, Fuss S, Minx J et al. 2016. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6:42–50
    [Google Scholar]
  7. 7. 
    Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J et al. 2018. Negative emissions: Part 1—research landscape and synthesis. Environ. Res. Lett. 13:063001
    [Google Scholar]
  8. 8. 
    Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F et al. 2018. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13:063002
    [Google Scholar]
  9. 9. 
    Food and Agriculture Organization of the United Nations (FAO) 2015. Global Forest Resources Assessment (FRA) 2015. How are the World's Forests Changing? Rome: FAO http://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/ . , 2nd ed..
  10. 10. 
    Kraxner F, Schepaschenko D, Fuss S, Lunnan A, Kindermann G et al. 2017. Mapping certified forests for sustainable management—a global tool for information improvement through participatory and collaborative mapping. Forest Policy Econ 83:10–18
    [Google Scholar]
  11. 11. 
    International Union for Conservation of Nature (IUCN) 2017. Bonn Challenge Barometer of Progress: Spotlight Report 2017 Gland, Switz: IUCN https://www.iucn.org/sites/dev/files/content/documents/2017/2017-04-25_bonn_challenge_barometer_flyer_web.pdf
  12. 12. 
    Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE et al. 2011. A large and persistent carbon sink in the world's forests. Science 333:988–93
    [Google Scholar]
  13. 13. 
    Edmonds J, Luckow P, Calvin K, Wise M, Dooley J et al. 2013. Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2 capture and storage?. Clim. Change 118:29–43
    [Google Scholar]
  14. 14. 
    Smith LJ, Torn MS. 2013. Ecological limits to terrestrial biological carbon dioxide removal. Clim. Change 118:89–103
    [Google Scholar]
  15. 15. 
    Griscom BW, Adams J, Ellis P, Houghton RA, Lomax G et al. 2017. Natural pathways to climate mitigation. PNAS 114:11645–50
    [Google Scholar]
  16. 16. 
    Lenton TM. 2010. The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Manag 1:145–60
    [Google Scholar]
  17. 17. 
    Yosef G, Walko R, Avisar R, Tatarinov F, Rotenberg E, Yakir D 2018. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. 8:996
    [Google Scholar]
  18. 18. 
    Veldman JW, Overbeck GE, Negreiros D, Mahy G, Le Stradic S et al. 2015. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65:1011–18
    [Google Scholar]
  19. 19. 
    Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ et al. 2005. Trading water for carbon with biological sequestration. Science 310:1944–47
    [Google Scholar]
  20. 20. 
    Houghton RA, Byers B, Nassikas AA 2015. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Change 5:1022–23
    [Google Scholar]
  21. 21. 
    Gutiérrez Rodríguez L, Hogarth NJ, Zhou W, Xie C, Zhang K, Putzel L 2016. China's conversion of cropland to forest program: a systematic review of the environmental and socioeconomic effects. Environ. Evid. 5:21
    [Google Scholar]
  22. 22. 
    Mbow C, Van Noordwijk M, Luedeling E, Neufeldt H, Minang PA, Kowero G 2014. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain 6:61–67
    [Google Scholar]
  23. 23. 
    Smith P, Haberl H, Popp A, Erb K, Lauk C et al. 2013. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Glob. Chang. Biol. 19:2285–302
    [Google Scholar]
  24. 24. 
    Kreidenweis U, Humpenöder F, Stevanović M, Bodirsky BL, Kriegler E et al. 2016. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects. Environ. Res. Lett. 11:85001
    [Google Scholar]
  25. 25. 
    Zedler JB, Kercher S. 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 30:39–74
    [Google Scholar]
  26. 26. 
    Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ et al. 2014. Changes in the global value of ecosystem services. Glob. Environ. Change 26:152–58
    [Google Scholar]
  27. 27. 
    Robertson AI, Phillips MJ. 1995. Mangroves as filters of shrimp pond effluent: predictions and biogeochemical research needs. Hydrobiologia 295:311–21
    [Google Scholar]
  28. 28. 
    Ronnback P. 1999. The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecol. Econ. 29:235–52
    [Google Scholar]
  29. 29. 
    Knight R, Cooper P, Brix H, Vymazal J, Haberl R et al. 2000. Constructed Wetlands for Pollution Control London: IWA Publ.
  30. 30. 
    Keenan LW, Lowe EF. 2001. Determining ecologically acceptable nutrient loads to natural wetlands for water quality improvement. Water Sci. Technol. 44:289–94
    [Google Scholar]
  31. 31. 
    Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M et al. 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat. Bot. 89:155–85
    [Google Scholar]
  32. 32. 
    Nicholls RJ, Hoozemans FMJ, Marchand M 1999. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob. Environ. Change 9:S69–87
    [Google Scholar]
  33. 33. 
    Ezcurra P, Ezcurra E, Garcillán PP, Costa MT, Aburto-Oropeza O 2016. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. PNAS 113:4404–9
    [Google Scholar]
  34. 34. 
    Hey DL, McGuiness D, Beorkrem MN, Conrad DR, Hulsey BD 2002. Flood Damage Reduction in the Upper Mississippi River Basin: An Ecological Means Minneapolis: McKnight Found.
  35. 35. 
    Gewin V. 2018. Rewetting the swamp: Indonesia's bold plan. Scientific American Jan. 31. https://www.scientificamerican.com/article/rewetting-the-swamp-indonesia-rsquo-s-bold-plan/
    [Google Scholar]
  36. 36. 
    Kroeger T, Escobedo FJ, Hernandez JL, Varela S, Delphin S et al. 2014. Reforestation as a novel abatement and compliance measure for ground-level ozone. PNAS 111:E4204–13
    [Google Scholar]
  37. 37. 
    Defra 2009. Ecosystem services of peat - Phase 1. Project code: SP0572 London: Defra http://www.randd.defra.gov.uk/Document.aspx?Document=SP0572_9018_FRP.pdf
  38. 38. 
    Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A, Simard M 2017. Distribution and drivers of global mangrove forest change, 1996–2010. PLOS ONE 12:e0179302
    [Google Scholar]
  39. 39. 
    Smith P. 2012. Soils and climate change. Curr. Opin. Environ. Sustain 4:539–44
    [Google Scholar]
  40. 40. 
    Smith P. 2016. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22:1315–24
    [Google Scholar]
  41. 41. 
    Lal R. 2016. Soil health and carbon management. Food Energy Secur 5:212–22
    [Google Scholar]
  42. 42. 
    Reeves DW. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–67
    [Google Scholar]
  43. 43. 
    Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN et al. 2015. The interdisciplinary nature of SOIL. SOIL 1:117–29
    [Google Scholar]
  44. 44. 
    European Commission 2006. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions, Thematic Strategy for Soil Protection, COM 231 Final Brussels, BE: Eur. Comm.
  45. 45. 
    Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P et al. 2016. The significance of soils and soil science towards realization of the UN sustainable development goals. SOIL 2:111–28
    [Google Scholar]
  46. 46. 
    Soussana J-F, Lutfalla S, Ehrhardt F, Rosenstock T, Lamanna C et al. 2019. Matching policy and science: rationale for the ‘4 per 1000 soils for food security and climate’ initiative. Soil Tillage Res 188:3–15
    [Google Scholar]
  47. 47. 
    Keesstra SD, Geissen V, Mosse K, Piiranen S, Scudiero E et al. 2012. Soil as a filter for groundwater quality. Curr. Opin. Environ. Sustain 4:507–16
    [Google Scholar]
  48. 48. 
    Soil Science Society of America (SSSA) 2015. Soils and products we use. Soils Overview, October 2015 Madison, WI: SSSA https://www.soils.org/files/sssa/iys/october-soils-overview.pdf
  49. 49. 
    Robinson DA, Hockley N, Cooper DM, Emmett BA, Keith AM et al. 2013. Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation. Soil Biol. Biochem. 57:1023–33
    [Google Scholar]
  50. 50. 
    Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ et al. 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1:665–85
    [Google Scholar]
  51. 51. 
    United States Department of Agriculture (USDA) 2018. Soil Health Nuggets Washington, DC: USDA https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1101660.pdf
  52. 52. 
    Stone AG, Scheurell SJ, Darby HM 2004. Suppression of soilborne diseases in field agricultural systems: organic matter management, cover cropping and other cultural practices. Soil Organic Matter in Sustainable Agriculture F Magdoff, RR Weil 131–77 Boca Raton, FL: CRC Press LLC
    [Google Scholar]
  53. 53. 
    Pachepsky YA, Yu O, Karns JS, Shelton DR, Guber AK, Van Kessel JS 2008. Strain-dependent variations in attachment of E. coli to soil particles of different sizes. Int. Agrophys. 22:61
    [Google Scholar]
  54. 54. 
    Zhao W, Liu X, Huang Q, Cai P 2015. Streptococcus suis sorption on agricultural soils: role of soil physico-chemical properties. Chemosphere 119:52–58
    [Google Scholar]
  55. 55. 
    Callahan MT, Micallef SA, Buchanan RL 2016. Soil type, soil moisture, and field slope influence the horizontal movement of Salmonella enterica and Citrobacter freundii from floodwater through soil. J. Food Prot. 80:189–97
    [Google Scholar]
  56. 56. 
    Hassard F, Gwyther CL, Farkas K, Andrews A, Jones V et al. 2016. Abundance and distribution of enteric bacteria and viruses in coastal and estuarine sediments—a review. Front. Microbiol. 7:1692
    [Google Scholar]
  57. 57. 
    Munang R, Andrews J, Alverson K, Mebratu D 2014. Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ. Sci. Policy Sustain. Dev. 56:18–24
    [Google Scholar]
  58. 58. 
    Food and Agriculture Organization of the United Nations (FAO), Intergovernmental Technical Panel on Soils (ITPS) 2015. Status of the World's Soil Resources. Main Report Rome: FAO, ITPS http://www.fao.org/3/a-i5199e.pdf
  59. 59. 
    Smith P, House JI, Bustamante M, Sobocká J, Harper R et al. 2016. Global change pressures on soils from land use and management. Glob. Change Biol. 22:1008–28
    [Google Scholar]
  60. 60. 
    Lal R. 2006. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. L. Degrad. Dev. 17:197–209
    [Google Scholar]
  61. 61. 
    Pan G, Smith P, Pan W 2009. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric. Ecosyst. Environ. 129:344–48
    [Google Scholar]
  62. 62. 
    Lal R. 2001. Soil degradation by erosion. L. Degrad. Dev. 12:519–39
    [Google Scholar]
  63. 63. 
    Sutton MA, Nemitz E, Erisman JW, Beier C, Butterbach Bahl K et al. 2007. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species. Environ. Pollut. 150:125–39
    [Google Scholar]
  64. 64. 
    Pimental D, Harvey C, Resosudarmo P, Sinclair K, Kurz D et al. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–23
    [Google Scholar]
  65. 65. 
    Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P 2016. Climate-smart soils. Nature 532:49–57
    [Google Scholar]
  66. 66. 
    Liao Y, Wu WL, Meng FQ, Smith P, Lal R 2015. Increase in soil organic carbon by agricultural intensification in Northern China. Biogeosciences 12:1403–13
    [Google Scholar]
  67. 67. 
    Schmidt H-P, Anca-Couce A, Hagemann N, Werner C, Gerten D et al. 2019. Pyrogenic carbon capture & storage (PyCCS). Glob. Change Biol. Bioenergy 19:11573–59
    [Google Scholar]
  68. 68. 
    Werner C, Schmidt H-P, Gerten D, Lucht W, Kammann C 2018. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5°C. Environ. Res. Lett. 13:044036
    [Google Scholar]
  69. 69. 
    Cornelissen G, Pandit NR, Taylor P, Pandit BH, Sparrevik M, Schmidt HP 2016. Emissions and char quality of flame-curtain “Kon Tiki” kilns for farmer-scale charcoal/biochar production. PLOS ONE 11:e0154617
    [Google Scholar]
  70. 70. 
    Wang J, Xiong Z, Kuzyakov Y 2015. Biochar stability in soil: meta-analysis of decomposition and priming effects. Glob. Change Biol. Bioenergy 8:512–23
    [Google Scholar]
  71. 71. 
    Glaser B, Birk JJ. 2012. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82:39–51
    [Google Scholar]
  72. 72. 
    Solomon D, Lehmann J, Fraser JA, Leach M, Amanor K et al. 2016. Indigenous African soil enrichment as a climate-smart sustainable agriculture alternative. Front. Ecol. Environ. 14:71–76
    [Google Scholar]
  73. 73. 
    Liu S, Zhang Y, Zong Y, Hu Z, Wu S et al. 2016. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. Glob. Change Biol. Bioenergy 8:392–406
    [Google Scholar]
  74. 74. 
    Xiang Y, Deng Q, Duan H, Guo Y 2017. Effects of biochar application on root traits: a meta-analysis. Glob. Change Biol. Bioenergy 9:1563–72
    [Google Scholar]
  75. 75. 
    Jeffery S, Abalos D, Prodana M, Bastos AC, van Groenigen JW et al. 2017. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12:053001
    [Google Scholar]
  76. 76. 
    Lehmann J, Abiven S, Kleber M, Pan G, Singh BP et al. 2015. Persistence of biochar in soil. Biochar for Environmental Management—Science, Technology and Implementation J Lehmann, S Joseph London: Earthscan
    [Google Scholar]
  77. 77. 
    Cornelissen G, Martinsen V, Shitumbanuma V, Alling V, Breedveld G et al. 2013. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 3:256–74
    [Google Scholar]
  78. 78. 
    Hagemann N, Joseph S, Schmidt H-P, Kammann CI, Harter J et al. 2017. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Comm. 8:1089
    [Google Scholar]
  79. 79. 
    Kammann CI, Schmidt H-P, Messerschmidt N, Linsel S, Steffens D et al. 2015. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 5:11080
    [Google Scholar]
  80. 80. 
    Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N et al. 2018. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci. Total Environ. 651:2354–64
    [Google Scholar]
  81. 81. 
    Godlewska P, Schmidt HP, Ok YS, Oleszczuk P 2017. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol. 246:193–202
    [Google Scholar]
  82. 82. 
    Kammann C, Ippolito J, Hagemann N, Borchard N, Cayuela ML et al. 2017. Biochar as a tool to reduce the agricultural greenhouse-gas burden—knowns, unknowns and future research needs. J. Environ. Eng. Landsc. Manag. 25:114–39
    [Google Scholar]
  83. 83. 
    Peng X, Deng Y, Peng Y, Yue K 2018. Effects of biochar addition on toxic element concentrations in plants: a meta-analysis. Sci. Total Environ. 617:970–77
    [Google Scholar]
  84. 84. 
    Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan DM et al. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33
    [Google Scholar]
  85. 85. 
    Tan X, Liu S, Liu Y, Gu Y, Zeng G et al. 2017. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour. Technol. 227:359–72
    [Google Scholar]
  86. 86. 
    Zhou H, Zhang D, Wang P, Liu X, Cheng K et al. 2017. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis. Agric. Ecosyst. Environ. 239:80–89
    [Google Scholar]
  87. 87. 
    Liu Q, Zhang Y, Liu B, Amonette JE, Lin Z et al. 2018. How does biochar influence soil N cycle? A meta-analysis. Plant. Soil 426:211–25
    [Google Scholar]
  88. 88. 
    Oguntunde PG, Abiodun BJ, Ajayi AE, Van De Giesen N 2008. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 171:591–96
    [Google Scholar]
  89. 89. 
    Liang C, Zhu X, Fu S, Méndez A, Gascó G, Paz-Ferreiro J 2014. Biochar alters the resistance and resilience to drought in a tropical soil. Environ. Res. Lett. 9:064013
    [Google Scholar]
  90. 90. 
    Schmidt H-P, Pandit BH, Cornelissen G, Kammann C 2017. Biochar-based fertilization with liquid nutrient enrichment: 21 field trials covering 13 crop species in Nepal. Land. Degrad. Dev. 28:2324–42
    [Google Scholar]
  91. 91. 
    Jenny H. 1941. Factors of Soil Formation: A System of Quantitative Pedology New York: McGraw-Hill
  92. 92. 
    Hartmann J, West AJ, Renforth P, Köhler P, Christina L et al. 2013. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51:113–49
    [Google Scholar]
  93. 93. 
    Schuiling RD, Krijgsman P. 2006. Enhanced weathering: an effective and cheap tool to sequester CO2. Clim. Change 74:349–54
    [Google Scholar]
  94. 94. 
    Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J et al. 2018. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 4:138–47
    [Google Scholar]
  95. 95. 
    Manning DAC. 2008. Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2. Mineral. Mag. 72:639
    [Google Scholar]
  96. 96. 
    Renforth P, Henderson G. 2017. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55:636–74
    [Google Scholar]
  97. 97. 
    Kantola IB, Masters MD, Beerling DJ, Long SP, DeLucia DH 2017. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett. 13:20160714
    [Google Scholar]
  98. 98. 
    IFASTAT 2018. Supply Reports for Potash, and Phosphorus Paris: IFASTAT
  99. 99. 
    West TO, McBride AC. 2005. The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric. Ecosyst. Environ. 108:145–54
    [Google Scholar]
  100. 100. 
    Renforth P 2012. The potential of enhanced weathering in the UK. Int. J. Greenh. Gas Con. 10:229–43
    [Google Scholar]
  101. 101. 
    Moosdorf N, Renforth P, Hartmann J 2014. Carbon dioxide efficiency of terrestrial enhanced weathering. Environ. Sci. Tech. 48:4809–16
    [Google Scholar]
  102. 102. 
    Royal Society, Royal Academy of Engineering 2018. Greenhouse Gas Removal London: R. Soc.
  103. 103. 
    Montgomery DR. 2007. Soil erosion and agricultural sustainability. PNAS 104:13268–72
    [Google Scholar]
  104. 104. 
    Gillman GP. 1980. The effect of crushed basalt scoria on the cation exchange properties of a highly weathered soil. Soil Sci. Soc. Am. J. 44:465–68
    [Google Scholar]
  105. 105. 
    Gillman GP, Burkett DC, Coventry RJ 2001. A laboratory study of application of basalt dust to highly weathered soils: effect on soil cation chemistry. Aust. J. Soil Res. 39:799–811
    [Google Scholar]
  106. 106. 
    Wright SF, Upadhyaya A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant. Soil 198:97–107
    [Google Scholar]
  107. 107. 
    Baldock JA, Skjemstad JO. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organ. Geochem. 31:697–710
    [Google Scholar]
  108. 108. 
    Shewry PR, Pellny TK, Lovegrove A 2016. Is modern wheat bad for our health?. Nat. Plants 2:16097
    [Google Scholar]
  109. 109. 
    Guntzer F, Keller C, Meunier J-D 2012. Benefits of plant silicon for crops: a review. Agron. Sustain. Dev. 32:201–13
    [Google Scholar]
  110. 110. 
    Tubana BS, Babu T, Datnoff LE 2016. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci 181:393–411
    [Google Scholar]
  111. 111. 
    Manning DA. 2010. Mineral sources of potassium for plant nutrition. A review. Agron. Sustain. Dev. 30:281–94
    [Google Scholar]
  112. 112. 
    Caldeira K, Wickett ME. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature 425:365
    [Google Scholar]
  113. 113. 
    Taylor LL, Quirk J, Thorley RM, Kharecha PA, Hansen J et al. 2016. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Change 6:402–6
    [Google Scholar]
  114. 114. 
    Yu G, Xiao J, Hu S, Polizzotto ML, Zhao F et al. 2017. Mineral availability as a key regulator of soil carbon storage. Env. Sci. Tech. 51:4960–49
    [Google Scholar]
  115. 115. 
    Rawls WJ, Pachepsky YA, Ritchie JC, Sobecki TM, Bloodworth H 2003. Effect of soil organic carbon on soil water retention. Geoderma 116:61–76
    [Google Scholar]
  116. 116. 
    Pegg S. 2006. Mining and poverty reduction: transforming rhetoric into reality. J. Clean Prod. 14:376–87
    [Google Scholar]
  117. 117. 
    Manning DA. 2008. Phosphate minerals, environmental pollution and sustainable agriculture. Elements 4:105–8
    [Google Scholar]
  118. 118. 
    Amundson J, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL 2015. Soil and human security in the 21st century. Science 348:1261071
    [Google Scholar]
  119. 119. 
    Grundnig PW, Höflinger W, Mauschitz G, Liu Z, Zhang G, Wang Z 2006. Influence of air humidity on the suppression of fugitive dust by using a water-spraying system. China Particuol 4:229–33
    [Google Scholar]
  120. 120. 
    Younger PL, Wolkersdorfer C. 2004. Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water Environ 23:s2–s80
    [Google Scholar]
  121. 121. 
    Edwards DP, Lim F, James RH, Pearce CR, Scholes J et al. 2017. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biol. Lett. 13:20160715
    [Google Scholar]
  122. 122. 
    Clarke LE, Jiang KJ, Akimoto K, Babiker M, Blanford G et al. 2014. Assessing transformation pathways. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.413–510 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  123. 123. 
    Holland RA, Eigenbrod F, Muggeridge A, Brown G, Clarke D, Taylor G 2015. A synthesis of the ecosystem services impact of second generation bioenergy crop production. Renew. Sustain. Energ. Rev. 46:30–40
    [Google Scholar]
  124. 124. 
    Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R et al. 2015. Bioenergy and climate change mitigation: an assessment. Glob. Change Biol. Bioenergy 7:916–44
    [Google Scholar]
  125. 125. 
    Liska AJ, Yang HS, Milner M, Goddard S, Blanco-Canqui H et al. 2014. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nat. Clim. Change 4:398–401
    [Google Scholar]
  126. 126. 
    Georgescou M, Lobell DB, Field CB 2011. Direct climate effects of perennial bioenergy crops in the United States. PNAS 108:4307–12
    [Google Scholar]
  127. 127. 
    Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.465–570 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  128. 128. 
    Cibin R, Trybula E, Chaubey I, Brouder SM, Volenec JJ 2016. Watershed‐scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. Glob. Change Biol. Bioenergy 8:837–48
    [Google Scholar]
  129. 129. 
    Hejazi MI, Edmonds J, Clarke L, Kyle P, Davies E et al. 2014. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 18:2859–83
    [Google Scholar]
  130. 130. 
    Bonsch M, Humpenoeder F, Popp A, Bodirsky B, Dietrich JP et al. 2015. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy 8:11–24
    [Google Scholar]
  131. 131. 
    International Energy Agency (IEA) 2018. World Energy Balances Paris: IEA https://www.iea.org/statistics/balances/
  132. 132. 
    Calvin K, Wise M, Kyle P, Patel P, Clarke L, Edmonds J 2014. Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Clim. Change 123:691–704
    [Google Scholar]
  133. 133. 
    Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F et al. 2017. Land use futures in the Shared Socio-Economic Pathways. Glob. Environ. Change 42:331–45
    [Google Scholar]
  134. 134. 
    Fujimori S, Hasegawa T, Krey V, Riahi K, Bertram C et al. 2019. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain 2:386–96
    [Google Scholar]
  135. 135. 
    Robledo-Abad C, Althaus H, Berndes G, Bolwig S, Corbera E et al. 2017. Bioenergy production and sustainable development: the science base for policy-making remains limited. Glob. Change Biol. Bioenergy 9:541–56
    [Google Scholar]
  136. 136. 
    Hasegawa T, Fujimori S, Havlík P, Valin H, Bodirsky BL et al. 2018. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8:699–703
    [Google Scholar]
  137. 137. 
    West J, Smith SJ, Silva RA, Naik V, Zhang Y et al. 2013. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3:885–99
    [Google Scholar]
  138. 138. 
    Rao S, Pachauri S, Dentener F, Kinney P, Klimont Z et al. 2013. Better air for better health: forging synergies in policies for energy access, climate change and air pollution. Glob. Environ. Change 23:1122–30
    [Google Scholar]
  139. 139. 
    Tilman D, Hill J, Lehman C 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–600
    [Google Scholar]
  140. 140. 
    Popp A, Lotze-Campen H, Leimbach M, Knopf B, Beringer T et al. 2011. On sustainability of bio-energy production: integrating co-emissions from agricultural intensification. Biomass Bioenergy 35:4770–80
    [Google Scholar]
  141. 141. 
    Food and Agriculture Organization of the United Nations (FAO) 2016. Increasing the resilience of agricultural livelihoods Rome: FAO http://www.fao.org/3/a-i5615e.pdf
  142. 142. 
    Humpenöder F, Popp A, Bodirsky B, Weindl I, Biewald A et al. 2018. Large-scale bioenergy production: How to resolve sustainability trade-offs. ? Environ. Res. Lett. 13:024011
    [Google Scholar]
  143. 143. 
    Popp A, Rose SK, Calvin K, van Vuuren DP, Dietrich JP et al. 2014. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123:495–509
    [Google Scholar]
  144. 144. 
    Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A et al. 2016. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–91
    [Google Scholar]
  145. 145. 
    Maxwell SL, Fuller RA, Brooks TM, Watson JEM 2016. The ravages of guns, nets and bulldozers. Nature 536:146–45
    [Google Scholar]
  146. 146. 
    Heck V, Gerten D, Lucht W, Popp A 2018. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8:151–55
    [Google Scholar]
  147. 147. 
    Rowe R, Hanley M, Goulson D, Clarke D, Doncaster CP, Taylor G 2011. Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 35:325–36
    [Google Scholar]
  148. 148. 
    Richards M, Pogson M, Dondini M, Jones EO, Hastings A et al. 2017. High-resolution spatial modelling of greenhouse gas emissions from land-use change to energy crops in the United Kingdom. Glob. Change Biol. Bioenergy 9:627–44
    [Google Scholar]
  149. 149. 
    Milner S, Lovett A, Holland R, Sunnenberg G, Hastings A et al. 2016. Potential impacts on ecosystem services of land use transitions to second generation bioenergy crops in GB. Glob. Change Biol. Bioenergy 8:317–33
    [Google Scholar]
  150. 150. 
    Bustamante M, Robledo-Abad C, Harper R, Mbow C, Ravindranath NH et al. 2014. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the Agriculture, Forestry and Other Land Use (AFOLU) sector. Glob. Change Biol. 20:3270–90
    [Google Scholar]
/content/journals/10.1146/annurev-environ-101718-033129
Loading
/content/journals/10.1146/annurev-environ-101718-033129
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error