1932

Abstract

Experiments and numerical simulations have shown that turbulence in transitional wall-bounded shear flows frequently takes the form of long oblique bands if the domains are sufficiently large to accommodate them. These turbulent bands have been observed in plane Couette flow, plane Poiseuille flow, counter-rotating Taylor–Couette flow, torsional Couette flow, and annular pipe flow. At their upper Reynolds number threshold, laminar regions carve out gaps in otherwise uniform turbulence, ultimately forming regular turbulent–laminar patterns with a large spatial wavelength. At the lower threshold, isolated turbulent bands sparsely populate otherwise laminar domains, and complete laminarization takes place via their disappearance. We review results for plane Couette flow, plane Poiseuille flow, and free-slip Waleffe flow, focusing on thresholds, wavelengths, and mean flows, with many of the results coming from numerical simulations in tilted rectangular domains that form the minimal flow unit for the turbulent–laminar bands.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060221
2020-01-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060221.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060221&mimeType=html&fmt=ahah

Literature Cited

  1. Andereck CD, Liu S, Swinney HL 1986. Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164:155–83
    [Google Scholar]
  2. Avila K 2013. Shear flow experiments: Characterizing the onset of turbulence as a phase transition PhD Thesis, Georg August Univ. Sch. Sci., Göttingen, Ger.
  3. Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B 2011. The onset of turbulence in pipe flow. Science 333:192–96
    [Google Scholar]
  4. Barkley D, Tuckerman LS 2005a. Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett. 94:014502
    [Google Scholar]
  5. Barkley D, Tuckerman LS 2005b. Turbulent-laminar patterns in plane Couette flow. IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions107–27 Dordrecht, Neth.: Springer
    [Google Scholar]
  6. Barkley D, Tuckerman LS 2007. Mean flow of turbulent–laminar patterns in plane Couette flow. J. Fluid Mech. 576:109–37
    [Google Scholar]
  7. Bottin S, Chaté H 1998. Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B 6:143–55
    [Google Scholar]
  8. Bottin S, Daviaud F, Manneville P, Dauchot O 1998. Discontinuous transition to spatiotemporal intermittency in plane Couette flow. Europhys. Lett. 43:171–76
    [Google Scholar]
  9. Brethouwer G, Duguet Y, Schlatter P 2012. Turbulent-laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces. J. Fluid Mech. 704:137–72
    [Google Scholar]
  10. Campbell D, Farmer D, Crutchfield J, Jen E 1985. Experimental mathematics: the role of computation in nonlinear science. Commun. ACM 28:374–84
    [Google Scholar]
  11. Chantry M, Tuckerman LS, Barkley D 2016. Turbulent–laminar patterns in shear flows without walls. J. Fluid Mech. 791:R8
    [Google Scholar]
  12. Chantry M, Tuckerman LS, Barkley D 2017. Universal continuous transition to turbulence in a planar shear flow. J. Fluid Mech. 824:R1
    [Google Scholar]
  13. Coles D, van Atta C 1966. Progress report on a digital experiment in spiral turbulence. AIAA J. 4:1969–71
    [Google Scholar]
  14. Couliou M, Monchaux R 2015. Large-scale flows in transitional plane Couette flow: a key ingredient of the spot growth mechanism. Phys. Rev. Fluids 27:034101
    [Google Scholar]
  15. Couliou M, Monchaux R 2018. Childhood of turbulent spots in a shear flow. Phys. Rev. Fluids 3:123901
    [Google Scholar]
  16. Cros A, Le Gal P 2002. Spatiotemporal intermittency in the torsional Couette flow between a rotating and a stationary disk. Phys. Fluids 14:3755–65
    [Google Scholar]
  17. Cvitanović P, Eckhardt B 1989. Periodic-orbit quantization of chaotic systems. Phys. Rev. Lett. 63:823
    [Google Scholar]
  18. Daviaud F, Hegseth J, Bergé P 1992. Subcritical transition to turbulence in plane Couette flow. Phys. Rev. Lett. 69:2511
    [Google Scholar]
  19. Deguchi K, Hall P 2015. Asymptotic descriptions of oblique coherent structures in shear flows. J. Fluid Mech. 782:356–67
    [Google Scholar]
  20. Deusebio E, Caulfield C, Taylor J 2015. The intermittency boundary in stratified plane Couette flow. J. Fluid Mech. 781:298–329
    [Google Scholar]
  21. Dong S 2009. Evidence for internal structures of spiral turbulence. Phys. Rev. E 80:067301
    [Google Scholar]
  22. Duguet Y, Schlatter P 2013. Oblique laminar-turbulent interfaces in plane shear flows. Phys. Rev. Lett. 110:034502
    [Google Scholar]
  23. Duguet Y, Schlatter P, Henningson DS 2010. Formation of turbulent patterns near the onset of transition in plane Couette flow. J. Fluid Mech. 650:119–29
    [Google Scholar]
  24. Feynman RP 1964. Lecture Notes in Physics Reading, MA: Addison-Wesley
  25. Fukudome K, Iida O 2012. Large-scale flow structure in turbulent Poiseuille flows at low-Reynolds numbers. J. Fluid Sci. Technol. 7:181–95
    [Google Scholar]
  26. Gibson JF, Halcrow J, Cvitanović P 2009. Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638:243–66
    [Google Scholar]
  27. Goharzadeh A, Mutabazi I 2001. Experimental characterization of intermittency regimes in the Couette-Taylor system. Eur. Phys. J. B 19:157–62
    [Google Scholar]
  28. Goharzadeh A, Mutabazi I 2008. The phase dynamics of spiral turbulence in the Couette-Taylor system. Eur. Phys. J. B 66:81–84
    [Google Scholar]
  29. Hamilton JM, Kim J, Waleffe F 1995. Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287:317–48
    [Google Scholar]
  30. Hashimoto S, Hasobe A, Tsukahara T, Kawaguchi Y, Kawamura H 2009. An experimental study on turbulent-stripe structure in transitional channel flow. Proceedings of the Sixth International Symposium on Turbulence, Heat and Mass Transfer K Hanjalić, Y Nagano, S Jakirlić. Danbury, CT: Begell House
    [Google Scholar]
  31. Hegseth JJ, Andereck CD, Hayot F, Pomeau Y 1989. Spiral turbulence and phase dynamics. Phys. Rev. Lett. 62:257
    [Google Scholar]
  32. Henderson RD, Karniadakis GE 1995. Unstructured spectral element methods for simulation of turbulent flows. J. Comput. Phys. 122:191–217
    [Google Scholar]
  33. Ishida T, Brethouwer G, Duguet Y, Tsukahara T 2017. Laminar-turbulent patterns with rough walls. Phys. Rev. Fluids 2:073901
    [Google Scholar]
  34. Ishida T, Duguet Y, Tsukahara T 2016. Transitional structures in annular Poiseuille flow depending on radius ratio. J. Fluid Mech. 794:R2
    [Google Scholar]
  35. Kanazawa T 2018. Lifetime and growing process of localized turbulence in plane channel flow PhD Thesis, Osaka Univ., Osaka, Jpn.
  36. Kawahara G, Kida S 2001. Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449:291–300
    [Google Scholar]
  37. Kawahara G, Uhlmann M, Van Veen L 2012. The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44:203–25
    [Google Scholar]
  38. Khapko T, Schlatter P, Duguet Y, Henningson D 2016. Turbulence collapse in a suction boundary layer. J. Fluid Mech. 795:356–79
    [Google Scholar]
  39. Klotz L, Lemoult G, Frontczak I, Tuckerman LS, Wesfreid JE 2017. Couette-Poiseuille flow experiment with zero mean advection velocity: subcritical transition to turbulence. Phys. Rev. Fluids 2:043904
    [Google Scholar]
  40. Kushwaha A, Park JS, Graham MD 2017. Temporal and spatial intermittencies within channel flow turbulence near transition. Phys. Rev. Fluids 2:024603
    [Google Scholar]
  41. Lagha M, Manneville P 2007. Modeling of plane Couette flow. I. Large scale flow around turbulent spots. Phys. Fluids 19:094105
    [Google Scholar]
  42. Lemoult G, Gumowski K, Aider JL, Wesfreid JE 2014. Turbulent spots in channel flow: an experimental study. Eur. Phys. J. E 37:25
    [Google Scholar]
  43. Lemoult G, Shi L, Avila K, Jalikop SV, Avila M, Hof B 2016. Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12:254–58
    [Google Scholar]
  44. Lübeck S 2004. Universal scaling behavior of non-equilibrium phase transitions. Int. J. Mod. Phys. B 18:3977–4118
    [Google Scholar]
  45. Lundbladh A, Johansson AV 1991. Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229:499–516
    [Google Scholar]
  46. Manneville P 2015. On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular. Eur. J. Mech. B 49:345–62
    [Google Scholar]
  47. Manneville P, Dauchot O 2001. Patterning and transition to turbulence in subcritical systems: the case of plane Couette flow. Coherent Structures in Complex Systems: Selected Papers of the XVII Sitges Conference on Statistical Mechanics D Reguera, LL Bonilla, JM Rubi 58–79 Berlin: Springer
    [Google Scholar]
  48. Manneville P, Locher F 2000. A model for transitional plane Couette flow. C.R. Acad. Sci. Paris IIb 328:159–64
    [Google Scholar]
  49. Marqués F 1990. On boundary conditions for velocity potentials in confined flows: application to Couette flow. Phys. Fluids A 2:729–37
    [Google Scholar]
  50. Meseguer A, Mellibovsky F, Avila M, Marques F 2009. Instability mechanisms and transition scenarios of spiral turbulence in Taylor–Couette flow. Phys. Rev. E 80:046315
    [Google Scholar]
  51. Mizuno Y, Jiménez J 2013. Wall turbulence without walls. J. Fluid Mech. 723:429–55
    [Google Scholar]
  52. Moehlis J, Faisst H, Eckhardt B 2004. A low-dimensional model for turbulent shear flows. New J. Phys. 6:56
    [Google Scholar]
  53. Nagata M 1990. Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217:519–27
    [Google Scholar]
  54. Philip J, Manneville P 2011. From temporal to spatiotemporal dynamics in transitional plane Couette flow. Phys. Rev. E 83:036308
    [Google Scholar]
  55. Podvin B, Fraigneau Y 2011. Synthetic wall boundary conditions for the direct numerical simulation of wall-bounded turbulence. J. Turbul. 12:N4
    [Google Scholar]
  56. Pomeau Y 1986. Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23:3–11
    [Google Scholar]
  57. Prigent A, Grégoire G, Chaté H, Dauchot O 2003. Long-wavelength modulation of turbulent shear flows. Physica D 174:100–13
    [Google Scholar]
  58. Prigent A, Grégoire G, Chaté H, Dauchot O, van Saarloos W 2002. Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89:014501
    [Google Scholar]
  59. Reetz F, Kreilos T, Schneider TM 2019. Exact invariant solution reveals the origin of self-organized oblique turbulent-laminar stripes. Nat. Commun. 10:2277
    [Google Scholar]
  60. Sano M, Tamai K 2016. A universal transition to turbulence in channel flow. Nat. Phys. 12:249–53
    [Google Scholar]
  61. Schneider TM, Marinc D, Eckhardt B 2010. Localized edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech. 646:441–51
    [Google Scholar]
  62. Schumacher J, Eckhardt B 2001. Evolution of turbulent spots in a parallel shear flow. Phys. Rev. E 63:046307
    [Google Scholar]
  63. Seshasayanan K, Manneville P 2015. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model. Fluid Dyn. Res. 47:035512
    [Google Scholar]
  64. Shi L, Avila M, Hof B 2013. Scale invariance at the onset of turbulence in Couette flow. Phys. Rev. Lett. 110:204502
    [Google Scholar]
  65. Takeishi K, Kawahara G, Wakabayashi H, Uhlmann M, Pinelli A 2015. Localized turbulence structures in transitional rectangular-duct flow. J. Fluid Mech. 782:368–79
    [Google Scholar]
  66. Tao J, Eckhardt B, Xiong X 2018. Extended localized structures and the onset of turbulence in channel flow. Phys. Rev. Fluids 3:011902
    [Google Scholar]
  67. Tillmark N, Alfredsson PH 1992. Experiments on transition in plane Couette flow. J. Fluid Mech. 235:89–102
    [Google Scholar]
  68. Tsukahara T, Iwamoto K, Kawamura H, Takeda T 2006. DNS of heat transfer in a transitional channel flow accompanied by a turbulent puff-like structure. Proceedings of the Fifth International Symposium on Turbulence, Heat and Mass Transfer193–96 Danbury, CT: Begell House
    [Google Scholar]
  69. Tsukahara T, Seki Y, Kawamura H, Tochio D 2005. DNS of turbulent channel flow at very low Reynolds numbers. Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena935–40 Danbury, CT: Begell House
    [Google Scholar]
  70. Tsukahara T, Tillmark N, Alfredsson P 2010. Flow regimes in a plane Couette flow with system rotation. J. Fluid Mech. 648:5–33
    [Google Scholar]
  71. Tuckerman LS, Barkley D 2011. Patterns and dynamics in transitional plane Couette flow. Phys. Fluids 23:041301
    [Google Scholar]
  72. Tuckerman LS, Kreilos T, Schrobsdorff H, Schneider TM, Gibson JF 2014. Turbulent-laminar patterns in plane Poiseuille flow. Phys. Fluids 26:114103
    [Google Scholar]
  73. Waleffe F 1997. On a self-sustaining process in shear flows. Phys. Fluids 9:883–90
    [Google Scholar]
  74. Wang SN, Shekar A, Graham MD 2017. Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow. J. Non-Newton. Fluid Mech. 244:104–22
    [Google Scholar]
  75. Xiong X, Tao J, Chen S, Brandt L 2015. Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers. Phys. Fluids 27:041702
    [Google Scholar]
  76. Zikanov O, Krasnov D, Boeck T, Thess A, Rossi M 2014. Laminar-turbulent transition in magnetohydrodynamic duct, pipe, and channel flows. Appl. Mech. Rev. 66:030802
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060221
Loading
/content/journals/10.1146/annurev-fluid-010719-060221
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error