1932

Abstract

The laws of wetting are well known for drops on rigid surfaces but change dramatically when the substrate is soft and deformable. The combination of wetting and the intricacies of soft polymeric interfaces have provided many rich examples of fluid–structure interactions, both in terms of phenomenology and from a fundamental perspective. In this review we discuss experimental and theoretical progress on the statics and dynamics of soft wetting. In this context we critically revisit the foundations of capillarity, such as the nature of solid surface tension, the microscopic mechanics near the contact line, and the dissipative mechanisms that lead to unexpected spreading dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060147
2020-01-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060147.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060147&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander S 1977. Adsorption of chain molecules with a polar head a scaling description. J. Phys. 38:983–87
    [Google Scholar]
  2. Amouroux N, Petit J, Léger L 2001. Role of interfacial resistance to shear stress on adhesive peel strength. Langmuir 17:6510–17
    [Google Scholar]
  3. Andreotti B, Bäumchen O, Boulogne F, Daniels KE, Dufresne ER 2016. Solid capillarity: When and how does surface tension deform soft solids. Soft Matter 12:2993–96
    [Google Scholar]
  4. Andreotti B, Snoeijer JH 2016. Soft wetting and the Shuttleworth effect, at the crossroads between thermodynamics and mechanics. EPL 109:66001
    [Google Scholar]
  5. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP et al. 2000. Adhesive force of a single gecko foot-hair. Nature 405:681–85
    [Google Scholar]
  6. Baumberger T, Caroli C 2006. Solid friction from stick–slip down to pinning and aging. Adv. Phys. 55:279–348
    [Google Scholar]
  7. Baumberger T, Caroli C, Martina D 2006a. Fracture of a biopolymer gel as a viscoplastic disentanglement process. Eur. Phys. J. E 21:81–89
    [Google Scholar]
  8. Baumberger T, Caroli C, Martina D 2006b. Solvent control of crack dynamics in a reversible hydrogel. Nat. Mater. 5:552–55
    [Google Scholar]
  9. Berman JD, Randeria M, Style RW, Xu Q, Nichols JR et al. 2019. Singular dynamics in the failure of soft adhesive contacts. Soft Matter 15:1327–34
    [Google Scholar]
  10. Bico J, Reyssat É, Roman B 2018. Elastocapillarity: when surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50:629–59
    [Google Scholar]
  11. Binder K, Kob W 2011. Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics Singapore: World Sci.
  12. Boese D, Kremer F 1990. Molecular dynamics in bulk cis-polyisoprene as studied by dielectric spectroscopy. Macromolecules 23:829–35
    [Google Scholar]
  13. Boesel LF, Greiner C, Arzt E, del Campo A 2010. Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv. Mater. 22:2125–37
    [Google Scholar]
  14. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E 2009. Wetting and spreading. Rev. Mod. Phys. 81:739
    [Google Scholar]
  15. Bostwick JB, Daniels KE 2013. Capillary fracture of soft gels. Phys. Rev. E 88:042410
    [Google Scholar]
  16. Bostwick JB, Shearer M, Daniels K 2014. Elastocapillary deformations on partially-wetting substrates: rival contact-line models. Soft Matter 10:7361–69
    [Google Scholar]
  17. Boulogne F, Ingremeau F, Dervaux J, Limat L, Stone HA 2015. Homogeneous deposition of particles by absorption on hydrogels. EPL 112:48004
    [Google Scholar]
  18. Boulogne F, Ingremeau F, Limat L, Stone HA 2016. Tuning the receding contact angle on hydrogels by addition of particles. Langmuir 32:5573–79
    [Google Scholar]
  19. Boulogne F, Shin S, Dervaux J, Limat L, Stone HA 2017. Diffusiophoretic manipulation of particles in a drop deposited on a hydrogel. Soft Matter 13:5122–29
    [Google Scholar]
  20. Cao Z, Stevens MJ, Dobrynin AV 2014. Adhesion and wetting of nanoparticles on soft surfaces. Macromolecules 47:3203–9
    [Google Scholar]
  21. Carré A, Gastel JC, Shanahan MER 1996. Viscoelastic effects in the spreading of liquids. Nature 379:432–34
    [Google Scholar]
  22. Chakrabarti A, Porat A, Raphaël E, Salez T, Chaudhury MK 2018. Elastowetting of soft hydrogel spheres. Langmuir 34:3894–900
    [Google Scholar]
  23. Charmet JC, Verjus C, Barquins M 1995. Sur la dimension du contact et la cinétique de roulement d'un cylindre long et rigide sous la surface plane et lisse d'un massif de caoutchouc souple. C.R. Acad. Sci. IIb 321:443–50
    [Google Scholar]
  24. Charras G, Sahai E 2014. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15:813–24
    [Google Scholar]
  25. Chopin J, Villey R, Yarusso D, Barthel E, Creton C, Ciccotti M 2018. Nonlinear viscoelastic modeling of adhesive failure for polyacrylate pressure-sensitive adhesives. Macromolecules 51:8605–10
    [Google Scholar]
  26. Cohen Stuart MA, de Vos WM, Leermakers FAM 2006. Why surfaces modified by flexible polymers often have a finite contact angle for good solvents. Langmuir 22:1722–28
    [Google Scholar]
  27. Cortet PP, Ciccotti M, Vanel L 2007. Imaging the stick–slip peeling of an adhesive tape under a constant load. J. Stat. Mech. Theory Exp. 2007:P03005
    [Google Scholar]
  28. Creton C 2003. Pressure-sensitive adhesives: an introductory course. MRS Bull. 28:434–39
    [Google Scholar]
  29. Creton C, Ciccotti M 2016. Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79:046601
    [Google Scholar]
  30. Creton C, Kramer EJ, Hui CY, Brown HR 1992. Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25:3075–88
    [Google Scholar]
  31. Davidovitch B, Vella D 2018. Partial wetting of thin solid sheets under tension. Soft Matter 14:4913–34
    [Google Scholar]
  32. de Gennes PG 1979. Scaling Concepts in Polymer Physics Ithaca, NY: Cornell Univ. Press
  33. de Gennes PG 1980. Conformations of polymers attached to an interface. Macromolecules 13:1069–75
    [Google Scholar]
  34. de Gennes PG 1989. Weak adhesive junctions. J. Phys. France 50:2551–62
    [Google Scholar]
  35. de Gennes PG 1996. Soft adhesives. Langmuir 12:4497–500
    [Google Scholar]
  36. de Gennes PG, Brochart-Wyart F, Quéré D 2002. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves New York: Springer-Verlag
  37. De Zotti V, Rapina K, Cortet PP, Vanel L, Santucci S 2019. Bending to kinetic energy transfer in adhesive peel front microinstability. Phys. Rev. Lett. 122:068005
    [Google Scholar]
  38. Deplace F, Carelli C, Mariot S, Retsos H, Chateauminois A et al. 2009. Fine tuning the adhesive properties of a soft nanostructured adhesive with rheological measurements. J. Adhes. 85:18–54
    [Google Scholar]
  39. Divoux T, Fardin MA, Manneville S, Lerouge S 2016. Shear banding of complex fluids. Annu. Rev. Fluid Mech. 48:81–103
    [Google Scholar]
  40. Doi M 2009. Gel dynamics. J. Phys. Soc. Jpn. 78:052001
    [Google Scholar]
  41. Doi M, Edwards SF 1988. The Theory of Polymer Dynamics Oxford: Oxford Univ. Press
  42. Dupas J, Verneuil E, Van Landeghem M, Bresson B, Forny L et al. 2014. Glass transition accelerates the spreading of polar solvents on a soluble polymer. Phys. Rev. Lett. 112:188302
    [Google Scholar]
  43. Duprat C, Protière S, Beebe AY, Stone HA 2012. Wetting of flexible fibre arrays. Nature 482:510–13
    [Google Scholar]
  44. Fleer G, Stuart MC, Scheutjens JM, Cosgrove T, Vincent B 1993. Polymers at Interfaces Dordrecht, Neth.: Springer
  45. Garcia L, Barraud C, Picard C, Giraud J, Charlaix E, Cross B 2016. A micro-nano-rheometer for the mechanics of soft matter at interfaces. Rev. Sci. Instrum. 87:113906
    [Google Scholar]
  46. Gent AN 1996. Adhesion and strength of viscoelastic solids: Is there a relationship between adhesion and bulk properties. Langmuir 12:4492–96
    [Google Scholar]
  47. Ghatak A, Mahadevan L, Chung JY, Chaudhury MK, Shenoy V 2004. Peeling from a biomimetically patterned thin elastic film. Proc. R. Soc. Lond. A 460:2725–35
    [Google Scholar]
  48. Grandgeorge P, Krins N, Hourlier-Fargette A, Laberty-Robert C, Neukirch S, Antkowiak A 2018. Capillarity-induced folds fuel extreme shape changes in thin wicked membranes. Science 360:296–99
    [Google Scholar]
  49. Grzelka M, Bostwick JB, Daniels KE 2017. Capillary fracture of ultrasoft gels: variability and delayed nucleation. Soft Matter 13:2962–66
    [Google Scholar]
  50. Hong W, Zhao X, Zhou J, Suo Z 2008. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56:1779–93
    [Google Scholar]
  51. Hourlier-Fargette A, Antkowiak A, Chateauminois A, Neukirch S 2017. Role of uncrosslinked chains in droplets dynamics on silicone elastomers. Soft Matter 13:3484–91
    [Google Scholar]
  52. Hourlier-Fargette A, Dervaux J, Antkowiak A, Neukirch S 2018. Extraction of silicone uncrosslinked chains at air–water–polydimethylsiloxane triple lines. Langmuir 34:12244–50
    [Google Scholar]
  53. Howland CJ, Antkowiak A, Castrejón-Pita JR, Howison SD, Oliver JM et al. 2016. It's harder to splash on soft solids. Phys. Rev. Lett. 117:184502
    [Google Scholar]
  54. Hui CY, Liu T, Salez T, Raphael E, Jagota A 2015. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion. Proc. R. Soc. A 471:20140727
    [Google Scholar]
  55. Humphrey JD, Dufresne ER, Schwartz MA 2014. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802–12
    [Google Scholar]
  56. Jagota A, Hui CY 2011. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater. Sci. Eng. R 72:253–92
    [Google Scholar]
  57. Jensen KE, Sarfati R, Style RW, Boltyanskiy R, Chakrabarti A et al. 2015. Wetting and phase separation in soft adhesion. PNAS 112:14490–94
    [Google Scholar]
  58. Jerison ER, Xu Y, Wilen LA, Dufresne ER 2011. Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett. 106:186103
    [Google Scholar]
  59. Johnson DL 1982. Elastodynamics of gels. J. Chem. Phys. 77:1531–39
    [Google Scholar]
  60. Johnson KL 1985. Contact Mechanics Cambridge, UK: Cambridge Univ. Press
  61. Johnson KL, Kendall K, Roberts A 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324:301
    [Google Scholar]
  62. Kajiya T, Brunet P, Royon L, Daerr A, Receveur M, Limat L 2014. A liquid contact line receding on a soft gel surface: dip-coating geometry investigation. Soft Matter 10:8888–95
    [Google Scholar]
  63. Kajiya T, Daerr A, Narita T, Royon L, Lequeux F, Limat L 2011. Dynamics of the contact line in wetting and diffusing processes of water droplets on hydrogel (PAMPS–PAAM) substrates. Soft Matter 7:11425–32
    [Google Scholar]
  64. Kajiya T, Daerr A, Narita T, Royon L, Lequeux F, Limat L 2013. Advancing liquid contact line on visco-elastic gel substrates: stick-slip versus continuous motions. Soft Matter 9:454–61
    [Google Scholar]
  65. Kajiya T, Schellenberger F, Papadopoulos P, Vollmer D, Butt HJ 2016. 3D imaging of water-drop condensation on hydrophobic and hydrophilic lubricant-impregnated surfaces. Sci. Rep. 6:23687
    [Google Scholar]
  66. Karpitschka S, Das S, van Gorcum M, Perrin H, Andreotti B, Snoeijer JH 2015. Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. 6:7891
    [Google Scholar]
  67. Karpitschka S, Pandey A, Lubbers LA, Weijs JH, Botto L 2016a. Liquid drops attract or repel by the inverted Cheerios effect. PNAS 113:7403–7
    [Google Scholar]
  68. Karpitschka S, van Wijngaarden L, Snoeijer JH 2016b. Surface tension regularizes the crack singularity of adhesion. Soft Matter 12:4463–71
    [Google Scholar]
  69. Keiser A, Keiser L, Clanet C, Quéré D 2017. Drop friction on liquid-infused materials. Soft Matter 13:6981–87
    [Google Scholar]
  70. Kirkwood J, Buff F 1949. The statistical mechanical theory of surface tension. J. Chem. Phys. 17:338–43
    [Google Scholar]
  71. Lafuma A, Quéré D 2011. Slippery pre-suffused surfaces. EPL 96:56001
    [Google Scholar]
  72. Lake G, Thomas A 1967. The strength of highly elastic materials. Proc. R. Soc. Lond. A 300:108–19
    [Google Scholar]
  73. Leonforte F, Mueller M 2011. Statics of polymer droplets on deformable surfaces. J. Chem. Phys. 135:214703
    [Google Scholar]
  74. Lhermerout R, Perrin H, Rolley E, Andreotti B, Davitt K 2016. A moving contact line as a rheometer for nanometric interfacial layers. Nat. Commun. 7:12545
    [Google Scholar]
  75. Liang H, Cao Z, Wang Z, Dobrynin AV 2018a. Surface stress and surface tension in polymeric networks. ACS Macro Lett. 7:116–21
    [Google Scholar]
  76. Liang H, Cao Z, Wang Z, Dobrynin AV 2018b. Surface stresses and a force balance at a contact line. Langmuir 34:7497–502
    [Google Scholar]
  77. Limat L 2012. Straight contact lines on a soft, incompressible solid. Eur. Phys. J. E 35:134
    [Google Scholar]
  78. Liu T, Long R, Hui CY 2014. The energy release rate of a pressurized crack in soft elastic materials: effects of surface tension and large deformation. Soft Matter 10:7723–29
    [Google Scholar]
  79. Long D, Ajdari A, Leibler L 1996. How do grafted polymer layers alter the dynamics of wetting. Langmuir 12:1675–80
    [Google Scholar]
  80. Lubbers LA, Weijs JH, Botto L, Das S, Andreotti B, Snoeijer JH 2014. Drops on soft solids: free energy and double transition of contact angles. J. Fluid Mech. 747:R1
    [Google Scholar]
  81. Maas J, Fleer G, Leermakers F, Cohen Stuart M 2002. Wetting of a polymer brush by a chemically identical polymer melt: Phase diagram and film stability. Langmuir 18:8871–80
    [Google Scholar]
  82. Manning ML, Foty RA, Steinberg MS, Schoetz EM 2010. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. PNAS 107:12517–22
    [Google Scholar]
  83. Marchand A, Das S, Snoeijer JH, Andreotti B 2012a. Capillary pressure and contact line force on a soft solid. Phys. Rev. Lett. 108:094301
    [Google Scholar]
  84. Marchand A, Das S, Snoeijer JH, Andreotti B 2012b. Contact angles on a soft solid: from Young's law to Neumann's law. Phys. Rev. Lett. 109:236101
    [Google Scholar]
  85. Marchand A, Weijs JH, Snoeijer JH, Andreotti B 2011. Why is surface tension a force parallel to the interface. Am. J. Phys. 79:999–1008
    [Google Scholar]
  86. Masurel R, Roché M, Limat L, Ionescu I, Dervaux J 2018. Elastocapillary ridge as a noninteger disclination. Phys. Rev. Lett. 122:248004
    [Google Scholar]
  87. Maugis D, Barquins M 1978. Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D 11:1989–2023
    [Google Scholar]
  88. Mensink LI, Snoeijer JH, de Beer S 2019. Wetting of polymer brushes by polymeric nanodroplets. Macromolecules 52:2015–20
    [Google Scholar]
  89. Milner S, Witten T, Cates M 1988. Theory of the grafted polymer brush. Macromolecules 21:2610–19
    [Google Scholar]
  90. Mora S, Phou T, Fromental JM, Pismen LM, Pomeau Y 2010. Capillarity driven instability of a soft solid. Phys. Rev. Lett. 105:214301
    [Google Scholar]
  91. Muller P, Saul A 2004. Elastic effects on surface physics. Surf. Sci. Rep. 54:157–258
    [Google Scholar]
  92. Nase J, Lindner A, Creton C 2008. Pattern formation during deformation of a confined viscoelastic layer: from a viscous liquid to a soft elastic solid. Phys. Rev. Lett. 101:074503
    [Google Scholar]
  93. Neukirch S, Antkowiak A, Marigo JJ 2014. Soft beams: when capillarity induces axial compression. Phys. Rev. E 89:012401
    [Google Scholar]
  94. Newby BZ, Chaudhury MK, Brown HR 1995. Macroscopic evidence of the effect of interfacial slippage on adhesion. Science 269:1407–9
    [Google Scholar]
  95. Nijmeijer M, Bruin C, Bakker A, Van Leeuwen J 1990. Wetting and drying of an inert wall by a fluid in a molecular-dynamics simulation. Phys. Rev. A 42:6052–59
    [Google Scholar]
  96. Onogi S, Masuda T, Kitagawa K 1970. Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-distribution polystyrenes. Macromolecules 3:109–16
    [Google Scholar]
  97. Park SJ, Bostwick JB, De Andrade V, Je JH 2017. Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface. Soft Matter 13:8331–36
    [Google Scholar]
  98. Park SJ, Weon B, Lee J, Lee J, Kim J, Je J 2014. Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat. Commun. 5:4369
    [Google Scholar]
  99. Pericet-Camara R, Best A, Butt HJ, Bonaccurso E 2008. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. Langmuir 24:10565–68
    [Google Scholar]
  100. Perrin H, Eddi A, Karpitschka S, Snoeijer JH, Andreotti B 2019. Peeling an elastic film from a soft viscoelastic adhesive: experiments and scaling laws. Soft Matter 15:770–78
    [Google Scholar]
  101. Pham JT, Schellenberger F, Kappl M, Butt HJ 2017. From elasticity to capillarity in soft materials indentation. Phys. Rev. Mater. 1:015602
    [Google Scholar]
  102. Pu G, Ai J, Severtson SJ 2010. Drop behavior on a thermally-stripped acrylic polymer: influence of surface tension induced wetting ridge formation on retention and running. Langmuir 26:12696–702
    [Google Scholar]
  103. Pu G, Severtson SJ 2008. Characterization of dynamic stick-and-break wetting behavior for various liquids on the surface of a highly viscoelastic polymer. Langmuir 24:4685–92
    [Google Scholar]
  104. Raphael E, De Gennes P 1992. Rubber-rubber adhesion with connector molecules. J. Phys. Chem. 96:4002–7
    [Google Scholar]
  105. Restagno F, Crassous J, Charlaix E, Cottin-Bizonne C, Monchanin M 2002. A new surface forces apparatus for nanorheology. Rev. Sci. Instrum. 73:2292–97
    [Google Scholar]
  106. Rice J, Ruina AL 1983. Stability of steady frictional slipping. J. Appl. Mech. 50:343–49
    [Google Scholar]
  107. Robbe-Valloire F, Barquins M 1998. Adhesive contact and kinetics of adherence between a rigid cylinder and an elastomeric solid. Int. J. Adhes. Adhes. 18:29–34
    [Google Scholar]
  108. Roman B, Bico J 2010. Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys. Cond. Matt. 22:493101
    [Google Scholar]
  109. Rowlinson JS, Widom B 1982. Molecular Theory of Capillarity Oxford: Clarendon
  110. Rubinstein M, Colby RH 2003. Polymer Physics New York: Oxford Univ. Press
  111. Rusanov A 1975. Theory of wetting of elastically deformed bodies. 1. Deformation with a finite contact-angle. Colloid J. USSR 37:614–22
    [Google Scholar]
  112. Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B 2007. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. PNAS 104:8281–86
    [Google Scholar]
  113. Salez T, Benzaquen M, Raphaël É 2013. From adhesion to wetting of a soft particle. Soft Matter 9:10699–704
    [Google Scholar]
  114. Schapery RA 1975. A theory of crack initiation and growth in viscoelastic media. Int. J. Fract. 11:141–59
    [Google Scholar]
  115. Schellenberger F, Xie J, Encinas N, Hardy A, Klapper M et al. 2015. Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter 11:7617–26
    [Google Scholar]
  116. Schroll R, Adda-Bedia M, Cerda E, Huang J, Menon N et al. 2013. Capillary deformations of bendable films. Phys. Rev. Lett. 111:014301
    [Google Scholar]
  117. Schulman RD, Dalnoki-Veress K 2015. Liquid droplets on a highly deformable membrane. Phys. Rev. Lett. 115:206101
    [Google Scholar]
  118. Schulman RD, Trejo M, Salez T, Raphaël E, Dalnoki-Veress K 2018. Surface energy of strained amorphous solids. Nat. Commun. 9:982
    [Google Scholar]
  119. Schwarz US, Safran SA 2013. Physics of adherent cells. Rev. Mod. Phys. 85:1327
    [Google Scholar]
  120. Seveno D, Blake TD, De Coninck J 2013. Young's equation at the nanoscale. Phys. Rev. Lett. 111:096101
    [Google Scholar]
  121. Shanahan M 1987. The influence of solid micro-deformation on contact-angle equilibrium. J. Phys. D 20:945–50
    [Google Scholar]
  122. Shanahan M, Carré A 1995. Viscoelastic dissipation in wetting and adhesion phenomena. Langmuir 11:1396–402
    [Google Scholar]
  123. Shuttleworth R 1950. The surface tension of solids. Proc. Phys. Soc. Lond. A 63:444–57
    [Google Scholar]
  124. Singh M, Pipkin AC 1965. Note on Ericksen's problem. Z. Angew. Math. Phys. 16:706–9
    [Google Scholar]
  125. Snoeijer JH, Andreotti B 2008. A microscopic view on contact angle selection. Phys. Fluids 20:057101
    [Google Scholar]
  126. Snoeijer JH, Andreotti B 2013. Moving contact lines: scales, regimes, and dynamical transitions. Annu Rev. Fluid Mech. 45:269–92
    [Google Scholar]
  127. Snoeijer JH, Rolley E, Andreotti B 2018. Paradox of contact angle selection on stretched soft solids. Phys. Rev. Lett. 121:068003
    [Google Scholar]
  128. Sokuler M, Auernhammer G, Roth M, Liu C, Bonacurrso E, Butt H 2010. The softer the better: fast condensation on soft surfaces. Langmuir 26:1544–47
    [Google Scholar]
  129. Solomon BR, Subramanyam SB, Farnham TA, Khalil KS, Anand S, Varanasi KK 2016. Lubricant-impregnated surfaces. Non-Wettable Surfaces285–318 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  130. Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER 2013a. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110:066103
    [Google Scholar]
  131. Style RW, Che Y, Park SJ, Weon BM, Je JH et al. 2013b. Patterning droplets with durotaxis. PNAS 110:12541–44
    [Google Scholar]
  132. Style RW, Dufresne ER 2012. Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 8:7177–84
    [Google Scholar]
  133. Style RW, Hyland C, Boltyanskiy R, Wettlaufer JS, Dufresne ER 2013c. Surface tension and contact with soft elastic solids. Nat. Commun. 4:2728
    [Google Scholar]
  134. Style RW, Jagota A, Hui CY, Dufresne ER 2017. Elastocapillarity: surface tension and the mechanics of soft solids. Annu. Rev. Condens. Matter Phys. 8:99–118
    [Google Scholar]
  135. Teisseire J, Nallet F, Fabre P, Gay C 2007. Understanding cracking versus cavitation in pressure-sensitive adhesives: the role of kinetics. J. Adhes. 83:613–77
    [Google Scholar]
  136. Trichet L, Le Digabel J, Hawkins RJ, Vedula SRK, Gupta M et al. 2012. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. PNAS 109:6933–38
    [Google Scholar]
  137. van Brummelen EH, Roudbari MS, Şimşek G, van der Zee KG 2017. Binary-fluid–solid interaction based on the Navier–Stokes–Cahn–Hilliard equations. Fluid Structure Interaction S Frei, B Holm, T Richter, T Wick, H Yang 283–328 Berlin: De Gruyter
    [Google Scholar]
  138. van Gorcum M, Andreotti B, Snoeijer JH, Karpitschka S 2018. Dynamic solid surface tension causes droplet pinning and depinning. Phys. Rev. Lett. 121:208003
    [Google Scholar]
  139. Villey R, Creton C, Cortet PP, Dalbe MJ, Jet T et al. 2015. Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter 11:3480–91
    [Google Scholar]
  140. Vilmin T, Ziebert F, Raphaël E 2010. Simple view on fingering instability of debonding soft elastic adhesives. Langmuir 26:3257–60
    [Google Scholar]
  141. Watanabe H 1999. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 24:1253–403
    [Google Scholar]
  142. Weijs JH, Andreotti B, Snoeijer JH 2013. Elasto-capillarity at the nanoscale: on the coupling between elasticity and surface energy in soft solids. Soft Matter 9:8494–503
    [Google Scholar]
  143. White L 2003. The contact angle on an elastic substrate. 1. The role of disjoining pressure in the surface mechanics. J. Colloid Interface Sci. 258:82–96
    [Google Scholar]
  144. Winter H, Chambon F 1986. Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J. Rheol. 30:367–82
    [Google Scholar]
  145. Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD et al. 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–47
    [Google Scholar]
  146. Wu H, Liu Z, Jagota A, Hui CY 2018. Effect of large deformation and surface stiffening on the transmission of a line load on a neo-Hookean half space. Soft Matter 14:1847–55
    [Google Scholar]
  147. Xu Q, Jensen K, Boltyanskiy R, Sarfat R, Style RW, Dufresne ER 2017. Direct measurement of strain-dependent solid surface stress. Nat. Commun. 8:555
    [Google Scholar]
  148. Xu Q, Style RW, Dufresne ER 2018. Surface elastic constants of a soft solid. Soft Matter 14:916–20
    [Google Scholar]
  149. Zhao M, Dervaux J, Narita T, Lequeux F, Limat L, Roché M 2018a. Geometrical control of dissipation during the spreading of liquids on soft solids. PNAS 115:1748–53
    [Google Scholar]
  150. Zhao M, Lequeux F, Narita T, Roché M, Limat L, Dervaux J 2018b. Growth and relaxation of a ridge on a soft poroelastic substrate. Soft Matter 14:61–72
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060147
Loading
/content/journals/10.1146/annurev-fluid-010719-060147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error