1932

Abstract

Acoustic tweezers powerfully enable the contactless collective or selective manipulation of microscopic objects. Trapping is achieved without pretagging, with forces several orders of magnitude larger than optical tweezers at the same input power, limiting spurious heating and enabling damage-free displacement and orientation of biological samples. In addition, the availability of acoustical coherent sources from kilo- to gigahertz frequencies enables the manipulation of a wide spectrum of particle sizes. After an introduction of the key physical concepts behind fluid and particle manipulation with acoustic radiation pressure and acoustic streaming, we highlight the emergence of specific wave fields, called acoustical vortices, as a means to manipulate particles selectively and in three dimensions with one-sided tweezers. These acoustic vortices can also be used to generate hydrodynamic vortices whose topology is controlled by the topology of the wave. We conclude with an outlook on the field's future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060154
2020-01-05
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060154.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060154&mimeType=html&fmt=ahah

Literature Cited

  1. Allen CH, Rudnick I 1947. A powerful high frequency siren. J. Acoust. Soc. Am. 19:857–65
    [Google Scholar]
  2. Altberg W 1903. Ueber die Druckkräfte der Schallwellen und die absolute Messung der Schallintensitt. Ann. Phys. 316:405–20
    [Google Scholar]
  3. Anhäuser A, Wunenburger R, Brasselet E 2012. Acoustical rotational manipulation using orbital angular momentum transfer. Phys. Rev. Lett. 109:034301
    [Google Scholar]
  4. Apfel RE 1981. Acoustic levitation for studying liquids and biological materials. J. Acoust. Soc. Am. 70:636–39
    [Google Scholar]
  5. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11:288–90
    [Google Scholar]
  6. Ashkin A 2011. How it all began. Nat. Photon. 5:316–17
    [Google Scholar]
  7. Baasch T, Dual J 2018. Acoustofluidic particle dynamics: beyond the Rayleigh limit. J. Acoust. Soc. Am. 143:509–19
    [Google Scholar]
  8. Baird MHI 1963. Resonant bubbles in a vertically vibrating liquid column. Can. J. Chem. Eng. 41:52–55
    [Google Scholar]
  9. Baker NV 1972. Segregation and sedimentation of red blood cells in ultrasonic standing waves. Nature 239:398–99
    [Google Scholar]
  10. Baresch D 2014. Pince acoustique: piégeage et manipulation d'un objet par pression de radiation d'une onde progressive PhD Thesis, Univ. Pierre Marie Curie, Paris, Fr. https://tel.archives-ouvertes.fr/tel-01165034
  11. Baresch D, Thomas J-L, Marchiano R 2013a. Spherical vortex beams of high radial degree for enhanced single-beam tweezers. J. Appl. Phys. 113:184901
    [Google Scholar]
  12. Baresch D, Thomas J-L, Marchiano R 2013b. Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere. J. Acoust. Soc. Am. 133:25–36
    [Google Scholar]
  13. Baresch D, Thomas J-L, Marchiano R 2016. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116:024301
    [Google Scholar]
  14. Baresch D, Thomas J-L, Marchiano R 2018. Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams. Phys. Rev. Lett. 121:074301
    [Google Scholar]
  15. Barton JP, Alexander DR, Schaub SA 1988. Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam. J. Appl. Phys. 4:1632–39
    [Google Scholar]
  16. Barton JP, Alexander DR, Schaub SA 1989. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys. 66:4594–602
    [Google Scholar]
  17. Baudoin M, Gerbedoen J-C, Riaud A, Bou Matar O, Smagin N, Thomas J-L 2019. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Sci. Adv. 5:eaav1967
    [Google Scholar]
  18. Beissner K 1998. The acoustic radiation force in lossless fluids in Eulerian and Lagrangian coordinates. J. Acoust. Soc. Am. 103:2321–32
    [Google Scholar]
  19. Biquard P 1932a. Les ondes ultra-sonores. Rev. d'Acoust. 1:93–109
    [Google Scholar]
  20. Biquard P 1932b. Les ondes ultra-sonores II. Rev. d'Acoust. 1:315–55
    [Google Scholar]
  21. Bjerknes VFJ 1906. Fields of Force New York: Columbia Univ. Press
  22. Bopp VF 1940. Energetische Betrachtungen zum Schaallstrahlungsdruck. Ann. Phys. 38:495–500
    [Google Scholar]
  23. Borgnis FE 1953. Acoustic radiation pressure of plane compressional waves. Rev. Mod. Phys. 25:653–63
    [Google Scholar]
  24. Brillouin L 1925. Sur les tensions de radiation. Ann. Phys. X 4:528–86
    [Google Scholar]
  25. Brillouin L 1936. Les pressions et tensions de radiation. Rev. d'Acoust. 5:99–111
    [Google Scholar]
  26. Brillouin L 1938. Tensors in Mechanics and Elasticity New York: Academic
  27. Brillouin L 1956. Les tensions de radiation; leur interprétation en mécanique classique et en relativité. J. Phys. Radium 6:337–53
    [Google Scholar]
  28. Buchanan RH, Jameson G, Oedjoe D 1962. Cyclic migration of bubbles in vertically vibrating columns. Ind. Eng. Chem. Fundam. 1:82–86
    [Google Scholar]
  29. Chen X, Apfel RE 1996. Radiation force on a spherical object in the field of a focused cylindrical transducer. J. Acoust. Soc. Am. 101:2443–47
    [Google Scholar]
  30. Coakley WT, Bardsley DW, Grundy MA, Zamani F, Clarke DJ 1989. Cell manipulation in ultrasonic standing wave fields. J. Chem. Tech. Biotechnol. 44:43–62
    [Google Scholar]
  31. Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Pleansku M, Neild A 2015. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6:8686
    [Google Scholar]
  32. Coulouvrat F 1992. On the equations of nonlinear acoustics. J. Acoust. 5:321–59
    [Google Scholar]
  33. Courtney CRP, Demore CEM, Wu H, Grinenko A, Wilcox PD et al. 2014. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl. Phys. Lett. 104:154103
    [Google Scholar]
  34. Ding X, Li P, Lin S-C, Kirali B, Yue H et al. 2012. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS 109:11105–9
    [Google Scholar]
  35. Ding X, Li P, Lin S-C, Stratton ZS, Nama N et al. 2013. Surface acoustic wave microfluidics. Lab Chip 13:3626–49
    [Google Scholar]
  36. Dvorak V 1874. Ueber die Entstehungsweise der Kundt'schen Staubfiguren. Ann. Phys. 227:634–39
    [Google Scholar]
  37. Eckart C 1948. Vortices and streams caused by sound waves. Phys. Rev. 73:68–76
    [Google Scholar]
  38. Einspruch NG, Witterholt EJ, Truell R 1960. Scattering of a plane transverse wave by a spherical obstacle in an elastic medium. J. Appl. Phys. 31:806–18
    [Google Scholar]
  39. Eller A 1968. Force on a bubble in a standing acoustic wave. J. Acoust. Soc. Am. 43:170–71
    [Google Scholar]
  40. Embleton TFW 1954. Mean force on a sphere in a spherical sound field. I. (Theoretical). J. Acoust. Soc. Am. 26:40–45
    [Google Scholar]
  41. Fan X-D, Zhang L 2019. Trapping force of acoustical bessel beams on a sphere and stable tractor beams. Phys. Rev. Appl. 11:014055
    [Google Scholar]
  42. Faraday M 1831. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121:299–340
    [Google Scholar]
  43. Faran JJ 1951. Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am. 23:405–18
    [Google Scholar]
  44. Gaunard GC, Überall H 1978. Theory of resonant scattering from spherical cavities in elastic and viscoelastic media. J. Acoust. Soc. Am. 63:1699–712
    [Google Scholar]
  45. Glynne-Jones P, Mishra PP, Boltryk RJ, Hill M 2013. Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry. J. Acoust. Soc. Am. 133:1885–93
    [Google Scholar]
  46. Gong Z, Marston PL, Li W 2019. T-matrix evaluation of three-dimensional acoustic radiation forces on nonspherical objects in Bessel beams with arbitrary order and location. Phys. Rev. E 99:063004
    [Google Scholar]
  47. Gor'kov LP 1962. On the forces acting on a small particle in an acoustic field in an ideal fluid. Sov. Phys. Dokl. 6:773–75
    [Google Scholar]
  48. Gouesbet G, Lock JA, Gréhan G 2010. Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review. J. Quant. Spect. Rad. Transf. 112:1–27
    [Google Scholar]
  49. Gould RK 1968. Simple method for calibrating small omnidirectional hydrophones. J. Acoust. Soc. Am. 43:1185–87
    [Google Scholar]
  50. Gusev VE, Rudenko OV 1979. Nonsteady quasi-one-dimensional acoustic streaming in unbounded volumes with hydrodynamic nonlinearity. Sov. Phys. Acoust. 25:493–97
    [Google Scholar]
  51. Habibi R, Devendra C, Neild A 2017. Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave. Lab Chip 17:3279–90
    [Google Scholar]
  52. Hagsäter SM, Gladsam Jensen T, Bruus H, Kutter JP 2007. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations. Lab Chip 7:1336–44
    [Google Scholar]
  53. Hasegawa T 1977. Comparison of two solutions for acoustic radiation pressure on a sphere. J. Acoust. Soc. Am. 61:1445–48
    [Google Scholar]
  54. Hasegawa T 1979. Acoustic radiation force on a sphere in a quasi-stationary wave field—theory. J. Acoust. Soc. Am. 65:32–40
    [Google Scholar]
  55. Hasegawa T, Kido T, Iizuka T, Matsuoka C 2000. A general theory of Rayleigh and Langevin radiation pressures. J. Acoust. Soc. Jpn. 21:145–52
    [Google Scholar]
  56. Hasegawa T, Ochi M, Matsuzawa K 1981. Acoustic radiation force on a solid elastic sphere in a spherical wave field. J. Acoust. Soc. Am. 69:937–42
    [Google Scholar]
  57. Hasegawa T, Yosioka K 1969. Acoustic radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46:1139–43
    [Google Scholar]
  58. Hefner BT, Marston PL 1999. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J. Acoust. Soc. Am. 106:3313–16
    [Google Scholar]
  59. Herrey EM 1955. Experimental studies on acoustic radiation pressure. J. Acoust. Soc. Am. 27:891–96
    [Google Scholar]
  60. Hertz G, Mende H 1939. Der Schallstrahlungsdruk in Flussigkeiten. Z. Phys. 114:354–67
    [Google Scholar]
  61. Hong Z, Zhang J, Drinkwater B 2015. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett 114:214301
    [Google Scholar]
  62. Jackson JD 1962. Classical Electrodynamics New York: Wiley
  63. Jiang X, Li Y, Liang B, Cheng J-C, Zhang L 2016. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117:034301
    [Google Scholar]
  64. Jiménez N, Picó R, Romero-García V, García-Raffi LM, Cemrana F, Staliunas K 2018. Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Appl. Phys. Lett. 112:204101
    [Google Scholar]
  65. Jiménez N, Picó R, Sánchez-Morcillo V, Romero-García V, García-Raffi LM, Staliunas K 2016. Formation of high-order acoustic Bessel beams by spiral diffraction gratings. Phys. Rev. E 94:053004
    [Google Scholar]
  66. Kamakura T, Sudo T, Matsuda K, Kumamoto Y 1996. Time evolution of acoustic streaming from a planar ultrasound source. J. Acoust. Soc. Am. 100:132–38
    [Google Scholar]
  67. Karlsen JT, Augustsson P, Bruus H 2016. Acoustic force density acting on inhomogeneous fluids in acoustic fields. Phys. Rev. Lett. 117:114504
    [Google Scholar]
  68. Karlsen JT, Bruus H 2015. Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Phys. Rev. E 92:043010
    [Google Scholar]
  69. King L 1934. On the acoustic radiation pressure on spheres. Proc. R. Soc. Lond. A 147:212–40
    [Google Scholar]
  70. Klein E 1938. Absolute sound intensity in liquids by spherical torsion pendula. J. Acoust. Soc. Am. 9:312–20
    [Google Scholar]
  71. Kuznetsov VP 1970. Equations of nonlinear acoustics. Sov. Phys. Acoust. 16:467–70
    [Google Scholar]
  72. Lenshof A, Laurell T 2010. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39:1203–17
    [Google Scholar]
  73. Li Y, Jiang X, Liang B, Cheng J-C, Zhang L 2015. Metascreen-based acoustic passive phased array. Phys. Rev. Appl. 4:024003
    [Google Scholar]
  74. Liberman LN 1949. The second viscosity of liquids. Phys. Rev. 75:1415–22
    [Google Scholar]
  75. Lighthill J 1978. Acoustic streaming. J. Sound Vib. 61:391–418
    [Google Scholar]
  76. Maheu B, Gouesbet G, Gréhan G 1987. A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile. J. Opt. 19:59–67
    [Google Scholar]
  77. Marston PL 2006. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120:3518
    [Google Scholar]
  78. Marston PL 2008. Scattering of a Bessel beam by a sphere: II. Helicoidal case and spherical shell example. J. Acoust. Soc. Am. 124:2905–10
    [Google Scholar]
  79. Marston PL 2009. Radiation force of a helicoidal Bessel beam on a sphere. J. Acoust. Soc. Am. 120:3539–47
    [Google Scholar]
  80. Marston PL, Zhang L 2017. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields. J. Acoust. Soc. Am. 141:3042–49
    [Google Scholar]
  81. Marzo A, Seah SA, Drinkwater BW, Sahoo DR, Long B, Subramanian S 2015. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6:8661
    [Google Scholar]
  82. McIntyre ME 1981. On the “wave momentum” myth. J. Fluid Mech. 106:331–47
    [Google Scholar]
  83. Moudjed B, Botton V, Henry D, Ben Hadid H, Garandet J-P 2014. Scaling and dimensional analysis of acoustic streaming jets. Phys. Fluids 26:093602
    [Google Scholar]
  84. Neuman KC, Nagy A 2008. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Meth. 5:491–505
    [Google Scholar]
  85. Nyborg WL 1953. Acoustic streaming due to attenuated plane waves. J. Acoust. Soc. Am. 25:68–75
    [Google Scholar]
  86. Nye JF, Berry MV 1974. Dislocations in wave trains. Proc. R. Soc. Lond. A 336:164–90
    [Google Scholar]
  87. Ozcelik A, Rufo J, Guo F, Gu Y, Li P et al. 2018. Acoustic tweezers for the life sciences. Nat. Meth. 15:1021–28
    [Google Scholar]
  88. Peierls R 1985. Momentum and pseudomomentum of light and sound. Highlights of Condensed Matter Theory F Bassani, F Fumi, MP Tosi 237–55 Bologna, Italy: Soc. Ital. Fisica
    [Google Scholar]
  89. Post EJ 1953. Radiation pressure and dispersion. J. Acoust. Soc. Am. 25:55–60
    [Google Scholar]
  90. Post EJ 1960. Meaning and interpretation of acoustic momentum and acoustic radiation. Phys. Rev. 118:1113–17
    [Google Scholar]
  91. Rayleigh L 1884. On the circulation of air observed in Kundt's tubes, and some allied acoustical problems. Philos. Trans. R. Soc. Lond. 175:1–21
    [Google Scholar]
  92. Rayleigh L 1902. On the pressure of vibration. Philos. Mag. 3:338–46
    [Google Scholar]
  93. Rayleigh L 1905. On the momentum and pressure of gaseous vibrations, and on the connection with the virial theorem. Philos. Mag. 10:364–74
    [Google Scholar]
  94. Ren KF, Gréhan G, Gouesbet G 1994. Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects. Opt. Commun. 108:343–54
    [Google Scholar]
  95. Riaud A, Baudoin M, Thomas J-L, Bou Matar O 2014. Cyclones and attractive streaming generated by acoustical vortices. Phys. Rev. E 90:013008
    [Google Scholar]
  96. Riaud A, Baudoin M, Bou Matar O, Becera L, Thomas J-L 2017a. Selective manipulation of microscopic particles with precursor swirling Rayleigh waves. Phys. Rev. Appl. 7:024007
    [Google Scholar]
  97. Riaud A, Baudoin M, Bou Matar O, Thomas J-L, Brunet P 2017b. On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method. J. Fluid Mech. 821:384–420
    [Google Scholar]
  98. Richter VG 1940. Zur Frage des Schallstrahlungsdruckes. G. Z. Phys. 115:97–108
    [Google Scholar]
  99. Riley N 2001. Steady streaming. Annu. Rev. Fluid Mech. 33:43–65
    [Google Scholar]
  100. Romanenko EV 1960. Experimental study of acoustic streaming in water. Sov. Phys. Acoust. 6:87–91
    [Google Scholar]
  101. Rooney JA 1973. Determination of acoustic power outputs in the microwatt-milliwatt range. Ultrasound Med. Biol. 1:13–16
    [Google Scholar]
  102. Rudenko OV, Soluyan SI 1971. Theory of non-stationary acoustic streaming. Sov. Phys. Acoust. 17:97–101
    [Google Scholar]
  103. Rudnick I 1977. Measurements of the acoustic radiation pressure on a sphere in a standing wave field. J. Acoust. Soc. Am. 62:20–22
    [Google Scholar]
  104. Sapozhnikov OA, Bailey MR 2013. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust. Soc. Am. 133:661–76
    [Google Scholar]
  105. Schram CJ 1984. Separation of particles in liquid medium—using varied ultrasonic standing waveEur. Patent 167406
  106. Schwartz T, Petit-Pierre G, Dual J 2013. Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes. J. Acoust. Soc. Am. 133:1260–68
    [Google Scholar]
  107. Settnes M, Bruus H 2012. Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 85:016327
    [Google Scholar]
  108. Silva GT 2011. An expression for the radiation force exerted by an acoustic beam with arbitrary wavefront. J. Acoust. Soc. Am. 130:3541–44
    [Google Scholar]
  109. Silva GT, Lopes JG, Leao-Neto JP, Nichols K, Drinkwater B 2019. Particle patterning by ultrasonic standing waves in a rectangular cavity. Phys. Rev. Appl. 11:054044
    [Google Scholar]
  110. Sölner K, Bondy C 1936. The mechanism of coagulation by ultrasonic waves. Trans. Faraday Soc. 32:616–23
    [Google Scholar]
  111. Stanikov YG 1967. Streaming induced by finite amplitude sound. Sov. Phys. Acoust. 23:247–85
    [Google Scholar]
  112. Svoboda K, Block SM 1994. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23:247–85
    [Google Scholar]
  113. Thomas J-L, Marchiano R, Baresch D 2017. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers. J. Quant. Spect. Rad. Transf. 195:55–65
    [Google Scholar]
  114. Tran SBQ, Marmottant P, Thibault P 2012. Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels. Appl. Phys. Lett. 101:114103
    [Google Scholar]
  115. Whitworth G, Grundy MA, Coakley WT 1991. Transport and harvesting particles using modulated ultrasound. Ultrasonics 29:439–44
    [Google Scholar]
  116. Xie WJ, Wei B 2002. Dependence of acoustic levitation capabilities on geometric parameters. Phys. Rev. E 66:026605
    [Google Scholar]
  117. Yeo LY, Friend JR 2014. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46:379–406
    [Google Scholar]
  118. Yosioka K, Kawasima Y 1955. Acoustic radiation pressure on a compressible sphere. Acustica 5:167–73
    [Google Scholar]
  119. Westervelt PJ 1953. The theory of steady rotational flow generated by a sound field. J. Acoust. Soc. Am. 25:60–67
    [Google Scholar]
  120. Wu JR 1991. Acoustical tweezers. J. Acoust. Soc. Am. 89:2140–43
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060154
Loading
/content/journals/10.1146/annurev-fluid-010719-060154
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error