1932

Abstract

We review the major conceptual models of atmospheric moisture transport, which describe the link between evaporation from the ocean and precipitation over the continents. We begin by summarizing some of the basic aspects of the structure and geographical distribution of the two major mechanisms of atmospheric moisture transport, namely low-level jets (LLJs) and atmospheric rivers (ARs). We then focus on a regional analysis of the role of these mechanisms in extreme precipitation events with particular attention to the intensification (or reduction) of moisture transport and the outcome, in terms of precipitation anomalies and subsequent flooding (drought), and consider changes in the position and occurrence of LLJs and ARs with respect to any associated flooding or drought. We then conclude with a graphical summary of the impacts of precipitation extremes, highlighting the usefulness of this information to hydrologists and policymakers, and describe some future research challenges including the effects of possible changes to ARs and LLJs within the context of future warmer climates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-110615-085558
2016-10-17
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/energy/41/1/annurev-environ-110615-085558.html?itemId=/content/journals/10.1146/annurev-environ-110615-085558&mimeType=html&fmt=ahah

Literature Cited

  1. Peixoto JP, Oort AH. 1.  1992. Physics of Climate New York: Am. Inst. Phys520
  2. Yu L, Weller RA. 2.  2007. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Am. Meteor. Soc. 88:527–39 [Google Scholar]
  3. Trenberth KE, Dai A, Rasmussen RM, Parsons DB. 3.  2003. The changing character of precipitation. Bull. Am. Meteor. Soc. 84:1205–17 [Google Scholar]
  4. Bales RC.4.  2003. Hydrology: overview. Encyclopedia of Atmospheric Sciences GR North, JA Pyle, F Zhang 968–73 Philadelphia: Elsevier, 2nd ed.. [Google Scholar]
  5. Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK. 5.  et al. 2013. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers Geneva, Switz.: Intergov. Panel Climate Change
  6. Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A. 6.  2010. On the origin of continental precipitation. Geophys. Res. Lett. 37:L13804 [Google Scholar]
  7. Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K. 7.  et al. 2012. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 50:4RG4003 [Google Scholar]
  8. Gimeno L, Nieto R, Drumond A, Castillo R, Trigo RM. 8.  2013. Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophys. Res. Lett. 40:1–8 [Google Scholar]
  9. Dominguez F, Praveen K, Vivoni ER. 9.  2008. Precipitation recycling variability and ecoclimatological stability—a study using NARR data. Part II: North American monsoon region. J. Clim. 21:5187–203 [Google Scholar]
  10. Trigo RM, Añel J, Barriopedro D, García-Herrera R, Gimeno L. 10.  et al. 2013. The record winter drought of 2011–12 in the Iberian Peninsula, in explaining extreme events of 2012 from a climate perspective. Bull. Am. Meteor. Soc. 94:9S41–S45 [Google Scholar]
  11. Stohl A, James P. 11.  2004. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: method description, validation, and demonstration for the August 2002 flooding in Central Europe. J. Hydrometeor. 5:656–78 [Google Scholar]
  12. Stensrud DJ.12.  1996. Importance of low-level jets to climate. J. Clim. 9:1698–711 [Google Scholar]
  13. Marengo JA, Soares WR, Saulo S, Nicolini M. 13.  2004. Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J. Clim. 17:2261–80 [Google Scholar]
  14. Gimeno L, Nieto R, Vazquez M, Lavers D. 14.  2014. Atmospheric rivers: a minireview. Front. Earth Sci. 2:2 [Google Scholar]
  15. Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR. 15.  2011. Atmospheric rivers, floods and the water resources of California. Water 3:445–78 [Google Scholar]
  16. Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw DJ, Wade AJ. 16.  2011. Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett. 38:L23803 [Google Scholar]
  17. Trigo RM, Varino F, Ramos AM, Valente MA, Zêzere JL. 17.  et al. 2014. The record precipitation and flood event in Iberia in December 1876: description and synoptic analysis. Front. Earth Sci. 2:3 [Google Scholar]
  18. Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R. 18.  et al. 2006. Toward a unified view of the American monsoon systems. J. Clim. 19:4977–5000 [Google Scholar]
  19. Thorncroft CD, Nguyen H, Zhang C, Peyrillé P. 19.  2011. Annual cycle of the West African monsoon: regional circulations and associated water vapour transport. Q. J. Roy. Meteor. Soc. 137:129–47 [Google Scholar]
  20. Redmond KT.20.  2002. The depiction of drought. Bull. Am. Meteor. Soc. 83:1143–47 [Google Scholar]
  21. Stohl A, Forster C, Sodemann H. 21.  2008. Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N: a tale of hurricanes and an atmospheric river. J. Geophys. Res. 113:D05102 [Google Scholar]
  22. Seneviratne SI, Lüthi D, Litschi M, Schär C. 22.  2006. Land-atmosphere coupling and climate change in Europe. Nature 443:205–9 [Google Scholar]
  23. Coelho CS, Oliveira C, Ambrizzi T, Reboita M, Carpenedo C. 23.  et al. 2015. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim. Dyn. 45:1–16 [Google Scholar]
  24. Zhu Y, Newell RE. 24.  1998. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 126:725–35 [Google Scholar]
  25. Newell RE, Newell NE, Zhu Y, Scott C. 25.  1992. Tropospheric rivers?—a pilot study. Geophys. Res. Lett. 19:242401–4 [Google Scholar]
  26. Knippertz P, Wernli H. 26.  2010. A Lagrangian climatology of tropical moisture exports to the Northern hemispheric extratropics. J. Clim. 23:987–1003 [Google Scholar]
  27. Bao J-W, Michelson SA, Neiman PJ, Ralph FM, Wilczak JM. 27.  2006. Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: their formation and connection to tropical moisture. Mon. Weather Rev. 134:1–18 [Google Scholar]
  28. Lackmann GM, Gyakum JR. 28.  1999. Heavy cold-season precipitation in the northwestern United States: synoptic climatology and an analysis of the flood of 17–18 January 1986. Weather Forecast 14:5687–700 [Google Scholar]
  29. Dirmeyer PA, Kinter JL III, Michalak AM, Jackson R. 29.  2009. The “Maya Express”: floods in the US Midwest. EOS 90:12101–2 [Google Scholar]
  30. Arraut JM, Nobre C, Barbosa H, Obregon G, Marengo J. 30.  2012. Aerial rivers and lakes: looking at large-scale moisture transport and its relation to Amazonia and to subtropical rainfall in South America. J. Clim. 25:543–56 [Google Scholar]
  31. Rivera ER, Dominguez F, Castro CL. 31.  2014. Atmospheric rivers and cool season extreme precipitation events in the Verde River basin of Arizona. J. Hydrometeorol. 15:813–29 [Google Scholar]
  32. Cavazos T, Rivas D. 32.  2004. Variability of extreme precipitation events in Tijuana, Mexico. Clim. Res. 25:229–43 [Google Scholar]
  33. Carlson TN.33.  1980. Mid-Latitude Weather Systems London: HarperCollins Acad.
  34. Ralph FM, Neiman PJ, Rotunno R. 34.  2005. Dropsonde observations in low-level jets over the Northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: mean vertical-profile and atmospheric-river characteristics. Mon. Weather Rev. 133:889–910 [Google Scholar]
  35. Ralph FM, Neiman PJ, Wick GA. 35.  2004. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Weather Rev. 132:1721–45 [Google Scholar]
  36. Dettinger M, Ralph FM, Lavers D. 36.  2015. Setting the stage for a global science of atmospheric rivers. EOS 96. doi:10.1029/2015EO038675
  37. Wick GA, Neiman PJ, Ralph FM. 37.  2013. Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Trans. Geosci. Remote Sensing 51:42166–76 [Google Scholar]
  38. Ramos AM, Trigo RM, Liberato MLR, R Tomé. 38.  2015. Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeor. 16:579–97 [Google Scholar]
  39. Guan B, Waliser DE. 39.  2015. Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos. 120:2412514–35 [Google Scholar]
  40. Lavers DA, Villarini G, Allan RP, Wood EF, Wade AJ. 40.  2012. The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res. 117:D20106 [Google Scholar]
  41. Ralph FM, Neiman PJ, Kiladis GN, Weickmann K, Reynolds DW. 41.  2011. A multiscale observational case study of a pacific atmospheric river exhibiting tropical-extratropical connections and a mesoscale frontal wave. Mon. Weather Rev. 139:1169–89 [Google Scholar]
  42. Ralph FM, Dettinger MD. 42.  2011. Storms, floods, and the science of atmospheric rivers. EOS 92:32265–66 [Google Scholar]
  43. Dettinger MD.43.  2004. Fifty-two years of “pineapple-express” storms across the West Coast of North America PIER Project Rep. CEC-500-2005-004 2, US Geol. Surv., Scripps Inst. Oceanogr. Calif. Energy Comm.
  44. Lavers DA, Villarini G. 44.  2013. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 403259–64 [Google Scholar]
  45. Lavers DA, Allan RP, Villarini G, Lloyd-Hughes B, Brayshaw DJ, Wade AJ. 45.  2013. Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett. 8:034010 [Google Scholar]
  46. Liepert BG.46.  2013. Atmospheric rivers in changing climate. Environ. Res. Lett. 8:3031006 [Google Scholar]
  47. Nicholson S.47.  2016. The Turkana low-level jet: mean climatology and association with regional aridity. Int. J. Climatol. 36:2598–614 [Google Scholar]
  48. Blackadar AK.48.  1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Am. Meteor. Soc. 38:283–90 [Google Scholar]
  49. Bonner WD.49.  1968. Climatology of the low-level jet. Mon. Weather Rev. 96:833–50 [Google Scholar]
  50. Whiteman CD, Bian X, Zhong S. 50.  1997. Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J. Appl. Meteor. 36:1363–76 [Google Scholar]
  51. Jiang Q, Wang S, O'Neil L. 51.  2010. Some insights into the characteristics and dynamics of the Chilean low-level coastal jet. Mon. Weather Rev. 138:3185–206 [Google Scholar]
  52. Parish T.52.  2000. Forcing of the summer low-level jet along the California coast. J. Appl. Meteorol. 39:2421–33 [Google Scholar]
  53. Liu M, Westphal DL, Holt TR, Xu Q. 53.  2000. Numerical simulation of a low-level jet over complex terrain in southern Iran. Mon. Weather Rev. 128:1309–27 [Google Scholar]
  54. Rife DL, Pinto JO, Monaghan AJ, Davis CA, Hannon JR. 54.  2010. Global distribution and characteristics of diurnally varying low-level jets. J. Clim. 23:5041–64 [Google Scholar]
  55. Mo KC, Berbery EH. 55.  2004. Low-level jets and the summer precipitation regimes over North America. J. Geophys. Res. 109:D06117 [Google Scholar]
  56. Higgins RW, Yao Y, Yarosh ES, Janowiak JE, Mo KC. 56.  1997. Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Clim. 10:481–507 [Google Scholar]
  57. Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J. 57.  et al. 2006. The South American low-level jet experiment. Bull. Am. Meteor. Soc. 87:63–77 [Google Scholar]
  58. Rotunno R.58.  1983. On the linear theory of land and sea breeze. J. Atmos. Sci. 40:1999–2009 [Google Scholar]
  59. Wallace J.59.  1975. Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Weather Rev. 103:406–19 [Google Scholar]
  60. Nogues-Paegle J, Mo KC. 60.  1997. Alternating wet and dry conditions over South America during summer. Mon. Weather Rev. 125:279–91 [Google Scholar]
  61. Zhang C, Woodworth P, Guojun G. 61.  2006. The seasonal cycle in the lower troposphere over West Africa from sounding observations. Q. J. Roy. Meteor. Soc. 132:2559–82 [Google Scholar]
  62. Joseph PV, Sijikumar S. 62.  2004. Intraseasonal variability of the low level jet stream of Asian summer monsoon. J. Clim. 17:1449–58 [Google Scholar]
  63. Miller D, Fritsch JM. 63.  1991. Mesoscale convective complexes in the western Pacific region. Mon. Weather Rev. 119:2978–92 [Google Scholar]
  64. Monaghan AJ, Rife DL, Pinto JO, Davis CA, Hannan JR. 64.  2010. Global precipitation extremes associated with diurnally varying low-level jets. J. Clim. 23:5065–84 [Google Scholar]
  65. Benton GS, Estoque MA. 65.  1954. Water-vapor transfer over the North American continent. J. Meteorol. 11:462–77 [Google Scholar]
  66. Helfand HM, Schubert SD. 66.  1995. Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Clim. 8:784–806 [Google Scholar]
  67. Anderson BT, Roads JO, Chen S-C, Juang H-M. 67.  2000. Regional simulation of the low-level monsoon winds over the Gulf of California and southwestern United States. J. Geophys. Res. 105:17955–69 [Google Scholar]
  68. Brenner IS.68.  1974. A surge of maritime tropical air—Gulf of California to the Southwestern United States. Mon. Weather Rev. 102:375–89 [Google Scholar]
  69. Fuller RD, Stensrud DJ. 69.  2000. The relationship between tropical easterly waves and surges over the Gulf of California during the North American monsoon. Mon. Weather Rev. 128:2983–89 [Google Scholar]
  70. Higgins RW, Shi W, Hain C. 70.  2004. Relationships between Gulf of California moisture surges and precipitation in the Southwestern United States. J. Clim. 17:2983–97 [Google Scholar]
  71. Carleton AM.71.  1986. Synoptic-dynamic character of “bursts” and “breaks” in the southwest U.S. summer precipitation singularity. J. Clim. 6:605–23 [Google Scholar]
  72. Cavazos T, Comrie AC, Liverman DM. 72.  2002. Intraseasonal anomalies associated with wet monsoons in southeast Arizona. J. Clim. 15:2477–90 [Google Scholar]
  73. Anderson BT, Roads JO, Chen S-C. 73.  2000. Large-scale forcing of summertime monsoon surges over the Gulf of California and the southwestern United States. J. Geophys. Res. 105:24455–67 [Google Scholar]
  74. Douglas MW, Leal JC. 74.  2003. Summertime surges over the Gulf of California: aspects of their climatology, mean structure, and evolution from radiosonde, NCEP reanalysis, and rainfall data. Weather Forecast 18:55–74 [Google Scholar]
  75. Higgins RW, Shi W. 75.  2005. Relationships between Gulf of California moisture surges and tropical cyclones in the Eastern Pacific basin. J. Clim. 18:4601–20 [Google Scholar]
  76. Hu H, Dominguez F. 76.  2015. Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeorol. 16:19–35 [Google Scholar]
  77. Mo KC, Nogues-Paegle J, Paegle J. 77.  1995. Physical mechanisms of the 1993 summer floods. J. Atmos. Sci. 52:879–95 [Google Scholar]
  78. Arritt RW, Rink TD, Segal M, Todey DP, Clark CA. 78.  1997. The Great Plains low-level jet during the warm season of 1993. Mon. Weather Rev. 125:1–17 [Google Scholar]
  79. Dirmeyer PA, Kinter JL. 79.  2010. Floods over the US Midwest: a regional water cycle perspective. J. Hydrometeorol. 11:1172–81 [Google Scholar]
  80. Dirmeyer PA, Brubaker KL, DelSole T. 80.  2009. Import and export of atmospheric water vapor between nations. J. Hydrol. 365:11–22 [Google Scholar]
  81. Mestas-Nuñez AM, Enfield DB, Zhang C. 81.  2007. Water vapor fluxes over the Intra-Americas Sea: seasonal and interannual variability and associations with rainfall. J. Clim. 20:1910–22 [Google Scholar]
  82. Lavers DA, Villarini G. 82.  2013. Atmospheric rivers and flooding over the Central United States. J. Clim. 26:7829–36 [Google Scholar]
  83. Barandiaran D, Wang SY, Hilburn K. 83.  2013. Observed trends in the Great Plains low-level jet and associated precipitation changes in relation to recent droughts. Geophys. Res. Lett. 40:6247–51 [Google Scholar]
  84. Ralph FM, Neiman PJ, Wick GA, Gutman SI, Dettinger MD. 84.  et al. 2006. Flooding on California's Russian River: role of atmospheric rivers. Geophys. Res. Lett. 33:L13801 [Google Scholar]
  85. Neiman PJ, Ralph FM, Wick GA, Lundquist JD, Dettinger MD. 85.  2008. Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeorol. 9:22–47 [Google Scholar]
  86. Neiman PJ, Schick LJ, Ralph FM, Hughes M, Wick GA. 86.  2011. Flooding in western Washington: the connection to atmospheric rivers. J. Hydrometeorol. 12:1–22 [Google Scholar]
  87. Hughes M, Mahoney KM, Neiman PJ, Moore BJ, Alexander M, Ralph FM. 87.  2014. The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: sensitivity of modeled precipitation to terrain height and atmospheric river orientation. J. Hydrometeorol. 15:1954–74 [Google Scholar]
  88. Neiman PJ, Ralph FM, Moore BJ, Hughes M, Mahoney KM. 88.  et al. 2013. The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeorol. 14:460–84 [Google Scholar]
  89. Rutz JJ, Steenburgh WJ. 89.  2012. Quantifying the role of atmospheric rivers in the interior western United States. Atmos. Sci. Lett. 13:257–61 [Google Scholar]
  90. Knippertz P, Martin JE. 90.  2007. A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid Southwestern United States. Weather Forecast 22:125–44 [Google Scholar]
  91. Dettinger MD.91.  2013. Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor. 14:1721–32 [Google Scholar]
  92. Dettinger MD, Ingram BL. 92.  2013. The coming mega storms. Sci. Amer. 308:64–71 [Google Scholar]
  93. Amador JA.93.  2008. The Intra-Americas Sea low-level jet. Ann. N. Y. Acad. Sci. 1146:153–88 [Google Scholar]
  94. Poveda G, Mesa OJ. 94.  1999. The CHOCO low-level jet and two others jets over Colombia: climatology and variability during ENSO [in Spanish]. Rev. Acad. Colomb. Cienc. 23:89517–28 [Google Scholar]
  95. Poveda G, Jaramillo L, Vallejo LF. 95.  2014. Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res. 50:98–118 [Google Scholar]
  96. Sakamoto MS, Ambrizzi T, Poveda G. 96.  2011. Moisture sources and life cycle of convective systems over western Colombia. Adv. Meteorol. 2011:1–11 [Google Scholar]
  97. Durán-Quesada AM, Gimeno L, Amador JA, Nieto R. 97.  2010. Moisture sources for Central America: identification of moisture sources using a Lagrangian analysis technique. J. Geophys. Res. 115:D05103 [Google Scholar]
  98. Marengo JA.98.  2005. Characteristics and spatio-temporal variability of the Amazon River Basin Water Budget. Clim. Dyn. 24:11–22 [Google Scholar]
  99. Drumond A, Nieto R, Gimeno L, Ambrizzi T. 99.  2008. A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J. Geophys. Res. 113:D14128 [Google Scholar]
  100. Drumond A, Marengo J, Ambrizzi T, Nieto R, Moreira L, Gimeno L. 100.  2014. The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis. Hydrol. Earth Syst. Sci. 18:2577–98 [Google Scholar]
  101. Arraut JM, Satyamurty P. 101.  2009. Precipitation and water vapor transport in the Southern Hemisphere with emphasis on the South American region. J. Appl. Meteor. Climatol. 48:1902–12 [Google Scholar]
  102. Martinez JA, Dominguez F. 102.  2014. Sources of atmospheric moisture for the La Plata River Basin. J. Clim. 27:6737–53 [Google Scholar]
  103. Marengo JA, Nobre CA, Tomasella J, Oyama MD, Oliveira GS. 103.  et al. 2008. The drought of Amazonia in 2005. J. Clim. 21:495–516 [Google Scholar]
  104. Marengo JA.104.  2006. On the hydrological cycle of the Amazon Basin: a historical review and current state-of-the-art. Rev. Brasil. Meteorol. 21:1–19 [Google Scholar]
  105. Zemp DC, Schleussner C-F, Barbosa HMJ, van der Ent RJ, Donges JF. 105.  et al. 2014. On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 14:13337–59 [Google Scholar]
  106. Spracklen DV, Arnold SR, Taylor CM. 106.  2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–85 [Google Scholar]
  107. Marengo JA, Espinoza JC. 107.  2016. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36:1033–50 [Google Scholar]
  108. Viale M, Nuñez MN. 108.  2011. Climatology of winter orographic precipitation over the subtropical Central Andes and associated synoptic and regional characteristics. J. Hydrometeor. 12:481–507 [Google Scholar]
  109. Falvey M, Garreaud R. 109.  2007. Wintertime precipitation episodes in Central Chile: associated meteorological conditions and orographic influences. J. Hydrometeor. 8:171–93 [Google Scholar]
  110. Liberato MLR, Ramos AM, Trigo RM, Trigo IF, Durán-Quesada AM. 110.  et al. 2013. Moisture sources and large-scale dynamics associated with a flash flood event. Lagrangian Modeling of the Atmosphere J Lin, D Brunner, C Gerbig, A Stohl, A Luhar, P Webley 111–26 Washington, DC: Am. Geophys. Union [Google Scholar]
  111. Lavers DA, Villarini G. 111.  2015. The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol. 522:382–90 [Google Scholar]
  112. Eiras-Barca J, Brands S, Miguez-Macho G. 112.  2016. Seasonal variations in North Atlantic atmospheric river activity and associations with anomalous precipitation over the Iberian Atlantic Margin. J. Geophys. Res. Atmos. 121:931–48 [Google Scholar]
  113. Couto FT, Salgado R, Costa MJ, Prior V. 113.  2015. Precipitation in the Madeira Island over a 10-year period and the meridional water vapour transport during the winter seasons. Int. J. Climatol. 35:3748–59 [Google Scholar]
  114. Sodemann H, Stohl A. 114.  2013. Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Weather Rev. 141:2850–68 [Google Scholar]
  115. Ramos AM, Nieto R, Tomé R, Gimeno L, Trigo RM. 115.  et al. 2016. Atmospheric rivers moisture sources from a Lagrangian perspective. Earth Syst. Dyn. 7:371–84 [Google Scholar]
  116. Zêzere JL, Pereira S, Tavares AO, Bateira C, Trigo RM. 116.  et al. 2014. DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal. Nat. Hazards 72:503–32 [Google Scholar]
  117. Pereira S, Ramos AM, Zêzere JL, Trigo RM, Vaquero JM. 117.  2015. Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of December 1909 in Iberia. Nat. Hazards Earth Syst. Sci. Discuss. 3:5805–45 [Google Scholar]
  118. Couto FT, Salgado R, Costa MJ. 118.  2012. Analysis of intense rainfall events on Madeira Island during the 2009/2010 winter. Nat. Hazards Earth Syst. Sci. 12:2225–40 [Google Scholar]
  119. Ranjha R, Svensson G, Tjernström M, Semedo A. 119.  2013. Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus A 65:20412 [Google Scholar]
  120. Christakos K, Varlas G, Reuder J, Katsafados P, Papadopoulos A. 120.  2014. Analysis of a low-level coastal jet off the Norwegian coast. Energy Procedia 53:162–72 [Google Scholar]
  121. Mason SJ, Jury MR. 121.  1997. Climatic variability and change over southern Africa: a reflection on underlying processes. Prog. Phys. Geogr. 21:23–50 [Google Scholar]
  122. Blamey R, Reason CJC. 122.  2007. Relationships between Antarctic sea-ice and South African winter rainfall. Clim. Res. 33:183–93 [Google Scholar]
  123. D'Abreton P, Tyson P. 123.  1995. Divergent and non-divergent water vapour transport over southern Africa during wet and dry conditions. Meteor. Atmos. Phys. 55:47–59 [Google Scholar]
  124. Cook C, Reason CJC, Hewitson BC. 124.  2004. Wet and dry spells within particular wet and dry summers in the South African summer rainfall region. Clim. Res. 26:17–31 [Google Scholar]
  125. Pu B, Cook KH. 125.  2012. Role of the West African westerly jet in Sahel rainfall variations. J. Clim. 25:2880–96 [Google Scholar]
  126. Hart NCG, Reason CJC, Fauchereau N. 126.  2010. Tropical-extratropical interactions over southern Africa: three cases of heavy summer season rainfall. Mon. Weather Rev. 138:2608–23 [Google Scholar]
  127. Macron C, Pohl B, Richard Y, Bessafi M. 127.  2014. How do tropical temperate troughs form and develop over southern Africa?. J. Clim. 27:1633–47 [Google Scholar]
  128. Singleton AT, Reason CJC. 128.  2007. Variability in the characteristics of cut-off low pressure systems over subtropical southern Africa. Int. J. Climatol. 27:295–310 [Google Scholar]
  129. Klinman M, Reason CJC. 129.  2008. On the peculiar storm track of TC Favio during the 2006–2007 Southwest Indian Ocean tropical cyclone season and relationships to ENSO. Met. Atmos. Phys. 100:233–42 [Google Scholar]
  130. Blamey RC, Reason CJC. 130.  2013. The role of mesoscale convective complexes in southern Africa summer rainfall. J. Clim. 26:1654–68 [Google Scholar]
  131. Manhique A, Reason CJC, Silinto B, Zucula J, Raiva I. 131.  et al. 2015. Extreme rainfall and floods in southern Africa in January 2013 and associated circulation patterns. Nat. Hazards 77:2679–91 [Google Scholar]
  132. Singleton AT, Reason CJC. 132.  2006. Numerical simulations of a severe rainfall event over the Eastern Cape coast of South Africa: sensitivity to sea surface temperature and topography. Tellus A 58:3355–67 [Google Scholar]
  133. Muller A, Reason CJC, Fauchereau N. 133.  2008. Extreme rainfall in the Namib desert during late summer 2006 and influences of regional ocean variability. Int. J. Climatol. 28:1061–70 [Google Scholar]
  134. Blamey R, Reason CJC. 134.  2009. Numerical simulation of a mesoscale convective system over the east coast of South Africa. Tellus A 61:17–34 [Google Scholar]
  135. Smith IN, Wilson L, Suppiah R. 135.  2008. Characteristics of the Northern Australian rainy season. J. Clim. 21:174298–311 [Google Scholar]
  136. Pope M, Jakob C, Reeder MJ. 136.  2009. Regimes of the north Australian wet season. J. Clim. 22:246699–715 [Google Scholar]
  137. Black MT, Lane TP. 137.  2015. An improved diagnostic for summertime rainfall along the eastern seaboard of Australia. Int. J. Climatol. 35:80–92 [Google Scholar]
  138. Allen SC.138.  1980. Observational characteristics of the low-level jet at Daly Waters during Project Koorin. Aust. Meteorol. Mag. 28:47–56 [Google Scholar]
  139. Brook RR.139.  1985. The Koorin nocturnal low-level jet. Boundary-Layer Meteorol 32:2133–54 [Google Scholar]
  140. Ackerley D, Berry G, Jakobb C, Reedera MJ. 140.  2014. The roles of diurnal forcing and large-scale moisture transport for initiating rain over northwest Australia in a GCM. Q. J. R. Meteorol. Soc. 140:2515–26 [Google Scholar]
  141. Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ. 141.  et al. 2009. What causes southeast Australia's worst droughts?. GRL 36:L04706 [Google Scholar]
  142. Baines PG.142.  1980. The dynamics of the Southerly Buster. Aust. Meteor. Mag. 28:4175–200 [Google Scholar]
  143. McInnes KL, McBride JL. 143.  1993. Australian Southerly Busters. Part I. Analysis of a numerically simulated case study. Mon. Weather Rev. 121:71904–20 [Google Scholar]
  144. Reboita MS, Nieto R, Gimeno L, Da Rocha RP, Ambrizzi T. 144.  et al. 2010. Climatological features of cutoff low systems in the Southern Hemisphere. J. Geophys. Res. Atmos. 115:D17104 [Google Scholar]
  145. Qi L, Leslie LM, Zhao SX. 145.  1999. Cut-off low pressure systems over southern Australia: climatology and case study. J. Clim. 19:151633–49 [Google Scholar]
  146. Sinclair MR.146.  1993. A diagnostic study of the extratropical precipitation resulting from Tropical Cyclone Bola. Mon. Weather Rev. 121:102690–707 [Google Scholar]
  147. Ananthakrishnan R, Pathan JM. 147.  1981. Pentad rainfall charts and space time variations of rainfall over India and the adjoining areas Res. Rep. 036, Ramdurg House, Ind. Inst. Trop. Meteor., Pune, Ind. http://www.tropmet.res.in/∼lip/Publication/RR-pdf/RR-36.pdf
  148. Pisharoty PR.148.  1965. Evaporation from the Arabian Sea and Indian southwest monsoon. Proceedings of the Symposium on Meteorological Results of IIOE, ed. Pisharotypp PR. 43–54 Bombay, India: Int. Indian Ocean Exped. Meteorol. Dep. [Google Scholar]
  149. Ramesh Kumar MR, Schluessel P. 149.  1998. Air sea interaction over the Indian Ocean during the two contrasting monsoon years 1987 and 1988 studied with satellite data. Theor. Appl. Climatol. 60:219–31 [Google Scholar]
  150. Swapna P, Ramesh Kumar MR. 150.  2002. Role of low level flow on the summer monsoon rainfall over the Indian subcontinent during two contrasting monsoon years. J. Indian Geophys. Union 6:3123–37 [Google Scholar]
  151. Joseph PV, Simon A. 151.  2005. Weakening trend of the southwest monsoon current through peninsular India from 1950 to the present. Curr. Sci. 89:687–94 [Google Scholar]
  152. Ramesh Kumar MR, Krishnan R, Sankar S, Unnikrishnan AS, Pai DS. 152.  2009. Increasing trend of “break-monsoon” conditions over India—role of ocean-atmosphere processes in the Indian Ocean. IEEE Geosci. Remote Sens. Lett. 6:2332–36 [Google Scholar]
  153. Ramesh Kumar MR, Babu AK, Reason C. 153.  2009. On the role of convective systems over the northwest Pacific and monsoon activity over the Indian subcontinent. Meteorol. Appl. 16:353–60 [Google Scholar]
  154. Preethi B, Revadekar JV, Kripalani RH. 154.  2009. Anomalous behaviour of the Indian summer monsoon 2009. J. Earth Syst. Sci. 120:5783–94 [Google Scholar]
  155. Newman M, Kiladis GN, Weickmann KM, Ralph FM, Sardeshmukh PD. 155.  2012. Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Clim. 25:7341–61 [Google Scholar]
  156. Dacre H, Clark P, Martinez-Alvarado O, Stringer M, Lavers D. 156.  2015. How do atmospheric rivers form?. Bull. Am. Meteor. Soc.1243–55 [Google Scholar]
  157. Warner MD, Mass CF, Salathé EP Jr. 157.  2015. Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. J. Hydrometeor. 16:118–28 [Google Scholar]
  158. Soares WR, Marengo JA. 158.  2009. Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. Int. J. Climatol. 28:1395–414 [Google Scholar]
  159. Gorodetskaya IV, Tsukernik M, Claes K, Ralph MF, Neff WD, Van Lipzig NP. 159.  2014. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41:176199–206 [Google Scholar]
  160. Martins HS, LDA, Moraes OLL. 160.  2013. Low level jets in the Pantanal wetland nocturnal boundary layer—case studies. Am. J. Environ. Eng. 3:132–47 [Google Scholar]
/content/journals/10.1146/annurev-environ-110615-085558
Loading
/content/journals/10.1146/annurev-environ-110615-085558
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error