1932

Abstract

The ocean holds vast quantities of carbon that it continually exchanges with the atmosphere through the air-sea interface. Because of its enormous size and relatively rapid exchange of carbon with the atmosphere, the ocean controls atmospheric CO concentration and thereby Earth's climate on timescales of tens to thousands of years. This review examines the basic functions of the ocean's carbon cycle, demonstrating that the ocean carbon inventory is determined primarily by the mass of the ocean, by the chemical speciation of CO in seawater, and by the action of the solubility and biological pumps that draw carbon into the ocean's deeper layers, where it can be sequestered for decades to millennia. The ocean also plays a critical role in moderating the impacts of climate change by absorbing an amount of carbon equivalent to about 25% of anthropogenic CO emissions over the past several decades. However, this also leads to ocean acidification and reduces the chemical buffering capacity of the ocean and its future ability to take up CO. This review closes with a look at the uncertain future of the ocean carbon cycle and the scientific challenges that this uncertainty brings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120920-111307
2022-10-17
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-120920-111307.html?itemId=/content/journals/10.1146/annurev-environ-120920-111307&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bolin B. 1970. The carbon cycle. Sci. Am. 223:3124–35
    [Google Scholar]
  2. 2.
    Kump LR, Brantley SL, Arthur MA. 2000. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28:611–67
    [Google Scholar]
  3. 3.
    Crowley TJ, Berner RA. 2001. CO2 and climate change. Science 292:5518870–72
    [Google Scholar]
  4. 4.
    Berner R, Lasaga A, Garrels R. 1983. Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:7641–83
    [Google Scholar]
  5. 5.
    Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on earth. PNAS 115:256506–11
    [Google Scholar]
  6. 6.
    Scharlemann JP, Tanner EV, Hiederer R, Kapos V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5:181–91
    [Google Scholar]
  7. 7.
    Burton MR, Sawyer GM, Granieri D. 2013. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75:1323–54
    [Google Scholar]
  8. 8.
    Gaillardet J, Dupré B, Louvat P, Allegre C. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159:1–43–30
    [Google Scholar]
  9. 9.
    Cartapanis O, Galbraith ED, Bianchi D, Jaccard SL. 2018. Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Climate Past 14:111819–50
    [Google Scholar]
  10. 10.
    Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PA. 2013. The changing carbon cycle of the coastal ocean. Nature 504:747861–70
    [Google Scholar]
  11. 11.
    Regnier P, Resplandy L, Najjar RG, Ciais P. 2022. The land-to-ocean loops of the global carbon cycle. Nature 603:7901401–10
    [Google Scholar]
  12. 12.
    Friedlingstein P, Jones MW, O'Sullivan M, Andrew RM, Hauck J et al. 2019. Global Carbon Budget 2019. Earth Syst. Sci. Data 11:41783–838
    [Google Scholar]
  13. 13.
    Ito A. 2011. A historical meta-analysis of global terrestrial net primary productivity: Are estimates converging?. Glob. Change Biol. 17:103161–75
    [Google Scholar]
  14. 14.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:5374237–40
    [Google Scholar]
  15. 15.
    Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global Carbon Budget 2020. Earth Syst. Sci. Data 12:43269–340
    [Google Scholar]
  16. 16.
    Revelle R, Suess HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:118–27
    [Google Scholar]
  17. 17.
    Broecker WS. 1982. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11:2151–97
    [Google Scholar]
  18. 18.
    Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl CA Jr., Guenther PR et al. 1976. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28:6538–51
    [Google Scholar]
  19. 19.
    Nevison CD, Mahowald NM, Doney SC, Lima ID, Van der Werf GR et al. 2008. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO2. J. Geophys. Res. Biogeosci. 113:G1G01010
    [Google Scholar]
  20. 20.
    MacFarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R et al. 2006. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33:L14810
    [Google Scholar]
  21. 21.
    Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP et al. 2001. Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects. SIO Ref. Ser.1–6 https://escholarship.org/uc/item/09v319r9
    [Google Scholar]
  22. 22.
    Archer D. 2005. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. Oceans 110:C9C09S05
    [Google Scholar]
  23. 23.
    Dickens GR. 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213:3–4169–83
    [Google Scholar]
  24. 24.
    Hansell DA. 2013. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5:421–45
    [Google Scholar]
  25. 25.
    Buch K. 1933. Der borsäuregehalt des meerwassers und seine bedeutung bei der berechnung des kohlensäuresystems im meerwasser [The boric acid content of seawater and its importance in the calculation of the carbonic acid system in seawater]. Rapp. Cons. Explor. Mer. 85:71–75
    [Google Scholar]
  26. 26.
    Lyman J. 1972. 38.—Development of ideas concerning the carbon dioxide system in sea water up to 1940. Proc. R. Soc. Edinburgh Sect. B Biol. Sci. 72:1381–87
    [Google Scholar]
  27. 27.
    Mehrbach C, Culberson C, Hawley J, Pytkowicx R. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnol. Oceanogr. 18:6897–907
    [Google Scholar]
  28. 28.
    Dickson A, Millero FJ. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap. 34:101733–43
    [Google Scholar]
  29. 29.
    Broecker WS, Peng TH. 1974. Gas exchange rates between air and sea. Tellus 26:1–221–35
    [Google Scholar]
  30. 30.
    Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. Oceans 97:C57373–82
    [Google Scholar]
  31. 31.
    Weiss R. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2:3203–15
    [Google Scholar]
  32. 32.
    Zeebe RE, Wolf-Gladrow D. 2001. CO2in Seawater: Equilibrium, Kinetics, and Isotopes Elsevier Oceanogr. Ser. 65 Amsterdam: Elsevier Sci.
  33. 33.
    Egleston ES, Sabine CL, Morel FM. 2010. Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 24:1GB1002
    [Google Scholar]
  34. 34.
    Broecker WS, Takahashi T, Simpson H, Peng TH. 1979. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:4417409–18
    [Google Scholar]
  35. 35.
    Lefevre N, Ciabrini J, Michard G, Brient B, DuChaffaut M, Merlivat L. 1993. A new optical sensor for pCO2 measurements in seawater. Mar. Chem. 42:3–4189–98
    [Google Scholar]
  36. 36.
    Lauvset SK, Lange N, Tanhua T, Bittig HC, Olsen A et al. 2021. An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021. Earth Syst. Sci. Data 13:125565–89
    [Google Scholar]
  37. 37.
    Lewis E, Wallace D 1998. Program developed for CO2 system calculations Tech. Rep., Environ. Syst. Sci. Data Infrastruct. Virtual Ecosyst., US Off. Sci. Tech. Inf. Washington, DC:
  38. 38.
    Emerson S, Hedges J. 2008. Chemical Oceanography and the Marine Carbon Cycle Cambridge, UK: Cambridge Univ. Press
  39. 39.
    Eakins BW, Sharman GF. 2010. Volumes of the world's oceans from ETOPO1 NOAA Natl. Geophys. Data Ctr. Boulder, CO:
  40. 40.
    Trenberth KE, Smith L. 2005. The mass of the atmosphere: a constraint on global analyses. J. Climate 18:6864–75
    [Google Scholar]
  41. 41.
    DeVries T. 2014. The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Glob. Biogeochem. Cycles 28:7631–47
    [Google Scholar]
  42. 42.
    Volk T, Hoffert MI 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present ET Sundquist, WS Broecker 99–110 Geophys. Monogr. Ser. 32 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  43. 43.
    Broecker WS. 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46:101689–705
    [Google Scholar]
  44. 44.
    Martin JH. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:11–13
    [Google Scholar]
  45. 45.
    Sigman DM, Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:6806859–69
    [Google Scholar]
  46. 46.
    Bolin B, Eriksson E. 1959. Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion. Atmos. Sea Motion 1:30–142
    [Google Scholar]
  47. 47.
    Emery W, Meincke J. 1986. Global water masses: summary and review. Oceanolog. Acta 9:4383–91
    [Google Scholar]
  48. 48.
    Gordon A. 2001. Bottom water formation. Encyclopedia of Ocean Sciences JH Steele, SA Thorpe, KK Turekian 415–21 San Diego, CA: Academic Press. , 2nd ed..
    [Google Scholar]
  49. 49.
    Ito T, Follows MJ. 2003. Upper ocean control on the solubility pump of CO2. J. Mar. Res. 61:4465–89
    [Google Scholar]
  50. 50.
    Toggweiler J, Gnanadesikan A, Carson S, Murnane R, Sarmiento JL. 2003. Representation of the carbon cycle in box models and GCMs: 1. Solubility pump. Glob. Biogeochem. Cycles 17:1026
    [Google Scholar]
  51. 51.
    DeVries T, Primeau F. 2009. Atmospheric pCO2 sensitivity to the solubility pump: role of the low-latitude ocean. Glob. Biogeochem. Cycles 23:4GB4020
    [Google Scholar]
  52. 52.
    Murnane R, Sarmiento JL, Le Quéré C 1999. Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Glob. Biogeochem. Cycles 13:2287–305
    [Google Scholar]
  53. 53.
    Sarmiento JL, Gruber N. 2013. Ocean Biogeochemical Dynamics Princeton, NJ: Princeton Univ. Press
  54. 54.
    Wanninkhof R, Park GH, Takahashi T, Sweeney C, Feely R et al. 2013. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10:31983–2000
    [Google Scholar]
  55. 55.
    Wu Y, Hain MP, Humphreys MP, Hartman S, Tyrrell T. 2019. What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?. Biogeosciences 16:132661–81
    [Google Scholar]
  56. 56.
    Broecker WS. 1991. The great ocean conveyor. Oceanography 4:79–89
    [Google Scholar]
  57. 57.
    Lozier MS. 2010. Deconstructing the conveyor belt. Science 328:59851507–11
    [Google Scholar]
  58. 58.
    DeVries T, Holzer M. 2019. Radiocarbon and helium isotope constraints on deep ocean ventilation and mantle-3He sources. J. Geophys. Res. Oceans 124:53036–57
    [Google Scholar]
  59. 59.
    Khatiwala S, Primeau F, Holzer M. 2012. Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett. 325:116–25
    [Google Scholar]
  60. 60.
    Galbraith ED, Skinner LC. 2020. The biological pump during the last glacial maximum. Annu. Rev. Mar. Sci. 12:559–86
    [Google Scholar]
  61. 61.
    Kwon EY, Sarmiento JL, Toggweiler J, DeVries T. 2011. The control of atmospheric pCO2 by ocean ventilation change: the effect of the oceanic storage of biogenic carbon. Glob. Biogeochem. Cycles 25:3GB3026
    [Google Scholar]
  62. 62.
    Marinov I, Gnanadesikan A, Sarmiento JL, Toggweiler J, Follows M, Mignone B. 2008. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Glob. Biogeochem. Cycles 22:3GB3007
    [Google Scholar]
  63. 63.
    Ito T, Follows MJ. 2005. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63:4813–39
    [Google Scholar]
  64. 64.
    Elderfield H. 2002. Carbonate mysteries. Science 296:55731618–21
    [Google Scholar]
  65. 65.
    Lee Z, Weidemann A, Kindle J, Arnone R, Carder KL, Davis C. 2007. Euphotic zone depth: its derivation and implication to ocean-color remote sensing. J. Geophys. Res. Oceans 112:C3C03009
    [Google Scholar]
  66. 66.
    Falkowski PG, Barber RT, Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:5374200–6
    [Google Scholar]
  67. 67.
    Schlitzer R. 2002. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep Sea Res. Part II Top. Stud. Oceanogr. 49:9–101623–44
    [Google Scholar]
  68. 68.
    DeVries T, Weber T. 2017. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31:3535–55
    [Google Scholar]
  69. 69.
    Laws EA, Falkowski PG, Smith WO Jr., Ducklow H, McCarthy JJ. 2000. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14:41231–46
    [Google Scholar]
  70. 70.
    Dunne JP, Sarmiento JL, Gnanadesikan A. 2007. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21:4GB4006
    [Google Scholar]
  71. 71.
    Siegel DA, Buesseler KO, Behrenfeld MJ, Benitez-Nelson CR, Boss E et al. 2016. Prediction of the export and fate of global ocean net primary production: the EXPORTS science plan. Front. . Mar. Sci. 3:22
    [Google Scholar]
  72. 72.
    Alldredge AL, Gotschalk C. 1989. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. Part A Oceanogr. Res. Pap. 36:2159–71
    [Google Scholar]
  73. 73.
    Steinberg DK, Landry MR. 2017. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9:413–44
    [Google Scholar]
  74. 74.
    Saba GK, Burd AB, Dunne JP, Hernández-León S, Martin AH et al. 2021. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66:51639–64
    [Google Scholar]
  75. 75.
    Bianchi D, Carozza DA, Galbraith ED, Guiet J, DeVries T. 2021. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 7:41eabd7554
    [Google Scholar]
  76. 76.
    Roshan S, DeVries T. 2017. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8:2036
    [Google Scholar]
  77. 77.
    Dall'Olmo G, Dingle J, Polimene L, Brewin RJ, Claustre H. 2016. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9:11820–23
    [Google Scholar]
  78. 78.
    Omand MM, D'Asaro EA, Lee CM, Perry MJ, Briggs N et al. 2015. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348:6231222–25
    [Google Scholar]
  79. 79.
    Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 47:1137–58
    [Google Scholar]
  80. 80.
    Davison P, Checkley D Jr., Koslow J, Barlow J. 2013. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. 116:14–30
    [Google Scholar]
  81. 81.
    Schiebel R. 2002. Planktic foraminiferal sedimentation and the marine calcite budget. Glob. Biogeochem. Cycles 16:41065
    [Google Scholar]
  82. 82.
    Buitenhuis ET, Le Quéré C, Bednaršek N, Schiebel R 2019. Large contribution of pteropods to shallow CaCO3 export. Glob. Biogeochem. Cycles 33:3458–68
    [Google Scholar]
  83. 83.
    DeVries T, Primeau F, Deutsch C. 2012. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39:13L13601
    [Google Scholar]
  84. 84.
    Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:7752327–35
    [Google Scholar]
  85. 85.
    Redfield AC. 1958. The biological control of chemical factors in the environment. Am. Sci. 46:3205–21
    [Google Scholar]
  86. 86.
    Carter B, Feely R, Lauvset S, Olsen A, DeVries T, Sonnerup R. 2021. Preformed properties for marine organic matter and carbonate mineral cycling quantification. Glob. Biogeochem. Cycles 35:1e2020GB006623
    [Google Scholar]
  87. 87.
    Nowicki M, DeVries T, Siegel DA. 2022. Quantifying the carbon export and sequestration pathways of the ocean's biological carbon pump. Glob. Biogeochem. Cycles 36:3e2021GB007083
    [Google Scholar]
  88. 88.
    Ito T, Follows MJ. 2013. Air-sea disequilibrium of carbon dioxide enhances the biological carbon sequestration in the Southern Ocean. Glob. Biogeochem. Cycles 27:41129–38
    [Google Scholar]
  89. 89.
    Eggleston S, Galbraith ED. 2018. The devil's in the disequilibrium: multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings in a general circulation model. Biogeosciences 15:123761–77
    [Google Scholar]
  90. 90.
    Gruber N, Sarmiento JL 2002. Large-scale biogeochemical-physical interactions in elemental cycles. The Sea, Vol. 12 A Robinson, JJ McCarthy, BJ Rothschild 337–99 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  91. 91.
    Chen CTA. 1982. On the distribution of anthropogenic CO2 in the Atlantic and Southern Oceans. Deep Sea Res. Part A Oceanogr. Res. Pap. 29:5563–80
    [Google Scholar]
  92. 92.
    Gruber N, Sarmiento JL, Stocker TF. 1996. An improved method for detecting anthropogenic CO2 in the oceans. Glob. Biogeochem. Cycles 10:4809–37
    [Google Scholar]
  93. 93.
    Sabine CL, Feely RA, Gruber N, Key RM, Lee K et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:5682367–71
    [Google Scholar]
  94. 94.
    Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10:42169–91
    [Google Scholar]
  95. 95.
    Gruber N, Clement D, Carter BR, Feely RA, Van Heuven S et al. 2019a. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363:64321193–99
    [Google Scholar]
  96. 96.
    Holzer M, DeVries T, de Lavergne C. 2021. Diffusion controls the ventilation of a Pacific Shadow Zone above abyssal overturning. Nat. Commun. 12:14348
    [Google Scholar]
  97. 97.
    Univ. Hawai'i. 2021 Hawaii ocean time-series data organization & graphical system (HOT-DOGS). University of Hawai'i at Manoa https://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html, accessed on October 28, 2021
    [Google Scholar]
  98. 98.
    Williams RG, Roussenov V, Goodwin P, Resplandy L, Bopp L. 2017. Sensitivity of global warming to carbon emissions: effects of heat and carbon uptake in a suite of Earth system models. J. Climate 30:239343–63
    [Google Scholar]
  99. 99.
    Sarmiento JL, Orr JC, Siegenthaler U. 1992. A perturbation simulation of CO2 uptake in an ocean general circulation model. J. Geophys. Res. Oceans 97:C33621–45
    [Google Scholar]
  100. 100.
    Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW et al. 1997. Global air-sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference. PNAS 94:168292–99
    [Google Scholar]
  101. 101.
    Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N et al. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res. Part II Top. Stud. Oceanogr. 49:9–101601–22
    [Google Scholar]
  102. 102.
    Pfeil B, Olsen A, Bakker DC, Hankin S, Koyuk H et al. 2013. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 5:1125–43
    [Google Scholar]
  103. 103.
    Bakker DC, Pfeil B, Landa CS, Metzl N, O'brien KM et al. 2016. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8:2383–413
    [Google Scholar]
  104. 104.
    Denvil-Sommer A, Gehlen M, Vrac M, Mejia C. 2019. LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean. Geosci. Model Dev. 12:52091–105
    [Google Scholar]
  105. 105.
    Gregor L, Lebehot AD, Kok S, Scheel Monteiro PM. 2019. A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a)—Have we hit the wall?. Geosci. Model Dev. 12:125113–36
    [Google Scholar]
  106. 106.
    Landschuetzer P, Gruber N, Bakker DC. 2016. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30:101396–417
    [Google Scholar]
  107. 107.
    Rödenbeck C, Bakker DC, Metzl N, Olsen A, Sabine C et al. 2014. Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences 11:174599–613
    [Google Scholar]
  108. 108.
    Lacroix F, Ilyina T, Hartmann J. 2020. Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach. Biogeosciences 17:155–88
    [Google Scholar]
  109. 109.
    Kwon EY, DeVries T, Galbraith ED, Hwang J, Kim G, Timmermann A. 2021. Stable carbon isotopes suggest large terrestrial carbon inputs to the global ocean. Glob. Biogeochem. Cycles 35:4e2020GB006684
    [Google Scholar]
  110. 110.
    Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DC et al. 2015. The reinvigoration of the Southern Ocean carbon sink. Science 349:62531221–24
    [Google Scholar]
  111. 111.
    McKinley GA, Fay AR, Eddebbar YA, Gloege L, Lovenduski NS. 2020. External forcing explains recent decadal variability of the ocean carbon sink. AGU Adv. 1:2e2019AV000149
    [Google Scholar]
  112. 112.
    Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92
    [Google Scholar]
  113. 113.
    Roleda MY, Boyd PW, Hurd CL. 2012. Before ocean acidification: calcifier chemistry lessons 1. J. Phycol. 48:4840–43
    [Google Scholar]
  114. 114.
    Fabry VJ, Seibel BA, Feely RA, Orr JC. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65:3414–32
    [Google Scholar]
  115. 115.
    Wittmann AC, Pörtner HO. 2013. Sensitivities of extant animal taxa to ocean acidification. Nat. Climate Change 3:11995–1001
    [Google Scholar]
  116. 116.
    Feely RA, Doney SC, Cooley SR. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:436–47
    [Google Scholar]
  117. 117.
    Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:58571737–42
    [Google Scholar]
  118. 118.
    Gruber N. 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369:19431980–96
    [Google Scholar]
  119. 119.
    Rhein M, Steinfeldt R, Kieke D, Stendardo I, Yashayaev I. 2017. Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: a review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375:210220160321
    [Google Scholar]
  120. 120.
    Vazquez-Rodriguez M, Touratier F, Monaco CL, Waugh D, Padin XA et al. 2009. Anthropogenic carbon distributions in the Atlantic Ocean: data-based estimates from the Arctic to the Antarctic. Biogeosciences 6:3439–51
    [Google Scholar]
  121. 121.
    Poisson A, Chen CTA. 1987. Why is there little anthropogenic CO2 in the Antarttic bottom water?. Deep Sea Res. Part A Oceanogr. Res. Papers 34:71255–75
    [Google Scholar]
  122. 122.
    DeVries T, Primeau F. 2011. Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr. 41:122381–401
    [Google Scholar]
  123. 123.
    Gruber N, Landschützer P, Lovenduski NS. 2019b. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11:159–86
    [Google Scholar]
  124. 124.
    Khatiwala S, Primeau F, Hall T. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:7271346–49
    [Google Scholar]
  125. 125.
    Mikaloff Fletcher SE, Gruber N, Jacobson AR, Doney SC, Dutkiewicz S et al. 2006. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20:2GB2002
    [Google Scholar]
  126. 126.
    Ito T, Woloszyn M, Mazloff M. 2010. Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463:727780–83
    [Google Scholar]
  127. 127.
    Iudicone D, Rodgers KB, Plancherel Y, Aumont O, Ito T et al. 2016. The formation of the ocean's anthropogenic carbon reservoir. Sci. Rep. 6:35473
    [Google Scholar]
  128. 128.
    Plattner GK, Joos F, Stocker T, Marchal O. 2001. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus B Chem. Phys. Meteorol. 53:5564–92
    [Google Scholar]
  129. 129.
    Lee J, Marotzke J, Bala G, Cao L, Corti S et al. 2021. Future global climate: scenario-based projections and near-term information. Climate Change 2021: the Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Pean, et al. 1–195 Geneva, Switz: Int. Panel Climate Change
    [Google Scholar]
  130. 130.
    Bernardello R, Marinov I, Palter JB, Galbraith ED, Sarmiento JL. 2014. Impact of Weddell sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett. 41:207262–69
    [Google Scholar]
  131. 131.
    Matear RJ, Hirst AC. 1999. Climate change feedback on the future oceanic CO2 uptake. Tellus B 51:3722–33
    [Google Scholar]
  132. 132.
    Holzer M, Chamberlain MA, Matear RJ. 2020. Climate-driven changes in the ocean's ventilation pathways and time scales diagnosed from transport matrices. J. Geophys. Res. Oceans 125:10e2020JC016414
    [Google Scholar]
  133. 133.
    Ito T, Bracco A, Deutsch C, Frenzel H, Long M, Takano Y. 2015. Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophys. Res. Lett. 42:114516–22
    [Google Scholar]
  134. 134.
    Sarmiento JL, Le Quéré C 1996. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274:52911346–50
    [Google Scholar]
  135. 135.
    Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:106225–45
    [Google Scholar]
  136. 136.
    Moore JK, Fu W, Primeau F, Britten GL, Lindsay K et al. 2018. Sustained climate warming drives declining marine biological productivity. Science 359:63801139–43
    [Google Scholar]
  137. 137.
    Riebesell U, Körtzinger A, Oschlies A. 2009. Sensitivities of marine carbon fluxes to ocean change. PNAS 106:4920602–9
    [Google Scholar]
  138. 138.
    Henson SA, Laufkötter C, Leung S, Giering SL, Palevsky HI, Cavan EL. 2022. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15:248–54
    [Google Scholar]
  139. 139.
    Gattuso JP, Williamson P, Duarte CM, Magnan AK. 2021. The potential for ocean-based climate action: negative emissions technologies and beyond. Front. Climate 2:37
    [Google Scholar]
  140. 140.
    Buesseler KO, Doney SC, Karl DM, Boyd PW, Caldeira K et al. 2008. Ocean iron fertilization—moving forward in a sea of uncertainty. Science 319:5860162
    [Google Scholar]
  141. 141.
    Bach LT, Tamsitt V, Gower J, Hurd CL, Raven JA, Boyd PW. 2021. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat. Commun. 12:2556
    [Google Scholar]
  142. 142.
    Ilyina T, Wolf-Gladrow D, Munhoven G, Heinze C. 2013. Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophys. Res. Lett. 40:225909–14
    [Google Scholar]
  143. 143.
    Keller DP, Feng EY, Oschlies A. 2014. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat. Commun. 5:3304
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120920-111307
Loading
/content/journals/10.1146/annurev-environ-120920-111307
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error