1932

Abstract

Fluid–structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid–structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration that can otherwise be required for models involving large deformations and displacements. This article reviews immersed methods for both elastic structures and structures with prescribed kinematics. It considers formulations using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid–structure interfaces. Benchmark problems demonstrate the effectiveness of these methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight their impact in biological and biomedical modeling and simulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060228
2020-01-05
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060228.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060228&mimeType=html&fmt=ahah

Literature Cited

  1. Apte SV, Martin M, Patankar NA 2009. A numerical method for fully resolved simulation (FRS) of rigid particle–flow interactions in complex flows. J. Comput. Phys. 228:2712–38
    [Google Scholar]
  2. Atzberger PJ, Kramer PR, Peskin CS 2007. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales. J. Comput. Phys. 224:1255–92
    [Google Scholar]
  3. Balboa Usabiaga F, Bell JB, Delgado-Buscalioni R, Donev A, Fai T et al. 2012. Staggered schemes for fluctuating hydrodynamics. Multiscale Model. Simul. 10:1369–408
    [Google Scholar]
  4. Balboa Usabiaga F, Kallemov B, Delmotte B, Bhalla APS, Griffith BE, Donev A 2016. Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach. Comm. Appl. Math. Comput. Sci. 11:217–96
    [Google Scholar]
  5. Bale R, Hao M, Bhalla APS, Patankar NA 2014a. Energy efficiency and allometry of movement of swimming and flying animals. PNAS 111:7517–21
    [Google Scholar]
  6. Bale R, Hao M, Bhalla APS, Patel NK, Patankar NA 2014b. Gray's paradox: a fluid mechanical perspective. Sci. Rep. 4:5904
    [Google Scholar]
  7. Bale R, Neveln ID, Bhalla APS, MacIver MA, Patankar NA 2015. Convergent evolution of mechanically optimal locomotion in aquatic invertebrates and vertebrates. PLOS Biol. 13:e1002123
    [Google Scholar]
  8. Bale R, Shirgaonkar AA, Neveln ID, Bhalla APS, MacIver MA, Patankar NA 2014c. Separability of drag and thrust in undulatory animals and machines. Sci. Rep. 4:7329
    [Google Scholar]
  9. Banaei AA, Loiseau JC, Lashgari I, Brandt L 2017. Numerical simulations of elastic capsules with nucleus in shear flow. Eur. J. Comput. Mech. 26:131–53
    [Google Scholar]
  10. Bao Y, Kaye J, Peksin CS 2016. A Gaussian-like immersed boundary kernel with three continuous derivatives and improved translational invariance. J. Comput. Phys. 316:139–44
    [Google Scholar]
  11. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y 2008. Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput. Mech. 43:3–37
    [Google Scholar]
  12. Bergou A, Xu S, Wang ZJ 2007. Passive wing pitch reversal in insect flight. J. Fluid Mech. 591:321–37
    [Google Scholar]
  13. Bhalla APS, Bale R, Griffith BE, Patankar NA 2013. A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies. J. Comput. Phys. 250:446–76
    [Google Scholar]
  14. Bischoff M, Wall WA, Bletzinger KU, Ramm E 2004. Models and finite elements for thin-walled structures. Encyclopedia of Computational Mechanics 2 ed. E Stein, R de Borst, TJR Hughes 59–137 Hoboken, NJ: Wiley
    [Google Scholar]
  15. Boffi D, Gastaldi L, Heltai L 2018. A distributed Lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids. Mathematical and Numerical Modeling of the Cardiovascular System and Applications ed. D Boffi, L Pavarino, G Rozza, S Scacchi, C Vergara 1–21 Cham, Switz.: Springer
    [Google Scholar]
  16. Boffi D, Gastaldi L, Heltai L, Peskin CS 2008. On the hyper-elastic formulation of the immersed boundary method. Comput. Meth. Appl. Mech. Eng. 197:2210–31
    [Google Scholar]
  17. Bonet J, Gil AJ, Ortigosa R 2015. A computational framework for polyconvex large strain elasticity. Comput. Meth. Appl. Mech. Eng. 283:1061–94
    [Google Scholar]
  18. Borazjani I, Ge L, Sotiropoulos F 2008. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227:7587–620
    [Google Scholar]
  19. Borazjani I, Sotiropoulos F 2008. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211:1541–58
    [Google Scholar]
  20. Borazjani I, Sotiropoulos F 2009. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 212:576–92
    [Google Scholar]
  21. Casquero H, Zhang YJ, Bona-Casas C, Dalcin L, Gomez H 2018. Non-body-fitted fluid–structure interaction: divergence-conforming B-splines, fully-implicit dynamics, and variational formulation. J. Comput. Phys. 374:625–53
    [Google Scholar]
  22. Castell DO, Donner MW 1987. Evaluation of dysphagia: a careful history is crucial. Dysphagia 2:65–71
    [Google Scholar]
  23. Chen Y, Sharma N, Patankar N 2006. Fluctuating Immersed Material (FIMAT) dynamics for the direct simulation of the brownian motion of particles. IUTAM Symposium on Computational Approaches to Multiphase Flow ed. S Balachandar, A Prosperetti 119–29 Dordrecht, Neth.: Springer
    [Google Scholar]
  24. Colella P, Sekora MD 2008. A limiter for PPM that preserves accuracy at smooth extrema. J. Comput. Phys. 227:7069–76
    [Google Scholar]
  25. Cook IJ 2008. Diagnostic evaluation of dysphagia. Nat. Clin. Pract. Gastroenterol. Hepatol. 5:393–403
    [Google Scholar]
  26. Craven BA, Aycock KI, Manning KB 2018. Steady flow in a patient-averaged inferior vena cava—part II: computational fluid dynamics verification and validation. Cardiovasc. Eng. Technol. 9:654–73
    [Google Scholar]
  27. Crowl L, Fogelson AL 2011. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech. 676:348–75
    [Google Scholar]
  28. Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP 2007. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19:067105
    [Google Scholar]
  29. Devendran D, Peksin CS 2012. An energy-based immersed boundary method for incompressible viscoelasticity. J. Comput. Phys. 231:4613–42
    [Google Scholar]
  30. Donea J, Giuliani S, Halleux JP 1982. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Meth. Appl. Mech. Eng. 33:689–723
    [Google Scholar]
  31. Eggleton CD, Popel AS 1998. Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10:1834–45
    [Google Scholar]
  32. Evans EA, Skalak R 1980. Mechanics and Thermodynamics of Biomembranes Boca Raton, FL: CRC
  33. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161:35–60
    [Google Scholar]
  34. Fai TG, Griffith BE, Mori Y, Peskin CS 2013. Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers. I: numerical method and results. SIAM J. Sci. Comput. 35:B1132–61
    [Google Scholar]
  35. Fai TG, Griffith BE, Mori Y, Peskin CS 2014. Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers. II: theory. SIAM J. Sci. Comput. 36:B589–621
    [Google Scholar]
  36. Fai TG, Leo-Macias A, Stokes DL, Peksin CS 2017. An image-based model of the spectrin cytoskeleton for red blood cell simulation. PLOS Comput. Biol. 11:e1005790
    [Google Scholar]
  37. Fogelson AL, Guy RD 2008. Immersed-boundary-type models of intravascular platelet aggregation. Comput. Meth. Appl. Mech. Eng. 197:2087–104
    [Google Scholar]
  38. Gazzola M, Rees WMV, Koumoutsakos P 2012. C-start: optimal start of larval fish. J. Fluid Mech. 698:5–18
    [Google Scholar]
  39. Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP 2008. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36:276–97
    [Google Scholar]
  40. Ghosh SK, Kahrilas PJ, Zaki T, Pandolfino JE, Joehl RJ, Brasseur JG 2005. The mechanical basis of impaired esophageal emptying postfundoplication. Am. J. Physiol. Gastrointest. Liver Physiol. 289:G21–35
    [Google Scholar]
  41. Gil AJ, Carreño AA, Bonet J, Hassan O 2010. The Immersed Structural Potential Method for haemodynamic applications. J. Comput. Phys. 229:8613–41
    [Google Scholar]
  42. Gilmanov A, Sotiropoulos F 2005. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. Comput. Phys. 207:457–92
    [Google Scholar]
  43. Givelberg E 2004. Modeling elastic shells immersed in fluid. Comm. Pure Appl. Math. 57:283–309
    [Google Scholar]
  44. Glowinski R, Pan TW, Hesla TI, Joseph DD 1999. A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25:755–94
    [Google Scholar]
  45. Glowinski R, Pan TW, Periaux J 1998. Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput. Meth. Appl. Mech. Eng. 151:181–94
    [Google Scholar]
  46. Griffith BE 2009. An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner. J. Comput. Phys. 228:7565–95
    [Google Scholar]
  47. Griffith BE 2012. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Meth. Biomed. Eng. 28:317–45
    [Google Scholar]
  48. Griffith BE, Hornung RD, McQueen DM, Peskin CS 2007. An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223:10–49
    [Google Scholar]
  49. Griffith BE, Hornung RD, McQueen DM, Peskin CS 2009a. Parallel and adaptive simulation of cardiac fluid dynamics. Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications ed. M Parashar, X Li 105–30 Hoboken, NJ: Wiley
    [Google Scholar]
  50. Griffith BE, Lim S 2012. Simulating an elastic ring with bend and twist by an adaptive generalized immersed boundary method. Comm. Comput. Phys. 12:433–61
    [Google Scholar]
  51. Griffith BE, Luo XY 2017. Hybrid finite difference/finite element version of the immersed boundary method. Int. J. Numer. Meth. Biomed. Eng. 33:e2888
    [Google Scholar]
  52. Griffith BE, Luo XY, McQueen DM, Peskin CS 2009b. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1:137–77
    [Google Scholar]
  53. Griffith BE, Peskin CS 2005. On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. J. Comput. Phys. 208:75–105
    [Google Scholar]
  54. Guivier-Curien C, Deplano V, Bertrand E 2009. Validation of a numerical 3-D fluid–structure interaction model for a prosthetic valve based on experimental PIV measurements. Med. Eng. Phys. 31:986–93
    [Google Scholar]
  55. Holzapfel GA 2000. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Hoboken, NJ: Wiley
  56. Hoover AP, Griffith BE, Miller LA 2017. Quantifying performance in the medusan mechanospace with an actively swimming three-dimensional jellyfish model. J. Fluid Mech. 813:1112–55
    [Google Scholar]
  57. Hoover AP, Porras AJ, Miller LA 2019. Pump or coast: the role of resonance and passive energy recapture in medusan swimming performance. J. Fluid Mech. 863:1031–61
    [Google Scholar]
  58. Hsu MC, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR 2014. Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54:1055–71
    [Google Scholar]
  59. Hsu MC, Kamensky D, Xu F, Kiendl J, Wang CL et al. 2015. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 55:1211–25
    [Google Scholar]
  60. Hu HH, Patankar NA, Zhu MY 2001. Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169:427–62
    [Google Scholar]
  61. Hughes TJR, Cottrell JA, Bazilevs Y 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. 194:4135–95
    [Google Scholar]
  62. Iaccarino G, Verzicco R 2003. Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56:331–47
    [Google Scholar]
  63. Jun BH, Saikrishnan N, Arjunon S, Yun BM, Yoganathan AP 2014. Effect of hinge gap width of a St. Jude Medical bileaflet mechanical heart valve on blood damage potential—an in vitro micro particle image velocimetry study. J. Biomech. Eng. 136:091008
    [Google Scholar]
  64. Kallemov B, Bhalla APS, Griffith BE, Donev A 2016. An immersed boundary method for rigid bodies. Comm. Appl. Math. Comput. Sci. 11:79–141
    [Google Scholar]
  65. Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A et al. 2015. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput. Meth. Appl. Mech. Eng. 284:1005–53
    [Google Scholar]
  66. Kern S, Koumoutsakos P 2006. Simulations of optimized anguilliform swimming. J. Exp. Biol. 209:4841–57
    [Google Scholar]
  67. Ketcheson DI, Parsani M, LeVeque RJ 2013. High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. 35:A351–77
    [Google Scholar]
  68. Kim Y, Peskin CS 2007. Penalty immersed boundary method for an elastic boundary with mass. Phys. Fluids 19:053103
    [Google Scholar]
  69. Kim Y, Zhu L, Wang X, Peskin CS 2003. On various techniques for computer simulation of boundaries with mass. Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics ed. KJ Bathe 1746–50 Amsterdam: Elsevier
    [Google Scholar]
  70. Kolahdouz EM, Bhalla APS, Craven BA, Griffith BE 2019. An immersed interface method for discrete surfaces. J. Comput. Phys. In press
    [Google Scholar]
  71. Kou W, Bhalla APS, Griffith BE, Pandolfino JE, Kahrilas PJ, Patankar NA 2015a. A fully resolved active musculo-mechanical model for esophageal transport. J. Comput. Phys. 298:446–65
    [Google Scholar]
  72. Kou W, Pandolfino JE, Kahrilas PJ, Patankar NA 2015b. Simulation studies of circular muscle contraction, longitudinal muscle shortening, and their coordination in esophageal transport. Am. J. Physiol. Gastrointest. Liver Physiol. 309:G238–47
    [Google Scholar]
  73. Kou W, Pandolfino JE, Kahrilas PJ, Patankar NA 2017a. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study. Neurogastroenterol. Motil. 29:e13022
    [Google Scholar]
  74. Kou W, Pandolfino JE, Kahrilas PJ, Patankar NA 2017b. Simulation studies of the role of esophageal mucosa in bolus transport. Biomechan. Model. Mechanobiol. 16:1001–9
    [Google Scholar]
  75. Kou W, Pandolfino JE, Kahrilas PJ, Patankar NA 2018. Studies of abnormalities of the lower esophageal sphincter during esophageal emptying based on a fully coupled bolus-esophageal-gastric model. Biomech. Model. Mechanobiol. 17:1069–82
    [Google Scholar]
  76. Lai MC, Li ZL 2001. A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an immersed moving membrane. Appl. Math. Lett. 14:149–54
    [Google Scholar]
  77. Lai MC, Peskin CS 2000. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160:705–19
    [Google Scholar]
  78. Le DV 2010. Subdivision elements for large deformation of liquid capsules enclosed by thin shells. Comput. Meth. Appl. Mech. Eng. 199:2622–32
    [Google Scholar]
  79. Lee JH, Rygg AD, Kolahdouz EM, Rossi S, Retta SM et al. 2019. Fluid–structure interaction models of an experimental pulse duplicator for simulating bioprosthetic heart valve dynamics. engrXiv 8ys2k. https://doi.org/10.31224/osf.io/8ys2k
    [Crossref] [Google Scholar]
  80. Lewis OL, Zhang S, Guy RD, del Almo JC 2015. Coordination of contractility, adhesion and flow in migrating Physarum amoebae. J. R. Soc. Interface 12:20141359
    [Google Scholar]
  81. Li C, Qin B, Gopinath A, Arratia PE, Thomases B, Guy RD 2017. Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data. J. R. Soc. Interface 14:20170289
    [Google Scholar]
  82. Li ZL, Lai MC 2001. The immersed interface method for the Navier–Stokes equations with singular forces. J. Comput. Phys. 171:822–42
    [Google Scholar]
  83. Lim S, Ferent A, Wang XS, Peskin CS 2008. Dynamics of a closed rod with twist and bend in fluid. SIAM J. Sci. Comput. 31:273–302
    [Google Scholar]
  84. Liu WK, Jun S, Zhang YF 1995. Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids 20:1071–106
    [Google Scholar]
  85. Liu Y, Liu WK 2006. Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220:139–54
    [Google Scholar]
  86. Luo X, Mittal R, Zheng X, Bielamowicz SA, Walsh RJ, Hahn JK 2008. An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J. Comput. Phys. 227:9303–32
    [Google Scholar]
  87. MacIver MA, Fontaine E, Burdick JW 2004. Designing future underwater vehicles: principles and mechanisms of the weakly electric fish. IEEE J. Ocean. Eng. 29:651–59
    [Google Scholar]
  88. Maxian O, Kassen AT, Strychalski W 2018. A continuous energy-based immersed boundary method for elastic shells. J. Comput. Phys. 271:333–62
    [Google Scholar]
  89. McQueen DM, O'Donnell T, Griffith BE, Peskin CS 2015. Constructing a patient-specific model heart from CT data. The Handbook of Biomedical Imaging: Methodologies and Clinical Research ed. N Paragios, J Duncan, N Ayache 183–97 New York: Springer
    [Google Scholar]
  90. McQueen DM, Peskin CS 1989. A three-dimensional computational method for blood flow in the heart. II. Contractile fibers. J. Comput. Phys. 82:289–97
    [Google Scholar]
  91. McQueen DM, Peskin CS 2000. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. SIGGRAPH Comput. Graph. 34:56–60
    [Google Scholar]
  92. McQueen DM, Peskin CS 2001. Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity. Mechanics for a New Millennium: Proceedings of the 20th International Conference on Theoretical and Applied Mechanics (ICTAM 2000) ed. H Aref, JW Phillips 429–44 Dordrecht, Neth.: Springer
    [Google Scholar]
  93. Miller LA, Peskin CS 2005. A computational fluid dynamics of ‘clap and fling’ in the smallest insects. J. Exp. Biol. 208:195–212
    [Google Scholar]
  94. Miller LA, Peskin CS 2009. Flexible clap and fling in tiny insect flight. J. Exp. Biol. 212:3076–90
    [Google Scholar]
  95. Mittal RK, Dong H, Bozkurttas M, Najjar FM, Vargas A, Von Loebbecke A 2008. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227:4825–52
    [Google Scholar]
  96. Mittal RK, Iaccarino G 2005. Immersed boundary methods. Annu. Rev. Fluid Mech. 37:239–61
    [Google Scholar]
  97. Mittal RK, Padda B, Bhalla V, Bhargava V, Liu JM 2006. Synchrony between circular and longitudinal muscle contractions during peristalsis in normal subjects. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G431–38
    [Google Scholar]
  98. Morinishi Y, Lund TS, Vasiyev OV, Moin P 1998. Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143:90–124
    [Google Scholar]
  99. Nangia N, Bale R, Chen N, Hanna Y, Patankar NA 2017a. Optimal specific wavelength for maximum thrust production in undulatory propulsion. PLOS ONE 12:e0179727
    [Google Scholar]
  100. Nangia N, Johansen H, Patankar NA, Bhalla APS 2017b. A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies. J. Comput. Phys. 347:437–62
    [Google Scholar]
  101. Nangia N, Patankar NA, Bhalla APS 2019. A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows. J. Comput. Phys. In press
    [Google Scholar]
  102. Newren EP, Fogelson AL, Guy RD, Kirby RM 2007. Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys. 222:702–19
    [Google Scholar]
  103. Nicosia MA, Brasseur JG 2002. A mathematical model for estimating muscle tension in vivo during esophageal bolus transport. J. Theor. Biol. 219:235–55
    [Google Scholar]
  104. Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A et al. 2008. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J. Biomech. 41:2539–50
    [Google Scholar]
  105. Nonaka A, May S, Almgren AS, Bell JB 2011. A three-dimensional, unsplit Godunov method for scalar conservation laws. SIAM J. Sci. Comput. 33:2039–62
    [Google Scholar]
  106. Patankar NA, Singh P, Joseph DD, Glowinski R, Pan TW 2000. A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26:1509–24
    [Google Scholar]
  107. Patel NK, Bhalla APS, Patankar NA 2018. A new constraint-based formulation for hydrodynamically resolved computational neuromechanics of swimming animals. J. Comput. Phys. 375:684–716
    [Google Scholar]
  108. Pearson K, Ekeberg O, Büschges A 2006. Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci. 29:625–31
    [Google Scholar]
  109. Peskin CS 1972. Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10:252–71
    [Google Scholar]
  110. Peskin CS 1977. Numerical analysis of blood flow in the heart. J. Comput. Phys. 25:220–52
    [Google Scholar]
  111. Peskin CS 2002. The immersed boundary method. Acta Numer. 11:479–517
    [Google Scholar]
  112. Peskin CS, McQueen DM 1989. A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81:372–405
    [Google Scholar]
  113. Peskin CS, McQueen DM 1996. Fluid dynamics of the heart and its valves. Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology ed. HG Othmer, FR Adler, MA Lewis, JC Dallon 309–37 Englewood Cliffs, NJ: Prentice-Hall
    [Google Scholar]
  114. Peskin CS, Printz BF 1993. Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys. 105:33–46
    [Google Scholar]
  115. Pouderoux P, Lin S, Kahrilas PJ 1997. Timing, propagation, coordination, and effect of esophageal shortening during peristalsis. Gastroenterology 112:1147–54
    [Google Scholar]
  116. Pranay P, Anekal SG, Hernandez-Ortiz JP, Graham MD 2010. Pair collisions of fluid-filled elastic capsules in shear flow: effects of membrane properties and polymer additives. Phys. Fluids 22:123103
    [Google Scholar]
  117. Pranay P, Henríquez-Rivera RG, Graham MD 2012. Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids. Phys. Fluids 24:061902
    [Google Scholar]
  118. Quaini A, Canic S, Glowinski R, Igo S, Hartley CJ et al. 2012. Validation of a 3D computational fluid–structure interaction model simulating flow through an elastic aperture. J. Biomech. 45:310–18
    [Google Scholar]
  119. Roy S, Heltai L, Costanzo F 2015. Benchmarking the immersed finite element method for fluid-structure interaction problems. Comput. Math. Appl. 69:101167–88
    [Google Scholar]
  120. Saadat A, Guido CJ, Iaccarino G, Shaqfeh ESG 2018. Immersed-finite-element method for deformable particle suspensions in viscous and viscoelastic media. Phys. Rev. E 98:063316
    [Google Scholar]
  121. Shankar V, Wright GB, Kirby RM, Fogelson AL 2015. Augmenting the immersed boundary method with Radial Basis Functions (RBFs) for the modeling of platelets in hemodynamic flows. Int. J. Numer. Meth. Fluids 79:536–57
    [Google Scholar]
  122. Sharma N, Patankar NA 2004. Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations. J. Comput. Phys. 201:466–86
    [Google Scholar]
  123. Sharma N, Patankar NA 2005. A fast computation technique for the direct numerical simulation of rigid particulate flows. J. Comput. Phys. 205:439–57
    [Google Scholar]
  124. Shirgaonkar AA, Curet OM, Patankar NA, MacIver MA 2008. The hydrodynamics of ribbon-fin propulsion during impulsive motion. J. Exp. Biol. 211:3490–503
    [Google Scholar]
  125. Shirgaonkar AA, MacIver MA, Patankar NA 2009. A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. J. Comput. Phys. 228:2366–90
    [Google Scholar]
  126. Siguenza J, Pott D, Mendez S, Sonntag SJ, Kaufmann TAS et al. 2018. Fluid-structure interaction of a pulsatile flow with an aortic valve model: a combined experimental and numerical study. Int. J. Numer. Methods Biomed. Eng. 34:e2945
    [Google Scholar]
  127. Sprinkle B, Balboa Usabiaga F, Patankar NA, Donev A 2017a. Large scale Brownian dynamics of confined suspensions of rigid particles. J. Chem. Phys. 147:244103
    [Google Scholar]
  128. Sprinkle B, Bale R, Bhalla APS, MacIver MA, Patankar NA 2017b. Hydrodynamic optimality of balistiform and gymnotiform locomotion. Eur. J. Comput. Mech. 26:31–43
    [Google Scholar]
  129. Sprinkle B, Donev A, Bhalla APS, Patankar NA 2019. Brownian dynamics of fully confined suspensions of rigid particles without Green's functions. J. Chem. Phys. 150:164116
    [Google Scholar]
  130. Stein DB, Guy RD, Thomases B 2016. Immersed boundary smooth extension: a high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods. J. Comput. Phys. 304:252–74
    [Google Scholar]
  131. Stein DB, Guy RD, Thomases B 2017. Immersed Boundary Smooth Extension (IBSE): a high-order method for solving incompressible flows in arbitrary smooth domains. J. Comput. Phys. 335:155–78
    [Google Scholar]
  132. Stockie JA 2009. Modelling and simulation of porous immersed boundaries. Comput. Struct. 87:701–9
    [Google Scholar]
  133. Taira K, Colonius T 2007. The immersed boundary method: a projection approach. J. Comput. Phys. 225:2118–37
    [Google Scholar]
  134. Tango AM, Salmonsmith J, Ducci A, Burriesci G 2018. Validation and extension of a fluid–structure interaction model of the healthy aortic valve. Cardiovasc. Eng. Technol. 9:739–51
    [Google Scholar]
  135. Taylor GK, Nudds RL, Thomas AL 2003. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425:707–11
    [Google Scholar]
  136. Tytell ED, Hsu CY, Williams TL, Cohen AH, Fauci LJ 2010. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. PNAS 107:19832–37
    [Google Scholar]
  137. Udaykumar HS, Mittal R, Rampunggoon P, Khanna A 2001. A sharp interface Cartesian Grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174:345–80
    [Google Scholar]
  138. Vadala-Roth B, Rossi S, Griffith BE 2018. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity. arXiv:1811.06620 [math.NA]
    [Google Scholar]
  139. van Rees WM, Gazzola M, Koumoutsakos P 2013. Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J. Fluid Mech. 722:R3
    [Google Scholar]
  140. Vargas A, Mittal R, Dong H 2008. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspir. Biomim. 3:026004
    [Google Scholar]
  141. Verma S, Novati G, Koumoutsakos P 2018. Efficient collective swimming by harnessing vortices through deep reinforcement learning. PNAS 115:5849–54
    [Google Scholar]
  142. Votta E, Le TB, Stevanella M, Fusini L, Caiani EG et al. 2013. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46:217–28
    [Google Scholar]
  143. Wang X, Zhang LT 2010. Interpolation functions in the immersed boundary and finite element methods. Comput. Mech. 45:321–34
    [Google Scholar]
  144. Webb PW 1984. Form and function in fish swimming. Sci. Am. 251:58–68
    [Google Scholar]
  145. Wheeler JB, Reed CE 2012. Epidemiology of esophageal cancer. Surg. Clin. North Am. 92:1077–87
    [Google Scholar]
  146. Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu MC 2018. An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves. J. Biomech. 74:23–31
    [Google Scholar]
  147. Wu W, Pott D, Mazza B, Sironi T, Dordoni E et al. 2016. Fluid–structure interaction model of a percutaneous aortic valve: comparison with an in vitro test and feasibility study in a patient-specific case. Ann. Biomed. Eng. 44:590–603
    [Google Scholar]
  148. Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F et al. 2018. A framework for designing patient-specific bio-prosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int. J. Numer. Methods Biomed. Eng. 34:e2938
    [Google Scholar]
  149. Xu S, Wang ZJ 2006a. An immersed interface method for simulating the interaction of a fluid with moving boundaries. J. Comput. Phys. 216:454–93
    [Google Scholar]
  150. Xu S, Wang ZJ 2006b. Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation. SIAM J. Sci. Comput. 27:1948–80
    [Google Scholar]
  151. Xu S, Wang ZJ 2008. A 3D immersed interface method for fluid-solid interaction. Comput. Meth. Appl. Mech. Eng. 197:2068–86
    [Google Scholar]
  152. Yang J, Wang X, Krane M, Zhang LT 2017. Fully-coupled aeroelastic simulation with fluid compressibility—for application to vocal fold vibration. Comput. Meth. Appl. Mech. Eng. 315:584–606
    [Google Scholar]
  153. Ye T, Mittal R, Udaykumar HS, Shyy W 1999. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156:209–40
    [Google Scholar]
  154. Zhang L, Gerstenberger A, Wang X, Liu WK 2004. Immersed finite element method. Comput. Meth. Appl. Mech. Eng. 193:2051–67
    [Google Scholar]
  155. Zhao H, Freund JB, Moser RD 2008. A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J. Comput. Phys. 227:3114–40
    [Google Scholar]
  156. Zhu L, Brandt L 2015. The motion of a deforming capsule through a corner. J. Fluid Mech. 770:374–97
    [Google Scholar]
  157. Zhu L, Peskin CS 2002. Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179:452–68
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060228
Loading
/content/journals/10.1146/annurev-fluid-010719-060228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error